Меню

Защита по току как сделать

Схемы защиты устройств от всплесков тока и напряжения

Аварийные «экстратоки» и «экстранапряжения» не идут на пользу ни одному электронному устройству. Необходимо вводить защитные цепи с автоматическим ограничением, снижением, отключением питания или, в крайнем случае, с визуальной/звуковой индикацией аварийного состояния.

Простейшим элементом защиты служит плавкий предохранитель. При его выборе надо ориентироваться на стандартные номинальные токи срабатывания:

• SМD-предохранители — 62; 125; 250; 375; 500; 750 мА, 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.0; 5.0 А;

• обычные «стеклянные» предохранители — 50; 60; 80; 100; 160; 200; 250; 315; 500; 630; 800 мА, 1.0; 1.25; 1.6; 2.0; 3.15; 3.5; 4.0 А.

Схемы защиты устройств от всплесков тока и напряжения

Схемы защиты устройств от всплесков тока и напряжения

Схемы защиты устройств от всплесков тока и напряжения

Время срабатывания предохранителя зависит от величины протекающего тока. Судя по Табл. 6.9, ориентироваться на номинальный ток ПЛАВ нельзя, необходимо его многократное превышение, например, 4/ПЛАВ. На практике считается, что плавкая вставка с надписью «1А» гарантированно «сгорает» при токе 2.5 А.

Радиолюбители за неимением времени иногда изготавливают кустарные проволочные предохранители, называемые в обиходе «жучками». Если используется медный провод, то можно взять данные из Табл. 6.10. Разумеется, «жучки» после проведения эксперимента надо заменить нормальными предохранителями.

Следует отличать плавкие предохранители (fuse) от предохранительных резисторов (fusible resistor). Последние по конструкции напоминают обычные резисторы, но при перегорании не оставляют вокруг себя чёрного пятна металлизированной сажи, которая может закоротить другие цепи на печатной плате.

Ещё один важный элемент защиты — это варисторы (Табл. 6.11). В отличие от предохранителей, они устанавливаются не последовательно, а параллельно, т.е. защита осуществляется по напряжению, а не по току.

Если напряжение меньше порогового, то сопротивление варистора большое, и он практически не оказывают влияние на защищаемую цепь. Если порог достигнут, то сопротивление варистора быстро снижается. Это позволяет эффективно защищать аппаратуру от кратковременных импульсных помех.

На Рис. 6.20, а. к показаны схемы защиты питания от всплесков напряжения и коротких замыканий.

Схемы защиты устройств от всплесков тока и напряжения

Рис. 6.20. Схемы защиты питания от всплесков напряжения и коротких замыканий (начало):

а) защита от повышенного входного напряжения с порогом, определяемым стабилитроном VD1. Оптореле VU1 имеет нормально замкнутые контакты с током нагрузки не более 250 мА;

б) электронное отключение питания при пробое мощного регулирующего транзистора, находящегося внутри стабилизатора напряжения А1. Быстродействие определяется параметрами оптотиристора VU1. Излучатель HL1 красным цветом индицирует аварийное состояние. Резистор R3 устанавливает напряжение перехода транзистора VT1 в закрытое состояние;

в) «параллельная» защита цепи +5 В. При всплесках напряжения открывается тиристор VS1 и перегорает плавкая вставка FU1 (или самовосстанавливающийся предохранитель). Конденсатор C1устраняет ложные срабатывания тиристора. Мощный проволочный резистор R3защищает тиристор VS1 от «экстратоков». Пороговое напряжение стабилитрона VDI имеет разброс 3.1. 3.5 В, поэтому его точное значение устанавливается подстройкой резистора R1.

