Меню

Защита от перегрузок по току стабилизаторов напряжения

Способы защиты электрической сети квартиры или дома от скачков напряжения

Перепады напряжения и прочие неполадки в электросетях отнюдь не редкость. Они могут привести к выходу из строя дорогостоящей техники и даже угрожать жизни и здоровью людей. Для предотвращения подобных последствий на рынке имеются различные устройства защиты электрической сети, применяемые в зависимости от характера неполадок.

В этой статье вы узнаете: что собой представляют перепады напряжения и каковы их причины; Какие существуют устройства защиты сети и в каких случаях используются.

Способы защиты электрической сети квартиры или дома от скачков напряжения

Допустимые параметры электроэнергии

В России и на пост-советском пространстве стандартным напряжением является 220 вольт (для рядовых потребителей электроэнергии). При этом в реальности напряжение колеблется в определенных рамках от данного номинала. Допустимая амплитуда отклонения от нормы устанавливается нормами и актами, регулирующими предоставление данной услуги потребителю. При 220В минимальное допустимое значение составляет 198В, а максимальное — 242В.

Спасут ли пробки или автоматы?

Способы защиты электрической сети квартиры или дома от скачков напряжения

Долгое время в домах использовались «пробки»: плавкие предохранители, защищающие от скачков напряжения. На смену им пришли современные и более удобные автоматы (автоматические выключатели). На сегодняшний день в большинстве квартир это единственные средства защиты от неполадок в сети.

Пробки и автоматические выключатели позволяют защититься от короткого замыкания, перегрева проводки и возгорания при перегрузке. Однако мощный электрический импульс может успеть пройти через автомат и вывести технику из строя. Такое случается, например, в следствие удара молнии. То есть обычные пробки не могут обеспечить полноценную защиту от перепадов напряжения.

Основные причины возникновения скачков напряжения в сети

Способы защиты электрической сети квартиры или дома от скачков напряжения

Скачки напряжения могут отличаться по величине отклонения от нормы, по своей продолжительности и динамике возрастания/убывания в зависимости от причин их возникновения:

  • Большая нагрузка на сеть. Одновременное подключение большого числа электроприборов при недостаточной мощности сети приводит к нестабильности напряжения. Это может быть заметно, например, как мерцание лампочек или внезапное выключение электроприборов. Данное явление встречается часто, особенно по вечерам;
  • Мощный потребитель по соседству. Случается, если рядом находятся промышленные объекты, торговые центры, офисные здания с мощной вентиляционной системой и так далее.
  • Обрыв нулевого провода. Нулевой провод выравнивает напряжение у потребителей электроэнергии. При его обрыве (сгорании, окислении) часть потребителей получат повышенное напряжение (а другие заниженное), что с высокой вероятностью приведет к выходу из строя незащищенной электротехники.
  • Ошибки при подключении. Например, если были перепутаны нулевой и фазный провода;
  • Плохая проводка. Сбои возникают из-за изношенности проводки, использования некачественных материалов и неправильно выполненных монтажных работ.
  • Удар молнии. Попадание молнии в линии электропередачи может вызывать стремительный скачек напряжения в тысячи вольт. Представляет особую опасность, так как средства защиты не всегда успевают сработать.

Способы защиты электрической сети квартиры или дома от скачков напряжения

Возможные последствия скачков напряжения

Производители электрической техники учитывают нестабильный характер напряжения и возможность его скачков и падений. Например, прибор с номинальным напряжением 220 вольт может работать при 200В и выдерживать скачки до 240В. При этом регулярная работа аппаратуры при больших отклонения от нормы сокращает срок ее эксплуатации. Сильные скачки напряжения могут вывести технику из строя, и даже нанести ущерб имуществу и здоровью, например, вызвав пожар.

