Меню

Защита трубопроводов от коррозии блуждающих токов

Варианты катодной защиты трубопроводов – преимущества и недостатки способов

До сих пор при обустройстве протяжённых промышленных трубопроводов наиболее востребованным материалом изготовления труб является сталь. Обладая множеством замечательных свойств, таких как механическая прочность, способность функционировать при больших значениях внутренних давления и температуры и стойкость к сезонным изменениям погоды, сталь имеет и серьёзный недостаток: склонность к коррозии, приводящей к разрушению изделия и, соответственно, неработоспособности всей системы.

катодная защита трубопроводов от коррозии

Один из способов защиты от этой угрозы – электрохимический, включающий катодную и анодную защиту трубопроводов; об особенностях и разновидностях катодной защиты будет рассказано ниже.

Определение электрохимической защиты

Электрохимическая защита трубопроводов от коррозии – процесс, осуществляемый при воздействии постоянного электрического поля на предохраняемый объект из металлов или сплавов. Поскольку обычно доступен для работы переменный ток, используются специальные выпрямители для преобразования его в постоянный.

В случае катодной защиты трубопроводов защищаемый объект путём подачи на него электромагнитного поля приобретает отрицательный потенциал, то есть делается катодом.

Соответственно, если ограждаемый от коррозии отрезок трубы становится «минусом», то заземление, подводящееся к нему, – «плюсом» (т.е. анодом).

электрохимическая защита трубопроводов от коррозии

Антикоррозионная защита по такой методике невозможна без присутствия электролитической, с хорошей проводимостью, среды. В случае обустройства трубопроводов под землёй её функцию выполняет грунт. Контакт же электродов обеспечивается путём применения хорошо проводящих электрический ток элементов из металлов и сплавов.

В ходе протекания процесса между средой-электролитом (в данном случае грунтом) и защищаемым от коррозии элементом возникает постоянная разница потенциалов, значение которой контролируется при помощи высоковольтных вольтметров.

Классификация методик электрохимической катодной защиты

Такой способ предупреждения коррозии был предложен в 20-х годах XIX века и поначалу использовался в судостроении: медные корпуса кораблей обшивались протекторами-анодами, значительно снижающими скорость корродирования металла.

После того, как была установлена эффективность новой технологии, изобретение стало активно применяться в других областях промышленности. Через некоторое время оно было признано одним из самых эффективных способов защиты металлов.

катодная защита трубопроводов от коррозии принцип действия

В настоящее время используется два основных типа катодной защиты трубопроводов от коррозии:

  1. Самый простой способ: к металлическому изделию, требующему предохранения от коррозии, подводится внешний источник электрического тока. В таком исполнении сама деталь приобретает отрицательный заряд и становится катодом, роль же анода выполняют инертные, не зависящие от конструкции, электроды.
  2. Гальванический метод. Нуждающаяся в защите деталь соприкасается с защитной (протекторной) пластиной, изготавливаемой из металлов с большими значениями отрицательного электрического потенциала: алюминия, магния, цинка и их сплавов. Анодами в этом случае становятся оба металлических элемента, а медленное электрохимическое разрушение пластины-протектора гарантирует поддержание в стальном изделии требуемого катодного тока. Через более или менее долгое время, в зависимости от параметров пластины, она растворяется полностью.

Характеристики первого метода

Этот способ ЭХЗ трубопроводов, в силу простоты, наиболее распространён. Применятся он для предохранения крупных конструкций и элементов, в частности, трубопроводов подземного и наземного типов.

эхз трубопроводов

Методика помогает противостоять:

  • питтинговой коррозии;
  • коррозии из-за присутствия в зоне расположения элемента блуждающих токов;
  • коррозии нержавеющей стали межкристального типа;
  • растрескиванию латунных элементов вследствие повышенного напряжения.

Характеристики второго метода

Эта технология предназначается, в отличие от первой, в том числе для защиты изделий небольших размеров. Методика наиболее популярна в США, в то время как в Российской Федерации используется редко. Причина в том, что для проведения гальванической электрохимическая защита трубопроводов необходимо наличие на изделии изоляционного покрытия, а в России магистральные трубопроводы таким образом не обрабатываются.

Особенности ЭХЗ трубопроводов

Главной причиной выхода трубопроводов из строя (частичной разгерметизации или полного разрушения отдельных элементов) является коррозия металла. В результате образования на поверхности изделия ржавчины на его поверхности появляются микроразрывы, раковины (каверны) и трещины, постепенно приводящие к выходу системы из строя. Особенно эта проблема актуальна для труб, пролегающих под землёй и всё время соприкасающихся с грунтовыми водами.

Принцип действия катодной защиты трубопроводов от коррозии предполагает создание разности электрических потенциалов и реализуется двумя вышеописанными способами.

После проведения измерений на местности было установлено, что необходимый потенциал, при котором замедляется любой коррозионный процесс, составляет –0,85 В; у находящихся же под слоем земли элементов трубопровода его естественное значение равно –0,55 В.

Чтобы существенно замедлить процессы разрушения материалов, нужно добиться снижения катодного потенциала защищаемой детали на 0,3 В. Если добиться этого, скорость коррозии стальных элементов не будет превышать значений 10 мкм/год.