г) аналогично Рис. 6.20, в, но с заменой тиристорного ключа мощным параллельным стабилизатором напряжения на элементах VDI, VTI, R1. R3 и дополнительной защитой по входу при помощи варистора RV1. Порог срабатывания устанавливается резистором R1 на уровне примерно на 0.2. 0.4 В выше, чем напряжение питания +3. +5 В;

Схемы защиты устройств от всплесков тока и напряжения

Рис. 6.20. Схемы защиты питания от всплесков напряжения и коротких замыканий (окончание):

д) HL1 — это индикатор снижения напряжения питания с +5 до +4 В, что может свидетельствовать о предаварийном состоянии. Точный порог устанавливается резистором R3. Схема служит только для индикации неполадок. Устранение аварии производится оператором вручную;

е) защита от помех и перенапряжений в бортовой сети автомобиля (элементы R1, C1). Мигающий светодиод HL1 служит индикатором неверной полярности подачи питания;

ж) красный цвет светодиода HL1 индицирует обрыв предохранителя FU1, зелёный — нормальную работу. При оранжевом или жёлтом цвете следует выбрать другой тип диода VD1

з) защита от превышения тока в «минусовом» проводе. Резистором R3 добиваются триггер-ного режима работы. Резистором R1 устанавливают ток защиты в пределах 10. 600 мА. Для ориентира, если R2= 10 Ом, то ток срабатывания равен 85. 111 мА;

и) варисторная защита устройств, подключённых к телефонной линии. При большой амплитуде или случайной подаче сетевого напряжения 220 В перегорает плавкая вставка FU1;

к) стабилитрон VD2 защищает от всплесков входного напряжения. Ток ограничивается резистором R1, короткие импульсные помехи сглаживаются конденсатором C1.

Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.

Источник



Простые схемы электронных предохранителей для блоков питания.

Эффективные средства защиты источников питания от КЗ и перегрузки по току на
мощных полевых переключающих МОП-транзисторах.
Плавный пуск (Soft Start) — нужен ли он блоку питания с быстродействующей защитой.

На странице (ссылка на страницу) мы познакомились с несколькими простыми схемами электронных предохранителей, предназначенных для работы в составе блоков питания. Главное назначение этих устройств — защита как самих БП, так и подключаемых к ним узлов от короткого замыкания (КЗ) или превышения тока, которое может возникнуть в них в силу той или иной причины.

Основными преимуществами таких устройств защиты (по сравнению с плавкими предохранителями) являются возможность введения регулировки тока срабатывания и высокое быстродействие, позволяющее в большинстве случаев предотвратить выход из строя электронного оборудования.
Основной недостаток, как не странно, тот же самый — высокое быстродействие, приводящее к ложным срабатываниям в начальный момент включения источника питания при наличии в нагрузке значительной ёмкостной составляющей (например, могучих электролитов, часто являющихся обязательным атрибутом многих усилителей мощности).
Перемещение этих электролитов с выхода на вход электронного предохранителя во многих случаях приводит к положительному результату, однако, если мы хотим поиметь универсальный блок питания с возможностью работы с различными устройствами, в том числе и с электролитами на борту, приходится озадачиваться и таким прибамбасом, как плавный пуск (или Soft Start по буржуйски).

Читайте также:  По физике электрическая цепь постоянного тока

Давайте более подробно рассмотрим две, на мой взгляд, наиболее удачные схемы электронных предохранителей, бегло описанных на странице по ссылке.
Схема, приведённая на Рис.1, относится к устройствам с резистивным датчиком тока, позволяющим заранее произвести точный расчёт номиналов элементов, а также ввести плавную (посредством переменного резистора) или ступенчатую (посредством переключателя) регулировку тока срабатывания.

Рис.1 Схема электронного предохранителя для защиты от КЗ и перегрузки по току

На элементах Т1 и Т2 выполнен транзисторный аналог тиристора со стабильным напряжением срабатывания

0,6В. Ток срабатывания этого тиристора, а соответственно и всего предохранителя зависит от номинала резистора R4, который рассчитывается по формуле: R4 (Ом) ≈ 0,6/Iср (А) .
При желании ввести в электронный предохранитель плавную регулировку тока срабатывания, R4 следует заменить на цепочку из последовательно соединённых: постоянного резистора, рассчитанного на максимальный ток, и проволочного переменного номиналом, рассчитанным под минимальный ток срабатывания.
Суммарная мощность, рассеиваемая на этих резисторах при максимальном токе, равна Р(Вт) ≈ 0,6 * Iср (А) .

