Меню

Закон изменения тока в цепи имеет вид

Закон Ома для переменного тока

Мы с вами знаем формулировку закона Ома для цепей постоянного тока, которая гласит, что ток в такой цепи прямо пропорционален напряжению на элементе цепи и обратно пропорционален сопротивлению этого элемента постоянному току, протекающему через него.

Однако при изучении цепей переменного тока стало известно, что оказывается кроме элементов цепей с активным сопротивлением, есть элементы цепи с так называемым реактивным сопротивлением, то есть индуктивности и емкости (катушки и конденсаторы).

В цепи, содержащей только активное сопротивление, фаза тока всегда совпадает с фазой напряжения (рис 1.), т. е. сдвиг фаз тока и напряжения в цепи с чисто активным сопротивлением равен нулю.

Закон Ома для переменного тока при активном сопторилвении

Рисунок 1. Напряжение и ток в цепи с чисто активным сопротивлением. Сдвиг фаз между током и напряжение в цепи переменного тока с чисто активным сопротивлением всегда равен нулю

Отсюда следует, что угол между радиус-векторами тока и напряжения также равен нулю.

Тогда, падение напряжения на активном сопротивлении определяется по формуле:

zakon-oma-formula1 (1)

где, U-напряжение на элементе цепи,

I – ток через элемент цепи

R – активное сопротивление элемента

Формула (1) применима как для амплитудных, так и для эффективных значений тока и напряжения:

zakon-oma-formula-2

где, Um-амплитудное значение напряжения на элементе цепи,

Im – амплитудное значение тока через элемент цепи

R – активное сопротивление элемента

В цепи, содержащей чисто реактивное сопротивление — индуктивное или емкостное, — фазы тока и напряжения сдвинуты друг относительно друга на четверть периода, причем в чисто индуктивной цепи фаза тока отстает от фазы напряжения (рис. 2), а в чисто емкостной цепи фаза тока опережает фазу напряжения (рис. 3).

Закон ома для переменного тока в индуктивной цепи

Рисунок 2. Напряжение и ток в цепи с чисто индуктивным сопротивлением. Фаза тока отстает от фазы напряжения на 90 градусов.

Закон Ома для переменного тока в емкостной цепи

Рисунок 3. Напряжение и ток в цепи с чисто емкостным сопротивлением. Фаза тока опережает фазу напряжения на угол 90 градусов.

Отсюда следует, что в чисто реактивной цепи угол между радиус-векторами тока и напряжения всегда равен 90°, причем в чисто индуктивной цепи радиус-вектор тока при вращении движется позади радиус-вектора напряжения, а в чисто емкостной цепи он движется впереди радиус-вектора напряжения.

Падения напряжения на индуктивном и емкостном сопротивлениях определяются соответственно по формулам:

Закон Ома для индуктивной цепи

Закон Ома для емкостной цепи

где — UL-падение напряжение на чисто индуктивном сопротивлении ;

UС—падение напряжения на чисто емкостном сопротивлении;

I— значение тока в через реактивное сопротивление;

L— индуктивность реактивного элемента;

C— емкость реактивного элемента;

ω— циклическая частота.

Эти формулы применимы как для амплитудных, так и для эффективных значений тока и напряжения синусоидальной формы. Однако здесь следует отметить, что они ни в коем случае не применимы для мгновенных значений тока и напряжения, а также и для несинусоидальных токов.

Приведенные выше формулы являются частными случаями закона Ома для переменного тока.

Следовательно, полный закон Ома для переменного тока будет иметь вид:

zakon-oma-dlya-peremennogo-toka

Где Z – полное сопротивление цепи переменного тока.

Теперь остается только вычистислить полное сопротивление цепи, а оно зависит непосредсвенно от какие активные и реактивные элементы присутсвуют в цепи и как они соединены.

Закон Ома для различных типовых цепей переменного тока

Давайте выясним, как будет выглядеть закон Ома для цепи переменного тока, состоящей из активного и индуктивного сопротивлений, соединенных последовательно (рис. 4.)

Активно-индуктивная цепь

Рисунок 4. Цепь переменного тока с последовательным соединением активного и индуктивного сопротивления.

Закон Ома для переменного синусоидального тока в случае последовательного соединения активного и индуктивного сопротивлений выражается следующей формулой:

zakon-oma-aktivno-induktivnay-cep

где —эффективное значение силы тока в А;

U—эффективное значение напряжения в В;

R—активное сопротивление в Ом;

ωL—индуктивное сопротивление в ом.