анодная защита трубопроводов

Одну из самых серьёзных угроз металлическим изделиям представляют блуждающие токи, то есть электрические разряды, проникающие в грунт вследствие работы заземлений линий энергопередачи (ЛЭП), громоотводов или передвижения по рельсам поездов. Невозможно определить, в какое время и где они проявятся.

Разрушающее воздействие блуждающих токов на стальные элементы конструкций проявляется, когда эти детали обладают положительным электрическим потенциалом относительно электролитической среды (в случае трубопроводов – грунта). Катодная методика сообщает защищаемому изделию отрицательный потенциал, в результате чего опасность коррозии из-за этого фактора исключается.

Оптимальным способом обеспечения контура электрическим током является использование внешнего источника энергии: он гарантирует подачу напряжения, достаточного для «пробивания» удельного сопротивления грунта.

Обычно в роли такого источника выступают воздушные линии энергопередачи с мощностями 6 и 10 кВт. В случае отсутствия на участке пролегания трубопровода ЛЭП следует использовать генераторы мобильного типа, функционирующие на газе и дизельном топливе.

Что нужно для катодной электрохимической защиты

Для обеспечения снижения коррозии на участках пролегания трубопроводов используются особые приспособления, называемые станциями катодной защиты (СКЗ).

Эти станции включают в себя следующие элементы:

  • заземление, выступающее в роли анода;
  • генератор постоянного тока;
  • пункт контроля, измерений и управления процессом;
  • соединительные приспособления (провода и кабели).

Станции катодной защиты вполне эффективно выполняют основную функцию, при подключении к независимому генератору или ЛЭП защищая одновременно несколько расположенных поблизости участков трубопроводов.

Регулировать параметры тока можно как вручную (заменяя трансформаторные обмотки), так и в автоматизированном режиме (в случае, когда в контуре имеются тиристоры).

электрохимическая защита трубопроводов

Наиболее совершенной среди применяемых на территории РФ станций катодной защиты признаётся «Минерва-3000» (проект СКЗ по заказу «Газпрома» был создан французскими инженерами). Одна такая станция позволяет обеспечить безопасность около 30 км пролегающего под землей трубопровода.

  • высокий уровень мощности;
  • возможность быстрого восстановления после возникновения перегрузок (не более 15 секунд);
  • оснащённость необходимыми для контроля рабочих режимов узлами цифровой регулировки системы;
  • абсолютно герметичные ответственные узлы;
  • возможность контролировать функционирование установки удалённо, при подключении специального оборудования.

Вторая наиболее популярная в России СКЗ – «АСКГ-ТМ» (адаптивная телемеханизированная станция катодной защиты). Мощность таких станций меньше, чем упомянутых выше (от 1 до 5 кВт), но их возможности автоматического контроля работы улучшены за счёт наличия в исходной комплектации телеметрического комплекса с дистанционным управлением.

Обе станции требуют источника напряжения мощностью 220 В, управляются с помощью модулей GPRS и характеризуются достаточно скромными габаритами — 500×400×900 мм при весе 50 кг. Срок эксплуатации СКЗ – от 20 лет.

Источник



Защита трубопроводов от коррозии блуждающими токами

Блуждающие токи

Блуждающими называют токи, появляющиеся в грунте при его использовании в качестве проводящей среды. Причины появления таких токов в отопительной системе и водопроводах разнообразны:

  • неправильно созданное или отсутствующее заземление электроустановок, имеющих связь с сушилкой;
  • близкое расположение токоведущих магистралей (к примеру, железной дороги, трамвайных путей);
  • короткие замыкания.

Теоретически короткие замыкания не должны возникать при правильно построенной системе. Однако бывает, что вместо сварки используют обычные сгоны или вместо металлической трубы ставят металлопластиковую. В результате этого и возникают блуждающие токи, ведущие к коррозийным процессам электрического или электрохимического типа.

Блуждающие токи возникают, если стояк выполнен из металла и заземлен, а в квартирах установлены пластиковые трубы. В зданиях новой постройки заземление осуществляется через систему уравнивания потенциалов, а в старых домах — по заземлительному контуру. Если трубы пластиковые, металлосвязь между ними и сушилкой теряется, что приводит к возникновению блуждающих токов: имеющийся потенциал разрывается. Из-за этого на стояке один потенциал, а на “полотенчике” — совсем другой.

Другая частая причина появления блуждающих токов — разные потенциалы двух разных металлов, находящихся в плотном контакте. Особенно активно токи возникают, когда соседствуют обычная сталь и нержавейка.

Наиболее распространенные причины утечки тока на полотенцесушитель:

  1. Неправильное использование системы электроснабжения, когда трубы задействуются в качестве рабочих нулей.
  2. Непрофессиональное подключение гидромассажных ванн, душевых кабин, стиральных и посудомоечных машин, стерилизаторов. В таких случаях трубы связаны с электропитанием здания.
  3. Нарушение целостности кабельных сетей, электроустановок.
  4. Ослабление, отгорание, физическое повреждение проводки.