Справка. Поломки электрических приборов в результате скачков напряжения не покрываются договорами о гарантийном обслуживании, то есть бремя расходов на ремонт и замену ложится на владельца, что может стать серьезным ударом по семейному бюджету. В некоторых случаях существует возможность предъявления иска к поставщику электроэнергии, однако это долго, сложно и дорого, а также не гарантирует успеха. Проще заранее предусмотреть защиту своего дома от подобных неприятностей.

Способы защиты от скачков напряжения

В зависимости от характеристик скачка напряжения и природы его возникновения используются различные устройства защиты. Рассмотрим основные из них:

Сетевой фильтр

Способы защиты электрической сети квартиры или дома от скачков напряжения

Простое и доступное решение для защиты маломощного оборудования. Обычно представляет собой удлинитель или моноблок с вилкой, розеткой (или розетками) и выключателем с индикацией подачи питания. Следует отличать сетевые фильтры от обычных удлинителей, которые не имеют защиты, но очень похожи по виду. Защищает от скачков до 400 — 500 вольт, а ток нагрузки не может превышает 5 — 15 А.

Справка. С технической стороны сетевой фильтр представляет собой нехитрую систему из нескольких конденсаторов и катушек индуктивности. При этом блоки питания большинства современных электроприборов уже имеют в своем составе схемы, выполняющие аналогичную функцию. То есть на практике сетевые фильтры часто выполняют роль простого удлинителя с дополнительной защитой от скачков в сети.

Реле защиты РКН и УЗМ

Способы защиты электрической сети квартиры или дома от скачков напряжения

Устройство прерывает подачу электроэнергии, если напряжение выходит за пределы допустимых значений. После возвращения напряжения в установленные рамки подача восстанавливается (автоматически или в ручную в зависимости от модели). Устройство подключается после входного автомата.

Основные достоинства РКН и УЗМ:

  • Скорость срабатывания в несколько миллисекунд;
  • Выдерживает нагрузку от 25 до 60 А;
  • Небольшие размеры и удобный монтаж;
  • Достаточные диапазоны максимального и минимального напряжения;
  • Отображение показателей электрического тока в реальном времени;

Прибор эффективен для защиты от разрыва нулевого провода и умеренных скачков напряжения. Однако реле не могут обеспечить стабильное напряжение и защитить от импульсного скачка, вызванного ударом молнии.

Расцепитель минимального-максимального напряжения (РММ)

Способы защиты электрической сети квартиры или дома от скачков напряжения

Устройство защищает от высокого и низкого напряжения. Эффективен в случае разрыва нулевого провода и перекоса фаз в трехфазной сети, но не защищает от высоковольтных импульсов.

Прибор отличается небольшими размерами, простотой установки и доступной ценой.

Обратите внимание. РММ не оснащен функцией автоматического включения, что может привести к порче продуктов в холодильнике, остановке отопления помещений в зимний период и подобным проблемам.

Стабилизаторы

Способы защиты электрической сети квартиры или дома от скачков напряжения

Приборы используются для «сглаживания» подачи электроэнергии в сетях, склонных к нестабильной работе. Эффективны в случае падения мощности, но могут не справиться с высоким напряжением.

Читайте также:  Наличие ионов в растворе электролита проводит электрический ток

К достоинствам прибора относятся: длительный срок эксплуатации; быстрое срабатывание; поддержание напряжения на стабильном уровне. Главным недостатком стабилизаторов является высокая цена.

Устройства защиты от импульсных перенапряжений (УЗИП)

Способы защиты электрической сети квартиры или дома от скачков напряжения

Используются для защиты от быстрых мощных скачков напряжения, как правило вызываемых ударом молнии в линию электропередач. Выделяют два вида подобных устройств:

  • Вентильные и искровые разрядники. Устанавливаются в сетях высокого напряжения. В случае импульсного перенапряжения в устройстве происходит пробой воздушного зазора, фаза замыкается на заземление, разряд уходит в землю;
  • Ограничители перенапряжения (ОПН). В отличие от разрядников имеют небольшой размер и используются в частных домах. Внутри установлен варистор. При обычном напряжении ток через него не течет, но в случае скачка происходит возрастание тока, что позволяет снизить напряжение до нормальной величины.