Формула (6) будет также действительной, если в нее подставить амплитудные значения тока и напряжения.

В цепи, изображенной на рис. 5, соединены последовательно активное и емкостное сопротивления.

Рачет закона Ома в активно - емкостной цепи

Рисунок 5. Цепь переменного тока с последовательным соединением активного и емкосного сопротивления.

А закон Ома для такой цепи принимает вид:

zakon-oma-formula-aktivnj-emkost

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 6),

aktivno-emkostnaya-induktivnay-cep

Рисунок 6. Цепь переменного тока с последовательным соединением активного, индуктивного и емкосного сопротивления.

Закон Ома при последовательном соединении активного, индуктивного и емкостного сопротивлений будет выглядеть так:

zakon-oma-formula-3

где I-сила тока в А;

U-напряжение в В;

R-активное сопротивление в Ом;

ωL-индуктивное сопротивление в Ом;

1/ωС-емкостное сопротивление в Ом.

Формула (8) верна только для эффективных и амплитудных значений синусоидального тока и напряжения.

Для того, что бы определить ток в цепях с параллельным соединением элементов (рисунок 7), то необходимо так же вычислить полное сопротивление цепи, как это делать можно прсмотреть здесь, зтем подставить значение полного сопротивления в общую формулу для закона Ома (5).

parallelnoe-soedinenie

Рисунок 7. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C .

Тоже самое касается и вычисления тока в колебательном контуре изображенном на рисунке 8.

kolebatelnyj-kontur

Рисунок 8. Эквивалентная схема колебательного контура.

Таким образом закон Ома для переменного тока можно сформулировать следующим образом.

Значение тока в цепи переменного тока прямо пропорционально напряжению в цепи (или на участке цепи) и обратно пропорционально полному сопротивлению цепи (участка цепи)

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Электрический ток и закон Ома

теория по физике 🧲 постоянный ток

Электрический ток — направленное движение заряженных частиц под действием внешнего электрического поля.

Условия существования электрического тока:

  • наличие заряженных частиц;
  • наличие электрического поля, которое создается источниками тока.

Носители электрического тока в различных средах

Среда Носители электрического тока
Металлы Свободные электроны
Электролиты (вещества, проводящие ток вследствие диссоциации на ионы) Положительные и отрицательные ионы
Газы Ионы и электроны
Полупроводники Электроны и дырки (атом, лишенный одного электрона)
Вакуум Электроны

Электрическая цепь и ее схематическое изображение

Электрическая цепь — это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Основные элементы электрической цепи:

  • Источник тока (генератор, гальванический элемент, батарея, аккумулятор).
  • Потребители тока (лампы, нагревательные элементы и прочие электроприборы).
  • Проводники — части цепи, обладающие достаточным запасом свободных электронов, способных перемещаться под действием внешнего электрического поля. Проводники соединяют источники и потребители тока в единую цепь.
  • Ключ (переключатель, выключатель) для замыкания и размыкания цепи.

Электрическая цепь также может содержать:

  • резистор — элемент электрической цепи, обладающий некоторым сопротивлением;
  • реостат — устройство для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления;
  • конденсатор — устройство, способное накапливать электрический заряд и передавать его другим элементам цепи;
  • измерительные приборы — устройства, предназначенные для измерения параметров электрической цепи.

Определение

Электрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.

Условные обозначения некоторых элементов электрической цепи

Простейшая электрическая цепь содержит в себе источник и потребитель тока, проводники, ключ. Схематически ее можно отобразить так:

Направление электрического тока в металлах

По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».

Действия электрического тока (преобразования энергии)

Электрический ток способен вызывать различные действия:

  • Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
  • Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
  • Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
  • Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
  • Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.
Читайте также:  Меня ударило током трясусь

Основные параметры постоянного тока

Постоянный ток — электрический ток, который с течением времени не изменяется по величине и направлению.

Основными параметрами электрического тока являются:

  • Сила тока. Обозначается как I. Единица измерения — А (Ампер).
  • Напряжение. Обозначается как U. Единица измерения — В (Вольт).
  • Сопротивление. Обозначается как R. Единица измерения — Ом.