корозия блуждающие токи в водопроводе заземлители методы измерения

Способы устранения

Единственный способ предотвращения появления блуждающих токов — убрать возможность утечки из проводников, в качестве которых выступают те же рельсы, в землю. Для этого и устраивают насыпи из щебня, устанавливают деревянные шпалы, которые нужны не только для получения прочного основания под рельсовый путь, но и повышают сопротивление между ним и грунтом.

Дополнительно практикуется монтаж прокладок из диэлектрических материалов. Но все эти способы больше подходят для ЖД магистралей, трамвайные пути изолировать таким способом сложно, так как это приводит к увеличению уровня рельсов, что в городских условиях нежелательно.

Также читайте: Автоматическое повторное включение — АПВ

Читайте также:  Как протекают токи в сети переменного тока

В случае с распределительными пунктами и подстанциями, ЛЭП, ситуацию можно исправить применением более совершённых систем автоматического отключения. Но возможности такого оборудования ограничены, да и постоянное отключение электроснабжения, особенно в промышленных условиях, нежелательно.

Поэтому в большинстве случаев прибегают к защите трубопроводов, бронированных кабелей и металлических конструкций, расположенных в зоне действия блуждающих токов.

Активная и пассивная защита

Существует два основных способа защиты:

    Пассивная — предупреждает контакт металла за счёт применения покрытий из диэлектрических материалов. Именно для этой цели применяют обмазку битумными мастиками, обмотку диэлектрическими изолентами, комбинацию этих способов. Но такие трубы стоят дороже, а проблема полностью не решается, потому что при глубоких повреждениях подобных покрытий защита практически не работает.

Пасивная защита

Пассивная защита

Активная — основана на отводе блуждающих токов от защищаемых магистралей. Может быть выполнена несколькими способами. Считается наиболее эффективным решением.

Активная защита

Активная защита

В различных условиях применяют отличающиеся способы защиты от электрохимической коррозии. Рассмотрим несколько основных примеров.

Защита полотенцесушителей

Главное отличие — находятся на открытом воздухе, поэтому изоляция не поможет, а отвести блуждающие токи некуда. Поэтому единственно допустимый вариант — выравнивание потенциалов.

Для решения этой проблемы применяют простое заземление. То есть восстанавливают те условия, которые были до разрыва цепи при помощи полимерных труб. При этом требуется заземление каждого полотенцесушителя или радиатора отопления.

Защита водопроводных труб

В этом случае больше подходит протекторная защита с применением дополнительного анода. Такой способ применяется и для предотвращения образования накипи в электрических водонагревательных баках.

Анод, чаще всего магниевый, соединяется с металлической поверхностью трубы, образуя гальваническую пару. При этом блуждающие токи выходят не через сталь, а через такой жертвенный анод, постепенно разрушая его. Металлическая труба при этом остаётся целой. Следует понимать, что время от времени требуется замена защитного анода.

Защита газопроводов

Для защиты этих объектов применяют два способа:

  • Катодная защита, при которой трубе придают отрицательный потенциал за счёт применения дополнительного источника питания.
  • Электродренажная защита предполагает соединение газопровода с источником проблем проводником. При этом предотвращается образование гальванической пары с окружающим магистраль грунтом.

Отметим, что ощутимый ущерб, наносимый металлическим конструкциям, требует применения комплексных мер. Они включают защиту и предотвращение появления опасных факторов.

Типы коррозии нержавеющей стали

Владельцы сушилок из нержавейки часто жалуются, что устройство стало покрываться ржавчиной. Постепенно на поверхности полотенцесушителя появляется все больше пятен диаметром с пару спичечных головок. Если место ржавления протереть, останется едва заметная отметина, которая со временем захватывает все большую поверхность.

Будучи пораженным коррозией, водяной полотенцесушитель начинает протекать. Первопричина разрушительного процесса — блуждающие токи. Металлоконструкции, постоянно контактирующие с водой, подвержены двум типам коррозии: электрохимической и гальванической.

Электрокоррозия развивается, когда металл, по которому проходит электричество, контактирует с водой. Из-за высокой нагрузки возникают так называемые пробои металла, что ведет к развитию коррозийных процессов.

Гальваническая коррозия появляется вследствие взаимодействия разнородных металлов, одному из которых свойственна более высокая химическая активность. При этом электролитом выступает вода вместе с содержащимися в ней минералами и солями. Особенно усиливает электропроводимость горячая вода. В этом случае металл разрушается намного быстрее.

Взаимосвязь токов и коррозийных процессов


Коррозия блуждающих токов
Любой водопровод, находящийся в почве, повреждается коррозией за счет воздействия на него влаги и солей, однако если сюда еще подключить и активность токов, то возникает электролитический процесс. При этом на скорость электрохимической реакции воздействует заряд, протекающий между анодом и катодом. Отсюда следует, что на активность повреждения изделий из металла будет влиять сопротивление почвы движению зарядов, а также сложность течений, находящихся в анодной и катодной зоне.

В такой обстановке система водоснабжения подвержена обычной коррозии под влиянием токов утечки. Воздействие формирует гальваническую пару, ускоряющую развитие коррозии. В истории существует немало моментов, когда укладываемый трубопровод должен был служить 20 лет, а на самом деле разрушение происходило через 2 года.