Датчик повышенного напряжения (ДПН)

Способы защиты электрической сети квартиры или дома от скачков напряжения

Используется вместе с УЗО (устройство защитного отключения) или дифференциальным автоматом. ДПН определяет превышение установленной нормы напряжения, после чего УЗО размыкает цепь.

Заключение

Наиболее распространенные средства защиты от скачков напряжения: автоматы и пробки, — эффективны не во всех случаях. В частности они не справляются с мощными скачками напряжения, что ставит под угрозу сохранность электротехники и всего дома в целом. Рынок предлагает разнообразными устройствами защиты электросети, применяемые в зависимости от характера перепадов напряжения и причин их возникновения. Потребителям электроэнергии остается выбрать необходимые приборы и правильно их установить.

Способы защиты электрической сети квартиры или дома от скачков напряжения

Защита от перенапряжения: что лучше стабилизатор или реле контроля напряжения?

Способы защиты электрической сети квартиры или дома от скачков напряжения

УЗИП — что это такое, описание и схемы подключения в частном доме

Способы защиты электрической сети квартиры или дома от скачков напряжения

Какой стабилизатор напряжения нужен для холодильника

Способы защиты электрической сети квартиры или дома от скачков напряжения

Что такое сетевой фильтр, для чего он нужен и где применяется

Способы защиты электрической сети квартиры или дома от скачков напряжения

Что такое УЗМ 51М в электрике — характеристики, схема подключения

Способы защиты электрической сети квартиры или дома от скачков напряжения

Сборка распределительного электрического щитка для квартиры

Источник



Стабилизатор напряжения с защитой от перегрузки

Стабилизатор напряжения с защитой от перегрузки, описываемый здесь, тринистор VS1 используется как в электронной, так и в электромагнитной системе защиты. Узел электронной защиты срабатывает, когда ток нагрузки создает на резисторе R4 падение напряжения, достаточное для открывания тринистора, т. е. когда разность напряжений между управляющим электродом и катодом тринистора достигает приблизительно 1 В. Возникающий при этом отрицательный импульс напряжения через диод VD3 поступает на базу транзистора VT1 и практически закрывает его, а следовательно, и транзистор VT2. Одновременно диод VD3 защищает транзистор VT1 от попадания на его базу положительного напряжения из анодной цепи тринистора.

Стабилизатор напряжения с защитой от перегрузки

Однако электронная система защиты все же не предохраняет полностью транзистор VT2 от теплового пробоя остаточным током, особенно если транзистор уже был разогрет в процессе работы или продолжительное время не нажимали кнопку SB1.

Для предотвращения теплового пробоя транзистора VT2 и служит электромагнитная система защиты, срабатывающая через несколько миллисекунд (зависит от используемого электромагнитного реле К.1) после того, как тринистор VS1 откроется. Именно в этот момент сработает реле К1. Его контакты К 1.1 замкнут (через резистор R5) базу транзистора VT2 на минусовый проводник источника питания, а контакты К 1.2 включат светодиод HL1 — сигнализатор действия защиты.

После устранения причины перегрузки (или замыкания в цепях нагрузки) достаточно кратковременно нажать кнопку SB1, чтобы восстановить прежний режим работы блока питания, не отключая устройство от сети. На вход стабилизатора падают от выпрямителя постоянное напряжение 40…44 В. Выходное стабилизированное напряжение от 0,2 до 28 В устанавливают резистором R2 и контролируют вольтметром PU1. Максимальный ток нагрузки — 2 А. Детали стабилизатора смонтированы на плате из фольгированного стеклотекстолита представленный на рисунке. Регулирующий транзистор VT2 установлен на теплоотводе — задней стенке прибора.