Сила тока

Сила тока показывает, какой заряд q проходит через поперечное сечение проводника за 1 секунду:

I = q t . . = Δ q Δ t . . = N q e t .

N — количество электронов, q e = 1 , 6 · 10 − 19 Кл — заряд электрона, t — время (с).

Заряд, проходящий по проводнику за время t при силе тока, равной I:

Пример №1. Источник тока присоединили к двум пластинам, опущенным в раствор поваренной соли. Сила тока в цепи 0,2 А. Какой заряд проходит между пластинами в ванне за 2 минуты?

2 минуты = 120 секунд

q = I t = 0 , 2 · 120 = 24 ( К л )

Заряд, проходящий за время ∆t при равномерном изменении силы тока от I1 до I2:

Δ q = I 1 + I 2 2 . . Δ t

Сила тока и скорость движения электронов:

n — (м –3 ) — концентрация, S (м 2 ) — площадь сечения проводника, v — скорость электронов.

Внимание!

Электроны движутся по проводам со скоростью, равной долям мм/с. Но электрическое поле распространяется со скоростью света: c = 3∙10 8 м/с.

Сопротивление

Сопротивление металлов характеризует тормозящее действие положительных ионов кристаллической решетки на движение свободных электронов:

ρ — удельное сопротивление, показывающее, какое сопротивление имеет проводник длиной 1 м и площадью поперечного сечения 1 м 2 , изготовленный из определенного материала. l — длина проводника (м), S — площадь его поперечного сечения.

Пример №2. Медная проволока имеет электрическое сопротивление 6 Ом. Какое электрическое сопротивление имеет медная проволока, у которой в 2 раза больше длина и в 3 раза больше площадь поперечного сечения?

Сопротивление первого и второго проводника соответственно:

Поделим электрическое сопротивление второго проводника на сопротивление первого:

R 2 R 1 . . = ρ 2 l 3 S . . ÷ ρ l S . . = ρ 2 l 3 S . . · S ρ l . . = 2 3 . .

Отсюда сопротивление второго проводника равно:

Напряжение

Напряжение характеризует работу электрического поля по перемещению положительного заряда:

Пример №3. Перемещая заряд в первом проводнике, электрическое поле совершает работу 20 Дж. Во втором проводнике при перемещении такого же заряда электрическое поле совершает работу 40 Дж. Определить отношение U1/U2 напряжений на концах первого и второго проводников.

U 1 U 2 . . = A 1 q . . ÷ A 2 q . . = A 1 q . . · q A 2 . . = A 1 A 2 . . = 20 40 . . = 1 2 . .

Закон Ома для участка цепи

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:

Иллюстрация закона Ома.

Сила тока направлена в сторону движения заряженных частиц (электронов). Силе тока противостоит сопротивление: чем оно больше, тем меньше сила тока (тем меньше проходит электронов через проводник в единицу времени). Но росту силы тока способствует напряжение, которое словно толкает заряженные частицы, заставляя их упорядоченно перемещаться.

Закон Ома для участка цепи с учетом формулы для расчета сопротивления:

Для сравнения и расчета сопротивления часто используют вольтамперную характеристику. Так называют графическое представление зависимости силы тока от напряжения. Пример вольтамперной характеристики:

Чем круче график, тем меньше сопротивление проводника. При расчете сопротивления важно учитывать единицы измерения величин, указанных на осях.

Пример №4. На рисунке изображен график зависимости силы тока от напряжения на одной секции телевизора. Каково сопротивление этой секции:

Точке графика, соответствующей 5 кВ, соответствует сила тока, равна 20 мА.

Сначала переведем единицы измерения величин в СИ:

R = U I . . = 5000 0 , 02 . . = 250000 ( О м ) = 250 ( к О м )

При определении сопротивления резистора ученик измерил напряжение на нём: U = (4,6 ± 0,2) В. Сила тока через резистор измерялась настолько точно, что погрешностью можно пренебречь: I = 0,500 А. По результатам этих измерений можно сделать вывод, что сопротивление резистора, скорее всего,

Источник



Законы изменения токов и напряжения

Страницы работы

Содержание работы

1 СОДЕРЖАНИЕ ЗАДАНИЯ

1.1 Дана схема однофазной цепи переменного тока (рисунок 1). Величина напряжения: U=100 В, величина частоты тока f=400 Гц, величины сопротивлений: R1=150 Ом, R2=25 Ом, величины индуктивностей L1=0,15 Гн, L2=0,4 Гн, величина емкости конденсатора C1=100 мкФ.