При включении блока питания и условии отсутствия в нагрузке недопустимых токов предохранитель автоматически устанавливается в рабочее (открытое) состояние. При превышении тока напряжение на R4 достигает уровня открывания Т1 и транзисторный эквивалент тиристора (Т1, Т2) срабатывает и притягивает уровень напряжения на затворе Т3 к напряжению на его истоке, что приводит к закрыванию полевика.
Для возврата электронного предохранителя в рабочее (открытое) состояние необходимо: либо выключить и снова включить источник питания, дождавшись, когда напряжение на его выходе упадёт до нуля, либо нажать кнопку сброса S1.

Если входное напряжение, подаваемое на предохранитель, не превышает 20В, то цепочку R1 D1 допустимо исключить, а нижний вывод R3 подключить к минусу.

Применение источника тока на полевом транзисторе Т4 обусловлено желанием обеспечить ток через светодиод Led1 (индикатор наличия выходного напряжения) на постоянном уровне, независимо от приложенного к предохранителю напряжения. Если электронный предохранитель предполагается использовать при фиксированном напряжении питания, то для простоты этот транзистор можно заменить резистором.

Посредством несложных манипуляций в приведённое выше устройство можно добавить функцию плавный пуск (Soft Start), позволяющую электронному предохранителю избегать ложных срабатываний в начальный момент включения источника питания при наличии в нагрузке электролитических конденсаторов значительной ёмкости. Рассмотрим получившуюся схему на Рис.2.

Рис.2 Электронный предохранителя для защиты от КЗ и перегрузки (положительная полярность)

В начальный момент включения источника питания конденсатор С3 замыкает цепь затвора полевого транзистора Т3 на его исток, заставляя его находиться в закрытом состоянии. По мере заряда конденсатора напряжение на нём (а соответственно и разница потенциалов между истоком и затвором) плавно растёт, что приводит к постепенному открыванию полевика. Длительность данного переходного процесса (от полного закрытия до полного открывания) составляет 15. 20 миллисекунд, чего вполне достаточно для значительного снижения стартовых токов заряда даже очень ёмких электролитов, расположенных в нагрузке.

Для того чтобы после срабатывания защиты вернуть предохранитель в рабочее состояние и сохранить функцию плавного пуска, необходимо не только сбросить транзисторный аналог тиристора, но и дождаться полного разряда конденсатора С3. В связи с этим кнопка сброса перенесена в цепь питания и выполняет функцию обесточивания всего устройства, а дополнительный резистор R7 ускоряет разряд С3 до комфортных 0,3. 0,4 секунд.

Диод D3 выполняет функцию устранения выбросов отрицательной полярности, возникающих на конденсаторе С3 при размыкании S1, а D2 — функцию отсечения этого конденсатора от цепи затвора при срабатывании защиты, что позволяет обойтись без потери быстродействия предохранителя. Диоды могут быть любыми с допустимыми напряжениями, превышающими величину напряжения питания.

Включение датчика тока и коммутирующего транзистора в цепь питания (в нашем случае — в положительную цепь), а не земляную шину позволяет с лёгкостью осуществить релизацию защитного устройства для двуполярных источников. Приведём схему предохранителя и для отрицательной шины двуполяного блока питания.

Рис.3 Электронный предохранителя для защиты от КЗ и перегрузки (отрицательная полярность)

Всем хороши эти устройства защиты с резистивными датчиками, особенно для цепей с умеренными токами (до 10А). Однако если возникает необходимость предохранять устройства, для которых рабочими являются токи в несколько десятков, а то и сотен ампер, то мощность, рассеиваемая на резистивном датчике, может оказаться чрезмерно высокой. Так, при максимальном токе в нагрузке равном 20А, на резисторе рассеется около 12Вт, а при токе 100А — 60Вт.
Уменьшать уровень срабатывания электронного предохранителя (скажем до 100мВ) посредством введения в схему чувствительного элемента ОУ или компаратора — не самая хорошая затея, ввиду того, что помехи, гуляющие по шинам земли и питания, в сильноточных цепях могут превышать эти пресловутые 100мВ. В таких ситуациях приходится искать другие решения.
Датчик магнитного поля — геркон и несколько сантиметров толстого провода могут стать выходом из положения в источниках питания с максимальными токами вплоть до десятков и сотен ампер.