Необходимость заземления

В многоэтажных домах старого (советского) образца металлические отопительные стояки изначально заземлены в следующих случаях:

  1. Полотенцесушитель связан с отопительной системой посредством металлической трубы.
  2. В ходе реконструкции установлена индивидуальная система отопления.

Если все трубы изготовлены из стали, с заземлением батарей проблем не возникало, так как все трубопроводы обычно заземлены в двух местах подвала. Кроме того, ванная заземлена отдельными проводниками, имеющими электросвязь с водопроводной системой.

В заземлении полотенцесушителя есть необходимость в таких случаях:

  1. Устройство подключено к отопительной системе через металлопластиковую трубу, которая оснащена алюминиевой прослойкой, проводящей токи. Однако на участке фитинга происходит разрыв электроцепи.
  2. Домовой стояк изготовлен из металлопластиковых труб.

Как заземлить полотенцесушитель из нержавейки.

Полотенцесушители, которые врезают в централизованную систему горячего водоснабжения, могут подвергаться воздействию электрических зарядов, которые называют блуждающими токами. Особенно это негативное воздействие может испортить стенки полотенчика, изготовленного из нержавейки.

Период эксплуатации полотенцесушителей из нержавейки не ограничивается. Их поверхность производители полируют, что позволяет им иметь блестящий вид.

Они стойкие к механическому воздействию, чего не скажешь о медных и латунных. Единственные повреждение – царапины, которые легко устраняются при помощи специальной мастики и войлочной тряпочки.

Не механические повреждения полотенцесушители из нержавейки могут получить в результате электрокоррозии (блуждающие токи).

Предпосылками возникновению блуждающих токов могут быть:

  • — Когда заземляют электроприборы к металлическим трубам;
  • — Когда жители применяют электромагнитные фильтры для очистки воды;
  • — Когда химический состав воды позволяет этому.

Присутствия блуждающих токов определяется только при помощи специального оборудования. Чтобы избежать электрокоррозии, нужно обязательно заземлить полотенцесушитель из нержавейки.

Создание заземлительной системы

Необходимо создать прочную металлосвязь между трубами стояка и полотенцесушителем. Заземлить его сможет даже начинающий мастер. Простота работы объясняется устройством сушилок для полотенец, изначально приспособленных для подключения к заземленной розетке. Если розетка установлена в ванной, понадобится специальный водоустойчивый корпус.

Работа выполняется в следующем порядке:

  1. Определить надежность соединения сушилки с водопроводом.
  2. Проверить, из какого материала изготовлены трубы горячего водоснабжения. Если это сталь, в заземлении обычно нет необходимости. В случае с пластиковыми трубами понадобится заземление.
  3. С помощью стального проводника соединить все металлические предметы в помещении.
  4. Сделать перемычку для заземления. Присоединить провод из распредщита с перемычкой.
  5. Зафиксировать заземленный проводник к змеевику. Для этого использовать хомут.

На этом создание заземлительной системы закончено. После проверки уровня сопротивления она готова к эксплуатации.

Варианты предполагаемой защиты

Чтобы обезопасить металлические изделия от плохого влияния используются разные способы, разделяющиеся по природе их использования на неактивные и энергичные.

Пассивный вариант

Такой вариант считается использованием разного материала для изоляции, формирующего защиту между проводником и металлом. Как изоляция применяется:

  • эпоксидная смоляные смеси;
  • включение в состав полимерных материалов;
  • покрытие из битума.

Однако если обойтись только этим вариантом, то полноценной защиты не выйдет, так как материал для изоляции не считается стопроцентным барьером благодаря наличию диффузионной проницаемости. Благодаря этому изоляция происходит в выборочный способ. По мимо этого в процессе перемещения труб такой слой может быть повреждён, из-за чего появляются существенные царапины, надрезы, сквозные дыры и другие дефекты.

Важно! Благодаря этому применить пассивный способ защиты можно лишь как дополнение.

Энергичная защита

Указывает на использование активных способ локализации источника влияния при помощи использования катодной поляризации, где негативный заряд смещает природный.

Чтобы такую защиту осуществить нужно использование одного из 2-ух инструментов:

  • Гальванического способа – эффект гальванической пары, исполняется разрушение жертвенного анода, обеспечивая таким образом защиту конструкции из металла. Способ энергичен при сопротивляемости грунта до 50 Ом на метр, если сопротивляемость ниже способ не действенен.
  • Источника непрерывного тока – обеспечивает избегание зависимости от силы сопротивляемости грунта. Применяется электрохимическая защита от коррозии, источник которой заключен в сформированном преобразователе, подключенному к электрической цепи электрического тока. Так как источник именно сформировался при помощи его регулирования можно задать нужный уровень защиты тока, в зависимости от сложившихся обстоятельств.

Аналогичный способ может обеспечить и неблагоприятное воздействие:

  • перезащита – превышение нужного потенциала, в конечном итоге происходит разрушение изделия из металла;
  • неправильный расчет защиты – приводящий к ускоренному коррозийному разрушению недалеко от размещенных железных объектов.

Приведенные варианты можно рассмотреть на защите подобного изделия как змеевик.