Печатная плата стабилизатора

Транзистор КТ608 (с буквенным индексом А или Б) можно заменить на КТ815 (Б, В, Г), КТ817 (В, Г), КТ801 (А, Б), а КТ803А — на КТ802А, КТ805 (А, Б), КТ808А, КТ819 (В, Г). Тринистор КУ202К заменим на КУ201В —КУ201Л, КУ202В—КУ202Н; стабилитрон Д816Б — на Д816В или КС533А (можно включить последовательно два стабилитрона Д815, Д816 на суммарное напряжение стабилизации28…36 В). Вместо диода Д220А (VD2) подойдут Д219, Д220, Д223, КД102, КД103 с любыми буквенными индексами, а вместо диода КД105Б (VD3) — КД106А или любой другой кремниевый с прямым током до 300 мА и обратным напряжением не менее 50 В.

Переменный резистор R2 (6,8… 15 кОм) любого типа с характеристикой А. Реле К1 — РЭС9 (паспорт РС4.524.200) или другое с двумя группами контактов на переключение, срабатывающие при напряжении не более 30 В.

Резистор R4 — несколько витков константанового, нихромового или манганинового провода, намотанного на корпус резистора МЛТ-1. Его сопротивление определяется значением тока выбранного предела срабатывания, что, в свою очередь, зависит от напряжения на управляющем электроде установленного тринистора, при котором этот ключ стабилизатора открывается. Так, например, если за максимальный ток срабатывания системы принять 2 А, а тринистор открывается при напряжении на управляющем электроде около 1 В, сопротивление резистора R4 должно быть (по закону Ома) близко к 0,5 Ома.

Более точно сопротивление резистора подгоняют под выбранный предел срабатывания защиты в таком порядке. К выходу стабилизатора подключают соединенные последовательно амперметр и проволочный переменный резистор сопротивлением 25…30 Ом. На вход стабилизатора подают соответствующее напряжение от выпрямителя и резистором R2 устанавливают на выходе напряжение 10…15 В. Затем переменным резистором, выполняющим функцию эквивалента нагрузки, устанавливают по амперметру ток, равный 2 А, и подбором сопротивления резистора R4 добиваются срабатывания системы защиты.

Стабилизатор напряжения с защитой от перегрузки в радиолюбительской практике нередки обстоятельства, когда защищать приходится не только сам стабилизатор напряжения, но и активные элементы налаживаемого или питающегося от него устройства от перегрузки токами меньшего значения, например, 50 или 100 мА. На такие случаи в стабилизатор можно ввести ступенчатую систему защиты, выполненную, например, по схеме, приведенной на рисунке.

Читайте также:  Проводит ли ток кожаная перчатка

Ступенчатая защита

Здесь резистор R4.1 первой ступени, рассчитанный на ток защиты 50 мА, включен в стабилизатор постоянно, а параллельно ему переключателем SA1 подключают резисторы R4.2—R4.5 четырех других ступеней: 100 мА, 500 мА, 1 А и 2 А.

Указанные в стабилизатор напряжения с защитой от перегрузки сопротивления резисторов ориентировочные. Точнее рассчитать их можно, лишь зная напряжение открывания тринистора, работающего в стабилизаторе. Измерить это напряжение можно так. Движок переменного резистора R2 установите в крайнее нижнее (по схеме) положение и подключите к нему проводник управляющего электрода тринистора, предварительно отпаяв его от правого (по схеме) вывода резистора R4.1. Затем включите питание и медленно увеличивайте резистором R2 напряжение на управляющем электроде тринистора. В момент открывания тринистора, о чем просигнализирует светодиод, измерьте вольтметром это напряжение. Резисторы R4.2—R4.5 монтируйте непосредственно на контактах переключателя SA1.

Источник

Стабилизатор тока с защитой от КЗ

Стабилизаторы тока широко используются в различных устройствах. Их схемы бывают простыми и не очень. Но в любом случае будет лучше, если он будет иметь защиту от перегрузки. Проблема, которую мы рассмотрим, заключается в следующем, есть у нас стабилизатор напряжения с ограничение тока нагрузки. То есть такому стабилизатору не страшны короткие замыкания на его выходе.