Датчик тока на герконе

Рис.4 Датчик тока на герконе

При прохождении тока через обмотку, намотанную поверх датчика (Рис.4), внутри неё возникает магнитное поле, которое приводит к замыканию контактов геркона.
Намотав обмотку из десяти (или любого другого количества) витков и измерив ток срабатывания геркона, можно масштабировать это значение на любой интересующий нас ток.
Так например, если геркон КЭМ-1 при десяти витках замыкается при токе через обмотку около 15А, то, намотав 2 витка, мы увеличим ток срабатывания в 5 раз, т. е. до 75 А, а перемещая геркон внутри катушки, сможем регулировать это ток в некоторых пределах вплоть до 85. 90 А.
К достоинствам герконов также можно отнести и относительно высокое быстродействие. Время срабатывания у них, как правило, не превышает 1. 2 миллисекунд.
Всё, что теперь остаётся — это нарисовать триггерную схему мощного транзисторного ключа, управляемого герконовым токовым датчиком.

Читайте также:  Какое практическое значение имеет ток

Рис.5 Электронный предохранителя для защиты от КЗ и перегрузки с датчиком тока на герконе

Схема, приведённая на Рис.4, довольно универсальна и позволяет осуществлять защиту устройств от перегрузки в широком диапазоне входных напряжений (9. 80 вольт) без изменения номиналов элементов.
Устройство состоит из транзисторной защёлки, выполненной на элементах Т1 и Т2, и находится в устойчивом состоянии до момента подачи на базу транзистора Т2 короткого положительного или отрицательного импульса.
Для того, чтобы включить электронный предохранитель необходимо нажать на нефиксируемый включатель S1, подав на базу Т2 импульс положительной полярности.
Срабатывает защита от импульса отрицательной полярности, который формируют контакты геркона SF1.
Мощный P-канальный полевой транзистор Т1 следует выбирать с некоторым запасом, исходя из тока срабатывания электронного предохранителя. Если транзистор не удовлетворяет токовым и мощностным характеристикам — допустимо использовать параллельное включение нескольких полупроводников.
Цепочка D1 R6 защищает полевик от недопустимых уровней Uзи при входных напряжениях свыше 20В. Если предохранитель предполагается использовать с меньшими подаваемыми напряжениями, то эту цепочку вполне допустимо исключить.

Источник

Защита от КЗ для блока питания своими руками

Иногда при наладке самодельных электронных устройств получается короткое замыкание, из за которого может выйти из строя блок питания. Поэтому у блока питания должна быть надежная защита от короткого замыкания, способная в нужный момент быстро отключить замкнувшую нагрузку и уберечь блок питания от поломки.

На этом рисунке изображена схема простого устройства предназначенного для надежной защиты блока питания от короткого замыкания.

Схема защиты блока питания от короткого замыкания

Схема защиты блока питания от короткого замыкания

Принцип работы релейной защиты довольно простой. При подаче напряжения на схему в режиме ожидания загорается красный светодиод. После нажатии кнопки S1 ток поступает на обмотку реле, контакты переключаются и блокируют обмотку реле, таким образом схема переходит в рабочий режим, об этом сигнализирует загоревшийся зеленый светодиод, ток поступает на нагрузку. При возникновении короткого замыкания пропадает напряжение на обмотке реле, контакты его размыкаются, нагрузка автоматически отключается, загорается красный светодиод сигнализируя о срабатывании релейной защиты.

Схема предназначена для работы с постоянным выходным напряжением от 8 до 15 вольт, поэтому будет отлично работать с зарядным устройством из компьютерного блока питания, а также с любыми другими трансформаторными или импульсными блоками питания имеющими выходное напряжение в указанном диапазоне.

Данную схему можно считать универсальной, потому что её легко переделать под любое напряжение, достаточно всего лишь заменить реле под нужное вам напряжение, ну и конечно при необходимости подобрать резисторы R1 и R2 под установленные в схему светодиоды.

Печатная плата устройства защиты блока питания от короткого замыкания.

Печатная плата защиты блока питания от короткого замыкания

Печатная плата защиты блока питания от короткого замыкания

Посмотрим, как работает готовое устройство защиты блока питания от короткого замыкания. В дежурном состоянии после подачи питания, горит красный светодиод, нагрузка отключена.

Защита от КЗ для блока питания

Нажимаем кнопку и устройство перейдет в рабочий режим.