Процессы которые связаны с коррозией на подобных изделиях или прочих оконечных водопроводных изделиях никогда не происходили, однако это было по настоящему до начала использования металлопластиковой трубы, где есть контакт с алюминием в середине стены. В результате становление блуждающих компонентов происходит не только из-за использования пластмассовых труб в непосредственном помещении, но также и в прочих, так как в доме на несколько квартир они могут быть использованы у соседа с иного этажа.

Важно! Во избежание неблагоприятного воздействия появившихся токов на свою конструкцию нужно поровнять потенциалы, за счёт оснащения сушителя полотенец, батареи и труб водопровода элементом заземления.

При этом применение так нужного заземления происходит в отношении любой коммуникации, которая сделана из труб сделанных из металла, к примеру, газопровода в земля.

Защита от электрокоррозии

Наиболее распространённый метод защиты от блуждающих токов — это заземление всех электроприборов, газовых и водопроводных труб, имеющихся в доме. Разность потенциалов вызывает появление тока, перетекающего из областей с высоким потенциалом к областям с низким. Заземление выравнивает потенциалы, и возможность утечек исключается.

Под землёй проходит большое количество трубопроводов и кабелей, которые нуждаются в антикоррозионной защите. Для защиты магистральных трубопроводов применяются следующие методы:

  • Метод катодной защиты. Он основан на формировании с помощью катодных станций на подземных сооружениях потенциалов, увеличивающих сопротивление блуждающему току.
  • Создание диэлектрической изоляции.
  • Возможно увеличивать продольное сопротивление трубопроводов, используя врезку изоляционных муфт.
  • Замена металлических труб на пластмассовые.
Читайте также:  Введение заключение электрический ток

Источник

Защита трубопроводов от коррозии блуждающих токов

Единая система защиты от коррозии и старения

Общие требования к защите от коррозии

Unified system of corrosion and ageing protection. Underground constructions. General requirements for corrosion protection

____________________________________________________________________
Текст Сравнения ГОСТ 9.602-2016 с ГОСТ 9.602-2005 см. по ссылке.
— Примечание изготовителя базы данных.
____________________________________________________________________

МКС 77.060, 75.200

Дата введения 2017-06-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Научно-исследовательский институт природных газов и газовых технологий — Газпром ВНИИГАЗ» (ООО «Газпром ВНИИГАЗ»), Открытым акционерным обществом «Инжиниринговая нефтегазовая компания — Всесоюзный научно-исследовательский институт по строительству и эксплуатации трубопроводов, объектов ТЭК» (ОАО ВНИИСТ), Обществом с ограниченной ответственностью «НефтегазТехЭкспертиза» (ООО «НефтегазТехЭкспертиза») и Саморегулируемой Организацией — Некоммерческим Партнерством содействия в реализации инновационных программ в области противокоррозионной защиты (СРО НП «СОПКОР»)

2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 523 «Техника и технологии добычи и переработки нефти и газа»

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 31 августа 2016 г. N 90)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 7 октября 2016 г. N 1327-ст межгосударственный стандарт ГОСТ 9.602-2016 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2017 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

ВНЕСЕНА поправка, опубликованная в ИУС N 1, 2021 год

Поправка внесена изготовителем базы данных

Введение

Подземные металлические сооружения (трубопроводы, резервуары, опоры, фундаменты) являются одной из самых капиталоемких составляющих промышленных объектов. От их надежного, бесперебойного функционирования зависит промышленная безопасность и жизнеобеспеченность промышленных и аграрных предприятий, городов и населенных пунктов.

Значительное влияние на срок службы подземных металлических сооружений оказывает коррозионная агрессивность окружающей среды (включая биокоррозионную агрессивность грунтов), а также внешние техногенные воздействия (блуждающие и индуцированные токи), которые могут привести к существенному снижению надежности и безопасности эксплуатируемых сооружений и в несколько раз сократить срок их службы.

Единственно возможным способом борьбы с этим негативным явлением является своевременное применение мер по противокоррозионной защите стальных подземных сооружений.

В настоящем стандарте установлены критерии опасности коррозии и методы их определения; требования к защитным покрытиям, нормативы их качества для разных условий эксплуатации подземных сооружений (адгезия защитных покрытий к поверхности трубы, адгезия между слоями защитных покрытий, стойкость к растрескиванию, стойкость к удару, стойкость к воздействию светопогоды и др.) и методы оценки качества защитных покрытий; регламентированы требования к электрохимической защите, а также методы контроля эффективности противокоррозионной защиты.

В настоящем стандарте учтены новейшие научно-технические разработки и достижения в практике противокоррозионной защиты, накопленные эксплуатационными, строительными и проектными организациями.

Внедрение настоящего стандарта позволит увеличить срок службы и надежность подземных металлических сооружений, сократить расходы на их техническую эксплуатацию.

1 Область применения

Настоящий стандарт устанавливает общие требования к защите от коррозии наружной поверхности подземных (в том числе подводных с заглублением в дно) стальных сооружений, проложенных ниже уровня поверхности земли или в обваловании, выполненных из углеродистых и низколегированных сталей (далее — сооружения): трубопроводов, транспортирующих природный газ (газопроводы магистральные и распределительные), нефть, нефтепродукты, и отводов от них; резервуаров (в том числе траншейного типа); водопроводов; трубопроводов тепловых сетей; свай, шпунтов, колонн и других несущих стальных подземных конструкций. Настоящий стандарт также устанавливает требования по ограничению токов утечки на источниках блуждающих токов, оказывающих влияние на защиту от коррозии подземных сооружений: электрифицированный рельсовый транспорт, линии передачи энергии постоянного тока по системе «провод-земля», промышленные предприятия, потребляющие постоянный электрический ток в технологических целях.