Но в режиме КЗ на регулирующем транзисторе такого стабилизатора будет выделяться большая мощность, это потребует применение соответствующего теплоотвода, что повлечет за собой увеличения размеров устройства, ну и его цены. А иначе – тепловой пробой структуры мощного транзистора.

Для примера возьмем простую схему стабилизатора тока на микросхеме, показанную на рисунке 1.

Схема защиты стабилизатора от КЗ

Все в общих чертах. Ток стабилизации, в соответствии с формулой 1, равен 1А. Допустим, нормальное сопротивление нагрузки 6 Ом. Тогда при токе в 1А на микросхеме упадет напряжение, равное: U = IxR — IxRн = 12-1,25-6 = 4,75В. Соответственно на микросхеме выделится мощность P = UxI = 4,75Вт. Если замкнуть выход стабилизатора тока, то на микросхеме уже будет падать напряжение 10,75В и соответственно мощность, выделяющаяся на микросхеме будет равна 10,75Вт. Вот на эту мощность и надо рассчитывать радиатор, тогда надежность вашего устройства будет на высоте. Но, что делать, если нет возможности установить радиатор бо’льших размеров? Правильно! Надо еще ограничить и мощность, выделяемую на микросхеме. Можно перед данной схемой поставить следящий стабилизатор, который бы в случае КЗ брал на себя часть выделяющейся тепловой мощности, но это сложновато. Лучше мы сделаем полное отключение стабилизатора при КЗ на его входе. Зная, что мощность равна произведению на ток, а ток мы выставляем сами и он стабилизирован, то мы будем следить за падение напряжения на регуляторе тока.

Схема защиты стабилизатора

Схема регулируемого стабилизатора тока взята из статьи «Блок питания для шуруповерта». Подробно о работе данного регулируемого стабилизатора тока можно прочитать в статье «Регулируемый стабилизатор тока на LM317».

Работа схемы защиты от превышения мощности

Для обеспечения защиты стабилизатора тока вводим в схему всего пять деталей. Транзистор VT1, выполняющий роль ключа и полностью отключающий стабилизатор во время режима КЗ. Здесь применен MOSFET транзистор с каналом P. При небольших токах, порядка одного, двух ампер, подойдет IRFR5505

IRFR5505 Datasheet PDF

При больших токах лучше применить транзистор с большим рабочим током стока и меньшим сопротивлением открытого канала. Например — IRF4905

IRF4905 Datasheet PDF

Тиристорный оптрон, можно отечественный – АОУ103 с любой буквой, можно подобрать импортный, например — TLP747GF

TLP747GF Datasheet PDF

Стабилитрон, любой маломощный, дочитаете статью до конца и сами себе, если потребуется, выберете нужный. R1 – это резистор, через который на затвор ключа, подается отрицательное открывающее напряжение. R2 – резистор, ограничивающий ток светодиода тиристорного оптрона. Да, если входное напряжение будет больше 20В, то параллельно тиристору оптрона необходимо поставить еще один стабилитрон на 12В, который будет защищать переход затвор – исток ключевого транзистора. Так как у большинства транзисторов MOSFET максимально допустимое напряжение этого перехода 20В.