Защита от КЗ для блока питания

Загорелся зеленый светодиод, сигнализируя о подаче питания на нагрузку, в качестве нагрузки я использую обыкновенную 12 вольтовую лампочку.

Защита от КЗ для блока питания

С помощью отвертки замыкаю между собой центральный контакт с цоколем лампочки, получается короткое замыкание, мгновенно срабатывает защита от КЗ, нагрузка отключается, загорается красный светодиод своим светом сообщая о коротком замыкании.

Радиодетали для сборки

  • Реле SRD-12VDC-SL-C, можно использовать аналогичное на другое напряжение
  • Резисторы R1, R2 1K сопротивление подбирайте для каждого светодиода
  • Светодиоды 5 мм 2 шт. красный и зеленый
  • Кнопка любая без фиксации с нормально разомкнутыми контактами

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать защиту от короткого замыкания для блока питания

Источник

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Простая схема защиты от превышения тока на основе операционного усилителя

Схемы защиты жизненно важны для любого электронного прибора. Защита от перенапряжения, защита от короткого замыкания, защита от обратной полярности и т.д. – все это очень важно в электронике. В этой статье вы узнаете, как спроектировать и собрать простую схему защиты от перегрузки по току с использованием операционного усилителя.

Простая схема защиты от превышения тока на основе операционного усилителя

Защита от превышения тока или перегрузки по току часто используется в цепях электропитания для ограничения выходного тока блока питания. Термин «Перегрузка по току» – это состояние, когда нагрузка потребляет большой ток, чем указанные возможности блока питания. Это может быть опасной ситуацией, поскольку состояние перегрузки по току может повредить источник питания. Поэтому инженеры обычно используют схему защиты от превышения тока для отключения нагрузки от источника питания во время таких случаев неисправности, таким образом защищая нагрузку и источник питания.

Существует много типов цепей защиты от перегрузки по току. Сложность схемы зависит от того, как быстро защитная цепь должна реагировать в ситуации перегрузки по току. В этом проекте мы создадим простую схему защиты от перегрузки по току с использованием операционного усилителя, который очень часто используется и может быть легко адаптирован для ваших проектов.

Читайте также:  Применение индукционного тока презентация

Схема, которую мы собираемся спроектировать, будет иметь настраиваемое пороговое значение максимального тока, а также функцию автоматического перезапуска при сбое. Поскольку это схема защиты от перегрузки по току на основе операционного усилителя, в качестве приводного устройства будет использоваться операционный усилитель. Для этого проекта используется ОУ общего назначения LM358. На рисунке ниже показана схема контактов LM358.

LM358

Как видно на изображении выше, внутри одного корпуса у нас будет два канала операционного усилителя. Однако для этого проекта используется только один канал. Операционный усилитель будет переключать (отключать) выходную нагрузку с помощью полевого транзистора (MOSFET). Для этого проекта используется N-канальный MOSFET IRF540N. Рекомендуется использовать надлежащий радиатор для MOSFET, если ток нагрузки превышает 500 мА. Однако для этого проекта MOSFET используется без радиатора. На изображении ниже представлена схема распиновки IRF540N.

IRF540N

Для питания операционного усилителя и схемы используется линейный стабилизатор напряжения LM7809. Это линейный стабилизатор напряжения на 9 В 1 А с широким номинальным входным напряжением. Распиновку можно увидеть на следующем изображении.

LM7809

Простая схема защиты от превышения тока может быть разработана с использованием операционного усилителя для определения перегрузки по току, и на основании полученного результата мы можем управлять полевым транзистором для отключения / подключения нагрузки к источнику питания. Принципиальная схема этого проекта проста, и ее можно увидеть на следующем рисунке.

Простая схема защиты от превышения тока на основе операционного усилителя

Как видно из принципиальной схемы, MOSFET IRF540N используется для управления нагрузкой как ВКЛ или ВЫКЛ во время нормального состояния и состояния перегрузки. Но прежде чем отключить нагрузку, важно определить ток нагрузки. Это делается с помощью резистора R1, который представляет собой шунтирующий резистор 1 Ом с номинальной мощностью 2 Вт. Этот метод измерения тока называется измерением тока с помощью шунтирующего резистора.