Настоящий стандарт не распространяется на следующие сооружения: железобетонные и чугунные сооружения; на сооружения специального оборонного и космического назначения, морские и прибрежные сооружения, в том числе, трубопроводы; сооружения атомных, приливных, гидроэлектрических станций и плотин; коммуникации, прокладываемые в зданиях; кабели в металлической оболочке; трубопроводы тепловых сетей с пенополиуретановой тепловой изоляцией и трубой-оболочкой из жесткого полиэтилена (конструкция «труба в трубе»), имеющие действующую систему оперативного дистанционного контроля состояния изоляции трубопроводов.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 9.008-82 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Термины и определения

ГОСТ 9.039-74 Единая система защиты от коррозии и старения. Коррозионная агрессивность атмосферы

ГОСТ 9.102-91 Единая система защиты от коррозии и старения. Воздействие биологических факторов на технические объекты. Термины и определения

ГОСТ 9.103-78 Единая система защиты от коррозии и старения. Временная противокоррозионная защита металлов и изделий. Термины и определения

ГОСТ 9.401-91 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Общие требования и методы ускоренных испытаний на стойкость к воздействию климатических факторов

ГОСТ 12.0.004-90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.1.003-83 Система стандартов безопасности труда. Шум. Общие требования безопасности

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.2.004-75 Система стандартов безопасности труда. Машины и механизмы специальные для трубопроводного строительства. Требования безопасности

ГОСТ 12.3.016-87 Система стандартов безопасности труда. Строительство. Работы антикоррозионные. Требования безопасности

ГОСТ 12.4.172-87 Система стандартов безопасности труда. Комплект индивидуальный экранирующий для защиты от электрических полей промышленной частоты. Общие технические требования и методы контроля

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 1050-2013 Металлопродукция из нелегированных конструкционных качественных и специальных сталей. Общие технические условия

ГОСТ 2583-92 Батареи из цилиндрических марганцево-цинковых элементов с солевым электролитом. Технические условия

ГОСТ 2678-94 Материалы рулонные кровельные и гидроизоляционные. Методы испытаний

ГОСТ 2768-84 Ацетон технический. Технические условия

ГОСТ 4166-76 Реактивы. Натрий сернокислый. Технические условия

ГОСТ 4233-77 Реактивы. Натрий хлористый. Технические условия

ГОСТ 4234-77 Реактивы. Калий хлористый. Технические условия

ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 5272-68 Коррозия металлов. Термины

ГОСТ 6323-79 Провода с поливинилхлоридной изоляцией для электрических установок. Технические условия

ГОСТ 6456-82 Шкурка шлифовальная бумажная. Технические условия

ГОСТ 6616-94 Преобразователи термоэлектрические. Общие технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 8711-93 (МЭК 51-2-84) Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам

ГОСТ 9812-74 Битумы нефтяные изоляционные. Технические условия

ГОСТ 10821-2007 Проволока из платины и платинородиевых сплавов для термоэлектрических преобразователей. Технические условия

ГОСТ 11262-80 Пластмассы. Метод испытания на растяжение

ГОСТ 11645-73 Пластмассы. Метод определения показателя текучести расплава термопластов

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 13518-68 Пластмассы. Метод определения стойкости полиэтилена к растрескиванию под напряжением

ГОСТ 14236-81 Пленки полимерные. Метод испытаний на растяжение

ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия

ГОСТ 15140-78 Материалы лакокрасочные. Методы определения адгезии

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 16336-77 Композиции полиэтилена для кабельной промышленности. Технические условия

ГОСТ 16783-71 Пластмассы. Метод определения температуры хрупкости при сдавливании образца, сложенного петлей

ГОСТ 17299-78 Спирт этиловый технический. Технические условия

ГОСТ 17792-72 Электрод сравнения хлорсеребряный насыщенный образцовый 2-го разряда

ГОСТ 19179-73 Гидрология суши. Термины и определения

Источник

Что такое блуждающие токи и как от них избавиться?

Последние 10-20 лет во многих мегаполисах наблюдается резкое снижение срока службы подземных металлических сооружений (трубопроводов горячего и холодного водоснабжения, системы отопления и т.д.). После проведения ряда экспертиз было установлено, что основная причина разрушения металла — электрохимическая коррозия, которую вызывают блуждающие токи. Из данной статьи Вы узнаете о природе этого явления, а также получите представление о способах защиты подземных сооружений и инженерных коммуникаций от гальванической коррозии.

Читайте также:  Норма сопротивления заземляющего контура растеканию тока

Что такое блуждающий ток?

Как известно, земля является проводником электрического тока, что позволяет применять это свойство для создания заземляющих устройств. Но в тоже время, когда почва выступает в качестве токопроводящей среды, в ней образуются утечки. Поскольку нельзя спрогнозировать в какое время начнется процесс, и где он будет протекать, то такие проявления получили термин «блуждающие».