Рисунок 1 — Схема однофазной цепи переменного тока

-определить токи в ветвях и общий ток, записать законы их изменения;

-определить напряжения на всех элементах цепи, записать законы их изменения;

-составить баланс мощностей и определить погрешности расчета;

-построить векторную диаграмму.

2.1 Обозначим направления тока в ветвях (рисунок 2). Найдем сопротивление каждого элемента цепи.

Рисунок 2 — Схема цепи с указанием направления тока в ветвях

2.2 Найдем комплексные сопротивления участков цепи:

2.3 Представим схему с полными сопротивлениями для каждой ветви (рисунок 3). Укажем направления контурных токов.

Рисунок 3 — Схема цепи с полными сопротивлениями

Полные комплексные сопротивления:

2.4 Используем метод контурных токов. По II закону Кирхгофа получаем:

Подставляем значения напряжения и полных комплексных сопротивлений.

Решаем полученную систему с помощью правила Крамера.

Получили контурные токи:

2.5 Найдем токи в каждой ветви цепи:

Похожие материалы

Информация о работе

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Законы изменения тока и напряжения для участков цепи содержащих элементы: резистор, катушка индуктивности, конденсатор.

Кафедра Физики и математики, информационных технологий

Отчет по лабораторной работе №2.2

Цепи переменного тока. Реактивные сопротивления

Читайте также:  Что из перечисленного необходимо сделать в первую очередь при поражении человека электрическим током

Выполнила ст. группы СБ-13-15

ст. преподаватель Соболева В.В.

Дата Подпись
Допуск
Результат
Отчет

Цель работы: Ознакомиться с основными элементами электрических цепей синусоидального тока. Освоить методы электрических измерений в цепях синусоидального тока. Получить экспериментальное подтверждение закона Ома для цепей переменного тока.

Требуемое оборудование:

Модульный учебный комплекс: МУК-ЭМ1(2).

1. Генератор звуковых частот ЗГ1 1 шт.

2. Амперметр-вольтметр АВ1 1 шт.

3. Стенд с объектами исследования С3-ЭМ01 1 шт.

4. Комплект проводников 1 шт.

Ответы на контрольные вопросы:

Переменный ток. Мгновенное значение тока. Периодические токи. Период, частота.

Переменным током называют ток, изменяющийся во времени. Значение тока i(t) в любой момент времени называют мгновенным. Токи, мгновенные значения которых повторяются через равные промежутки времени в той же самой последовательности, называют периодическими, а наименьший промежуток времени T, через который эти повторения наблюдаются, — периодом. Величина, обратная периоду, называется частотой ν=1/T. Частота измеряется в герцах [Гц]. Постоянный ток можно рассматривать как частный случай периодического тока, период изменения которого бесконечно велик, т. е. частота равна нулю.

Уравнения мгновенного значения силы тока и напряжения, определение величин, входящих в данные уравнения.

Пусть на некотором участке цепи мгновенные значения тока и напряжения меняются гармонически, т. е по синусоидальному закону (рис. 1)

где Im – максимальное или амплитудное значение тока;

ψI – начальная фаза колебаний тока

ψU – начальная фаза колебаний напряжения.

Начальная фаза отсчитывается всегда от момента, соответствующего началу синусоиды (нулевое значение синусоидальной величины при переходе ее от отрицательных к положительным значениям), до момента начала отсчета времени t=0 (начало координат). Если начало синусоиды сдвинуто влево, то начальная фаза имеет положительное значение, а если вправо – отрицательное.

Найти численное значение начальной фазы, например тока (рис. 1), можно путем определения величины ΔtI :

Поскольку начало синусоиды смещено влево, то начальная фаза ψI имеет положительное значение.

Сдвиг фаз.

Если у нескольких синусоидальных функций, изменяющихся с одной частотой, начальные фазы не совпадают, то говорят, что они имеют сдвиг фаз (или разность фаз). Сдвиг фаз определяется как разность начальных фаз. Так, например, под разностью фаз ϕ напряжения и тока понимают разность начальных фаз напряжения ψU и тока ψI

Физические процессы, протекающие в цепях переменного тока, отличаются от процессов, протекающих в цепях постоянного тока. При переменном токе электрические и магнитные поля изменяются во времени. Изменяющееся магнитное поле наводит ЭДС, изменение электрического поля сопровождается изменением зарядов на проводниках.