Во время включенного состояния MOSFET ток нагрузки протекает через сток MOSFET к истоку и, наконец, к GND через шунтирующий резистор. В зависимости от тока нагрузки шунтирующий резистор создает падение напряжения, которое можно рассчитать по закону Ома. Поэтому предположим, что для 1 А тока (тока нагрузки) падение напряжения на шунтирующем резисторе составляет 1 В при V = I x R (V = 1 A x 1 Ом). Таким образом, если это падение напряжения сравнивать с предварительно определенным напряжением с помощью операционного усилителя, мы можем обнаружить ток перегрузки и изменить состояние полевого транзистора, чтобы отключить нагрузку.

Операционный усилитель обычно используется для выполнения математических операций с напряжением, таких как сложение, вычитание, умножение и т. д. Поэтому в этой схеме операционный усилитель LM358 сконфигурирован как компаратор. Согласно схеме, компаратор сравнивает два значения. Первый из них является падение напряжения через шунт, а другой представляет собой предопределенное напряжение (опорное напряжение), используя переменный резистор или потенциометр RV1. RV1 действует как делитель напряжения. Падение напряжения на шунтирующем резисторе определяется инвертирующим выводом компаратора и сравнивается с опорным напряжением, которое подключено к неинвертирующему выводу операционного усилителя.

В связи с этим, если считанное напряжение меньше, чем опорное напряжение, компаратор будет производить положительное напряжение на выходе, которое близко к напряжению питания VCC компаратора. Но, если считанное напряжение больше, чем опорное напряжение, компаратор будет выдавать отрицательное напряжение питания на выходе (отрицательное питание подключено через GND, поэтому 0 В в данном случае). Это напряжение достаточно для включения или выключения MOSFET.

Но когда высокая нагрузка будет отключена от источника питания, переходные изменения создадут линейную область характеристики компаратора, и это создаст петлю (гистерезис), в которой компаратор не сможет правильно включить или выключить нагрузку, и операционный усилитель станет нестабильным. Например, предположим, 1 А устанавливается с помощью потенциометра для перевода полевого транзистора в состояние ВЫКЛ. Поэтому переменный резистор настроен на выход 1 В. В ситуации, когда компаратор обнаруживает, что падение напряжения на шунтирующем резисторе составляет 1,01 В (это напряжение зависит от точности операционного усилителя или компаратора и других факторов), компаратор отключит нагрузку. Переходные изменения происходят, когда высокая нагрузка внезапно отключена от блока питания, и это кратковременное повышение опорного напряжения, которое заставляет его работать в линейной области.

Лучший способ для решения этой проблемы заключается в использовании стабильного питания через компаратор, где переходные изменения не влияют на входном напряжение компаратора и источник опорного напряжения. В этой схеме это выполняется с помощью линейного стабилизатора LM7809 и с использованием гистерезисного резистора R4, резистора на 100 кОм. LM7809 обеспечивает надлежащее напряжение на компараторе, так что переходные изменения на линии электропередачи не влияют на компаратор. Конденсатор C1 на 100 мкФ используется для фильтрации выходного напряжения.

Гистерезисный резистор R4 подает небольшую часть входного сигнала на выход операционного усилителя, который создает разрыв напряжения между низким порогом (0,99 В) и высоким порогом (1,01 В), когда компаратор изменяет свое состояние выхода. Компаратор не изменяет состояние немедленно, если достигается пороговая точка, вместо этого, чтобы изменить состояние с высокого на низкое, уровень измеряемого напряжения должен быть ниже, чем нижний порог (например, 0,97 В вместо 0,99 В). или чтобы изменить состояние с низкого на высокое, измеренное напряжение должно быть выше верхнего порога (1,03 вместо 1,01). Это повысит стабильность компаратора и уменьшит ложные срабатывания. Кроме этого резистора, R2 и R3 используются для управления затвором. R3 – резистор затвора полевого транзистора.

Схема собрана на макетной плате и протестирована с использованием настольного источника питания и переменной нагрузки постоянного тока.

Простая схема защиты от превышения тока на основе операционного усилителя

Схема была протестировано, в результате испытаний выход успешно отключался при различных значениях, установленных переменным резистором.

Источник