Причины и источники возникновения

Как мы помним из школьного курса физики, для образования электрического тока необходимо, чтобы возникла разность потенциалов между двумя участками цепи. Принцип возникновения блуждающих токов – аналогичный. Только роль проводника в данном случае исполняет земля.

На территории современных городов и населенных пунктов находится множество электрифицированных объектов, начиная от ЛЭП и заканчивая рельсовым транспортом, включая оборудование тяговых подстанций. Их объединяет один фактор – расположение на земле. Это приводит к довольно специфичному взаимодействию с последней, проявляющемуся в виде появления блуждающих токов. Ниже представлена таблица, которой приводятся их потенциальные источники и условия образования электросвязи связи с почвой.

Таблица 1. Потенциальные источники.

Название объекта Взаимосвязь с землей
Различные виды распределительных устройств, оборудование подстанций, ВЛ с нулевым проводником (глухозаземленная нейтраль), подключенным к повторным заземлителям. При наличии на объекте ЗУ.
ВЛ сетей с изолированной нейтралью, кабельные магистрали. Возникает при повреждении изоляционного покрытия токонесущих элементов кабелей.
Рельсовый электротранспорт, системы с заземленной нейтралью. Наличие технологической связи между одним из проводников и землей.

Механизм образования блуждающих токов

В таблице мы привели в качестве примера несколько источников, теперь рассмотрим подробно, как в них образуется интересующий нас процесс. Как уже упоминалось выше, чтобы он появился, между двумя точками на земле должно произойти возникновение разности потенциалов. Такие условия создаются контурами ЗУ систем с глухоизолированной нейтралью.

Нулевой провод (PEN) одним концом соединен с ЗУ электроподстанции, а вторым подключен к шине PEN потребителя, которая соединена с заземляющим устройством объекта. Соответственно, разница электрических потенциалов между выводами нулевого проводника будет передаваться ЗУ, что создаст условия для образования цепи. Величина утечки будет незначительной, поскольку основная нагрузка пойдет по пути наименьшего сопротивления (нулевому проводнику), но, тем не менее, часть ее пойдет по земле.

Образование блуждающих токов между ЗУ нулевого провода

Образование блуждающих токов между ЗУ нулевого провода

Практически аналогичные условия образуются, когда возникают проблемы с изоляцией проводов (разрушение оболочек) кабельных магистралей или ВЛ. При возникновении КЗ на землю, в этой точке потенциал равный или близкий к фазе. Это вызывает образование тока утечки к ближайшему ЗУ с потенциалом PEN-провода.

В приведенном примере о постоянной утечке переменных токов речь не идет, поскольку согласно действующим нормам на поиск и устранение повреждения отводится два часа. При этом, в большинстве случаев, отключение поврежденной линии или локализация участка с КЗ производится автоматически. Процесс может существенно затянуться, если сила тока КЗ ниже аварийного порога.

Как показывает практика, наибольшая доля источников токов постоянной утечки приходится на городской и пригородный рельсовый электротранспорт. Механизм их образования продемонстрирован ниже.

Рельсовый электротранспорт в качестве источника блуждающих токов

Рельсовый электротранспорт в качестве источника блуждающих токов

Обозначения:

  1. Контактный провод, от которого получает питание силовая установка электротранспорта.
  2. Питающий фидер (подключен к контактному проводу).
  3. Одна из тяговых подстанций, питающая сети трамваев.
  4. Дренажный фидер (подключен к рельсам).
  5. Рельсы.
  6. Трубопровод на пути прохождения блуждающих токов.
  7. Анодная зона (положительные потенциалы).
  8. Катодная зона (отрицательные потенциалы).

Как видно из рисунка, постоянное напряжение в тяговую сеть поступает с подстанции и по рельсам возвращается обратно. При недостаточном сопротивлении рельсовых путей относительно земли, в грунте возникают электрические блуждающие токи. Если на пути распространения утечки блуждающих токов находится трубопровод или другая металлическая конструкция, то она становится проводником электричества.

Это связано с тем, что ток распространяется по пути наименьшего сопротивления. Соответственно, как только появляется проводник, ток будет распространяться по металлу, поскольку его электрическое сопротивление меньше, чем у земли. В результате участок трубопровода, через который проходит электроток, будет в большей степени подвержен коррозии металла. О причинах этого рассказано ниже.

Связь блуждающего тока и коррозии на металле

Ввиду наличия в земле воды и растворенных в ней солей любая металлическая конструкция в почве подвержена коррозии. Но если металл помимо этого подвергается воздействию блуждающих токов, то процесс приобретает электролитическую природу. Согласно закону Фарадея скорость электрохимической реакции напрямую зависит от тока, протекающего между анодом и катодом. Следовательно, на скорость коррозии металлической трубы (уложенной в грунте) будет влиять электрическое сопротивление почвы, а также сложная природа процессов, протекающих в катодной и анодной зоне.