Для примера возьмем случай зарядки двенадцативольтового аккумулятора стабильным током 3А. При подаче напряжения питания на схему транзистор VT1 будет открыт, так как на его затвор поступает отрицательное напряжение и схема работает в нормальном режиме. Падение напряжения на ключе учитывать не будем из-за его малой величины. При таких условиях на самом стабилизаторе тока будет падать мощность Р = (20 — 12)∙I= 8 ∙ 3 = 24Вт. При КЗ мощность увеличится до 60Вт, если без защиты. Многовато, и для транзистора VT2 не безопасно, поэтому после 30Вт мы отключим стабилизатор, поставив в цепь защиты стабилитрон с напряжением стабилизации 10В. Таким образом, мы получаем схему с защитой не только от КЗ, но и от превышения допустимой мощности рассеяния на стабилизаторе тока. Допустим, по каким либо причинам, совершенно нам не нужным, начало падать сопротивление нагрузки. Это вызовет увеличение падения напряжения на стабилизаторе и соответственно мощности рассеяния на нем. Но как только напряжение между входом и выходом превысит 10 вольт, «пробьется» стабилитрон VD1, через светодиод оптрона U1 потечет ток. Излучение светодиода откроет фототиристор, который зашунтирует переход затвор – исток ключевого транзистора. Тот в сою очередь закроется и отключит схему стабилизатора. Возвратить схему в рабочее состояние можно будет, или отключением питания и повторным подключением, или кратковременным закорачиванием фототиристора, например кнопкой. Таким образом, отслеживая напряжение между входом и выходом стабилизатора тока, вы можете сами с помощью стабилитронов на разные напряжения стабилизации, установить нужный вам порог ограничения по мощности.

Читайте также:  Показать путь тока в цепи

Эта схема применима практически ко всем стабилизаторам, хоть по току, хоть по напряжению. Ее можно встроить уже в готовый стабилизатор, не имеющий защиты от КЗ.
Успехов и удачи. К.В.Ю.

Источник

Стабилизатор напряжения с двойной защитой

Предлагаемый стабилизатор имеет раздельную защиту от перегрузки по току и КЗ. При КЗ на выходе стабилизатора срабатывает узел защиты на VT3 (рис.1). При перегрузке по току срабатывает защита на VS1 и К1.

Рис.1. Схема стабилизатора напряжения

Узел электронной защиты срабатывает, когда ток нагрузки создает на резисторе R6 падение напряжения, достаточное для открывания тиристора VS1, т.е. когда разность напряжений между управляющим электродом и катодом тиристора достигает приблизительно 1 В. Возникающий при этом отрицательный импульс напряжения через диод VD3 поступает на базу транзистора VT3 и практически закрывает его, а следовательно, и регулирующий транзистор VT1. Одновременно диод VD3 защищает транзистор VT3 от попадания на его базу положительного напряжения из анодной цепи тиристора.

Однако электронная система защиты все же не предохраняет полностью транзистор VT1 от теплового пробоя остаточным током, особенно если транзистор уже был разогрет в процессе работы, или продолжительное время не нажимали кнопку SB1.

Для предотвращения теплового пробоя транзистора VT1 и служит электромагнитная система защиты, срабатывающая через несколько миллисекунд (зависит от используемого реле К1) после того, как тиристор VS1 откроется. Тогда срабатывает реле К1. Его контакты К1.1 замыкают базу VT3 на минусовый проводник источника питания, а контакты К1.2 включают светодиод HL2 — сигнализатор действия защиты. После устранения причины перегрузки достаточно кратковременно нажать кнопку SB1, чтобы восстановить прежний режим работы блока питания, не отключая устройство от сети.

На вход стабилизатора подается от выпрямителя постоянное напряжение 40 В. Выходное стабилизированное напряжение от 3 В до 30 В устанавливается резистором R2. Максимальный ток нагрузки — 2 А. Ток нагрузки контролируют головкой РА1, переключив SA1.

Детали стабилизатора смонтированы на плате из фольгированного стеклотекстолита (рис. 2 и 3) и на лицевой панели корпуса блока питания. Регулирующий транзистор VT1 установлен на теплоотводе. Транзистор КТ825А можно заменить на КТ825Б, Г; КТ818В, Г, ВМ, ГМ; КТ814Г — на КТ814В, Б; КТ816Б, В, Г; КТ315В — на КТ315Г, Д, Е.