Законы изменения тока и напряжения для участков цепи содержащих элементы: резистор, катушка индуктивности, конденсатор.

Основными элементами схем цепей переменного тока являются резисторы, конденсаторы и индуктивности. Рассмотрим законы изменения тока и напряжения для участков цепи содержащих эти элементы.

В резистивном элементе с сопротивлением R электромагнитная энергия преобразуется в тепло. Мгновенная мощность, с которой происходит преобразование энергии, определяется соотношением: . Резистивные (или их ещё называют активные) сопротивления вводятся в схемы замещения также для учета необратимого преобразования электромагнитной энергии в другие виды (например, механическую, энергию излучения и т. п.).

В резистивном элементе (рис. 2,а) напряжение связано с током законом Ома: . Если ток в резисторе , то и напряжение

имеет синусоидальную форму и такую же фазу, что и ток в резисторе (т. е. ψIU). Говорят, что ток и напряжение совпадают по фазе или синфазны, т. е. ϕ=0 (рис. 2,б).

Если через катушку индуктивности (рис. 3,а) пропустить переменный синусоидальный ток , то он создаст переменный магнитный поток, пронизывающий витки катушки. По закону электромагнитной индукции на зажимах катушки этот переменный поток наведёт синусоидальное напряжение:

где n – число витков катушки;

Ψ=wФ – потокосцепление;

L=dΨ/di — индуктивность;

xL=Lω= — реактивное индуктивное сопротивление.

В системе единиц СИ индуктивность L имеет размерность Генри (Гн), а индуктивное сопротивление – (Ом).

Индуктивность L учитывает энергию магнитного поля катушки

Из соотношения (4) видно, что ток через индуктивность i(t) отстаёт от напряжения на угол (рис. 4).

Переменный ток, протекая по виткам катушки, создаёт в проводниках тепловые потери мощности , где — активное сопротивление обмотки. На рис. 3,б показана низкочастотная схема замещения катушки индуктивности, состоящая из индуктивности L и активного сопротивления обмотки . Если сопротивлением обмотки можно пренебречь, то такую катушку считают идеальной индуктивностью (рис. 3,в). Для высоких частот в схеме замещения необходимо учитывать межвитковую ёмкость катушки.

Из (4) следует, что при заданном напряжении можно найти по соотношению

Конденсатор

Конденсатор является элементом электрической цепи, имеющим две проводящие обкладки, между которыми находится слой диэлектрика (рис. 5,а). Если к зажимам конденсатора (рис. 5,а) подключить источник синусоидального напряжения то на его обкладках возникнет изменяющийся во времени электрический заряд q(t), т. е. через конденсатор будет протекать электрический ток

В (2) ёмкость конденсатора, которая определяет зависимость изменения величины заряда на обкладках конденсатора от изменения напряжения, приложенного к его обкладкам — реактивное ёмкостное сопротивление.

В системе единиц СИ ёмкость C имеет размерность Фарада (Ф), а ёмкостное сопротивление – (Ом).

Из соотношения (4) видно, что ток через конденсатор i(t) опережает напряжение на угол 90 (рис. 6).

Основной особенностью конденсатора является его способность запасать энергию электрического поля . Кроме того, в конденсаторе имеют место тепловые потери энергии в диэлектрике и обкладках, а также происходит запас энергии в магнитном поле. На рис. 5,б показана низкочастотная схема замещения конденсатора, состоящая из параллельного соединения ёмкости C и активного сопротивления с проводимостью – RД, учитывающей потери в диэлектрике и обкладках. Если потерями можно пренебречь, то конденсатор будет представлять собой идеальную ёмкость (рис. 5,в).

Источник

Закон Ома

Дата публикации: 28 марта 2013 .
Категория: Статьи.

Закон Ома для участка цепи

Соберем электрическую цепь (рисунок 1, а), состоящую из аккумулятора 1 напряжением в 2 В, рычажного реостата 2, двух измерительных приборов – вольтметра 3 и амперметра 4 и соединительных проводов 5. Установим в цепи при помощи реостата сопротивление, равное 2 Ом. Тогда вольтметр, включенный на зажимы аккумулятора, покажет напряжение в 2 В, а амперметр, включенный последовательно в цепь, покажет ток, равный 1 А. Увеличим напряжение до 4 В путем включения другого аккумулятора (рисунок 1, б). При том же сопротивлении в цепи – 2 Ом – амперметр покажет уже ток 2 А. Аккумулятор напряжением 6 В изменит показание амперметра до 3 А (рисунок 1, в). Сведем наши наблюдения в таблицу 1.