В результате металлическая конструкция помимо обычной коррозии подвергается воздействию токов утечки. Это может стать причиной образования гальванической пары, что существенно ускорит процесс коррозии. На практике отмечались случаи, когда участок трубопровода системы водоснабжения, подвергавшийся гальванической коррозии выходил из строя через два года, при расчетном сроке эксплуатации 20 лет. Пример такого воздействия представлен ниже.

Труба после воздействия блуждающих токов

Труба после воздействия блуждающих токов

Способы защиты от блуждающих токов

Для предотвращения пагубного воздействия электрохимического потенциала применяются методы защиты, которые могут отличаться в зависимости от особенностей металлических конструкций. Рассмотрим в качестве примера способы защиты водопроводных труб, полотенцесушителей и газопроводов, начнем в порядке данной очередности.

Видео про различные защиты от блуждающих токов

Защита водопроводных труб

Для проложенных в земле металлоконструкций, в частности водопроводных труб, применяются две методики защиты: пассивная и активная. Подробно опишем каждую из них.

Пассивная защита

Данная методика предусматривает нанесение на поверхность металлоконструкций специального изолирующего слоя, образующего защитный барьер между землей и металлической оболочкой. В качестве изоляционного материала используются полимеры, различные виды эпоксидных смол, битумное покрытие и т.д.

Пример защитного покрытия трубы для подземной укладки

Пример защитного покрытия трубы для подземной укладки

К сожалению, современная технология не позволяет создать защитный барьер, обеспечивающий полную изоляцию. Любое покрытие обладает определенной диффузионной проницаемостью, поэтому при данном способе возможна только частичная изоляция от грунта. Помимо этого следует учитывать, что в процессе транспортировки и монтажа может быть нанесено повреждение защитному слою. В результате на нем образуются различные дефекты изоляции в виде микротрещин, царапин, вмятин и сквозных повреждений.

Поскольку рассмотренный метод не обладает достаточной эффективностью, он применяется в качестве дополнения активной защиты, о которой пойдет речь далее.

Активная защита

Под данным термином подразумевается управление механизмами электрохимических процессов, которые протекают в местах контакта металлических конструкций с образующимся в грунте электролитом. Для этой цели применяется катодная поляризация, при которой отрицательный потенциал смещает естественный.

Реализовать такую защиту можно гальваническим методом или используя источник постоянного тока. В первом случае применяется эффект гальванической пары, в которой анод, подвергается разрушению (жертвенный анод), защищая при этом металлоконструкцию, у которой потенциал несколько ниже (см. 1 на рис.5). Описанный способ эффективен для грунтов с низким сопротивлением (не более 50,0 Ом*м), при более низком уровне проводимости данный метод не применяется.

Применение источника постоянного тока в катодной защите позволяет не зависеть от сопротивления грунта. Как правило, источник изготовлен на базе преобразователя, запитанного от электрической цепи переменного тока. Конструктивное исполнение источника позволяет задать уровень защитных токов в соответствии со сложившимися условиями.

Варианты реализации катодной защиты

Рисунок 5. Варианты реализации катодной защиты

Обозначения:

  1. Применение жертвенного анода.
  2. Метод поляризации.
  3. Проложенная в земле металлоконструкция.
  4. Закладка в грунте жертвенного анода.
  5. Источник постоянного тока.
  6. Подключение к источнику малорастворимого анода.

Защита полотенцесушителей

Полотенцесушителям и другим оконечным металлическим устройствам на водопроводных трубах (смесителям) коррозия, вызванная блуждающими токами, не угрожала до тех пор, пока в быту не стали широко применяться пластиковые трубы. Даже, если в Вашем стояке установлены металлические трубы, не факт, что у соседа снизу они не пластиковые, да и для отводов в ванную и кухню наверняка используется пластик.

Чтобы обеспечить защиту от аварийных утечек тока и не допустить электрокоррозии, необходимо выровнять потенциалы, заземлив полотенцесушитель, водопроводные трубы в стояке, а также батарею отопления.

Защита газопроводов

Защита подземных газопроводов от блуждающих токов, которые вызывают коррозию, осуществляется точно так же, как и для водопроводных труб. То есть применяется один из двух вариантов активной катодной защиты, принцип работы которой рассматривался выше.

Как измерить блуждающие токи?

Для оценки опасности от токов утечки производится комплекс измерительных работ, куда входит:

  • Измерение уровня тока и направление его движения по оболочкам кабелей магистральной линии.
  • Измерение разности потенциалов между контактных рельсов (рельсовой сетью) и проложенными в земле металлическими конструкциями.
  • Измерение изоляции рельсов от грунта на контрольных участках рельсового полотна.
  • Оценка плотности тока утечки с оболочки кабельных линий в грунт.

Измерения величины блуждающих токов производятся специальными приборами. При этом выбирается время, на которое приходится максимальный трафик рельсового электротранспорта.

Набор инструментов для измерения блуждающих токов

Набор инструментов для измерения блуждающих токов

Процесс измерения блуждающих токов выполняется в трансформаторных и тяговых подстанциях расположенных рядом с рельсовыми путями. При этом один из электродов, подключенных к измерительному прибору, соединяют с ЗУ, а второй, втыкается в землю в 10-и метрах от тяговой подстанции. Если между потенциалами на электродах появляется разность, она фиксируется прибором.

Рекомендуем также почитать:

Источник