Рис.2. Печатная плата — сторона печатных проводников

Рис.3. Печатная плата — сторона монтажа

Тиристор КУ202К заменяется на КУ201В. КУ201Л, КУ202В. КУ202Н. Вместо диода Д220А (VD2) подойдут Д219, Д220, Д223, КД102, КД103 с любыми буквенными индексами, а вместо диода КД105Б (VD3, VD4, VD5) — КД106А или любой другой кремниевый с прямым током до 300 мА и обратным напряжением не менее 50 В.

Переменный резистор R2 — любого типа с характеристикой А. Реле К1 — РЭС48А (паспорт РС4.590.206) или другое с двумя группами переключающих контактов, срабатывающее при напряжении не более 30 В.

Резистор R6 выполнен в виде нескольких витков константанового, нихромового или манганинового провода, намотанного на корпус резистора МЛТ-1. Его сопротивление определяется значением тока срабатывания, что, в свою очередь, зависит от напряжения на управляющем электроде тиристора, при котором он открывается. Так, например, если за максимальный ток срабатывания защиты принять 2 А, а тиристор открывается при напряжении на управляющем электроде около 1 В, сопротивление резистора R6 должно быть (по закону Ома) близко к 0,5 Ом. Возможно применение резисторов типа С5-16 соответствующей мощности.

Более точно сопротивление резистора подгоняют под выбранный предел срабатывания защиты в таком порядке. К выходу стабилизатора подключают соединенные последовательно амперметр и проволочный переменный резистор сопротивлением 25. 30 Ом. На вход стабилизатора подают соответствующее напряжение от выпрямителя, и резистором R2 устанавливают на выходе напряжение 10. 15 В. Затем переменным резистором, выполняющим функцию эквивалента нагрузки, устанавливают по амперметру ток, равный 2 А, и подбором сопротивления резистора R6 добиваются срабатывания системы защиты.

В радиолюбительской практике нередки обстоятельства когда от перегрузки токами меньшего значения, например, 50 или 100 мА, защищать приходится не только сам стабилизатор напряжения, но и питающееся от него устройство. При этом желательно иметь ступенчатую систему защиты, выполненную, например, по схеме, приведенной на рис.4. Здесь резистор R6.1 первой ступени, рассчитанный на минимальный ток защиты 50 мА, включен в стабилизатор постоянно, а параллельно ему переключателем SA2 подключают резисторы R6.2. R6.5 четырех других ступеней: 100 мА, 500 мА, 1 А и 2 А.

Рис.4. Ступенчатая система защиты

Указанные на схеме сопротивления резисторов — ориентировочные. Точнее их можно рассчитать, лишь зная напряжение открывания тиристора, работающего в стабилизаторе. Измерить это напряжение можно так. Движок переменного резистора R2 установите в крайнее нижнее (по схеме) положение и подключите к нему управляющий электрод тиристора, отпаяв его от правого (по схеме) вывода резистора R6.1. Затем включите питание и медленно увеличивайте резистором R2 напряжение на управляющем электроде тиристора. В момент открывания тиристора, о чем просигнализирует светодиод, измерьте вольтметром это напряжение.

Резисторы R6.2. R6.5 монтируются непосредственно на контактах переключателя SA2. Резисторы RS1 и R12 подбираются конкретно под имеющийся измерительный прибор.

Источники

  1. О.Лукьянчиков. Стабилизатор напряжения с двойной защитой от КЗ в нагрузке. — Радио, 1986, N9, С.56.
  2. А.Бизер. Защитные устройства блоков питания. — Радио, 1977, N2, С.47.
  3. Ю.Тимлин. Сдвоенный двухполярный блок питания. — В помощь радиолюбителю, вып. 71. — М.: ДОСААФ, 1980
  4. В.Борисов. Стабилизированный блок питания. — Радио, 1979, N6, С.54.

Курбаков Ю. Опубликована: 2005 г. 0
Вознаградить Я собрал 0 0

Источник