Рисунок 1. Изменение тока в электрической цепи путем изменения напряжения при неизменном сопротивлении

Зависимость тока в цепи от напряжения при неизменном сопротивлении

Напряжение цепи в В Сопротивление цепи в Ом Ток цепи в А
2
4
6
2
2
2
1
2
3

Отсюда можно сделать вывод, что ток в цепи при постоянном сопротивлении тем больше, чем больше напряжение этой цепи, причем ток будет увеличиваться во столько раз, во сколько раз увеличивается напряжение.

Теперь в такой же цепи поставим аккумулятор с напряжением 2 В и установим при помощи реостата сопротивление в цепи, равное 1 Ом (рисунок 2, а). Тогда амперметр покажет 2 А. Увеличим реостатом сопротивление до 2 Ом (рисунок 2, б). Показание амперметра (при том же напряжении цепи) будет уже 1 А.

Рисунок 2. Изменение тока в электрической цепи путем изменения сопротивления при неизменном напряжении

При сопротивлении в цепи 3 Ом (рисунок 2, в) показание амперметра будет 2/3 А.

Результат опыта сведем в таблицу 2.

Зависимость тока в цепи от сопротивления при неизменном напряжении

Напряжение цепи в В Сопротивление цепи в Ом Ток цепи в А
2
2
2
1
2
3
2
1
2/3

Отсюда следует вывод, что при постоянном напряжении ток в цепи будет тем больше, чем меньше сопротивление этой цепи, причем ток в цепи увеличивается во столько раз, во сколько раз уменьшается сопротивление цепи.

Как показывают опыты, ток на участке цепи прямо пропорционален напряжению на этом участке и обратно пропорционален сопротивлению того же участка. Эта зависимость известна под названием закон Ома.

Если обозначим: I – ток в амперах; U – напряжение в вольтах; r – сопротивление в омах, то закон Ома можно представить формулой:

Читайте также:  Электромеханическая характеристика двигателя постоянного тока параллельного возбуждения

то есть ток на данном участке цепи равен напряжению на этом участке, деленному на сопротивление того же участка.

Видео 1. Закон Ома для участка цепи

Пример 1. Определить ток, который будет проходить по нити лампы накаливания, если нить имеет неизменное сопротивление 240 Ом, а лампа включена в сеть с напряжением 120 В.

Пользуясь формулой закона Ома, можно определить также напряжение и сопротивление цепи.

то есть напряжение цепи равно произведению тока на сопротивление этой цепи и

то есть сопротивление цепи равно напряжению, деленному на ток цепи.

Пример 2. Какое нужно напряжение, чтобы в цепи с сопротивлением 6 Ом протекал ток 20 А?

Пример 3. По спирали электрической плитки протекает ток в 5 А. Плитка включена в сеть с напряжением 220 В. Определить сопротивление спирали электрической плитки.

Если в формуле U = I × r ток равен 1 А, а сопротивление 1 Ом, то напряжение будет равно 1 В:

Отсюда заключаем: напряжение в 1 В действует в цепи с сопротивлением 1 Ом при токе в 1 А.

Потеря напряжения

Потеря напряжения
Рисунок 3. Потеря напряжения вдоль электрической цепи

На рисунке 3 приведена электрическая цепь, состоящая из аккумулятора, сопротивления r и длинных соединительных проводов, имеющих свое определенное сопротивление.

Как видно из рисунка 3, вольтметр, присоединенный к зажимам аккумулятора, показывает 2 В. Уже в середине линии вольтметр показывает только 1,9 В, а около сопротивления r напряжение равно всего 1,8 В. Такое уменьшение напряжения вдоль цепи между отдельными точками этой цепи называется потерей (падением) напряжения.

Потеря напряжения вдоль электрической цепи происходит потому, что часть приложенного напряжения расходуется на преодоление сопротивления цепи. При этом потеря напряжения на участке цепи будет тем больше, чем больше ток и чем больше сопротивление этого участка цепи. Из закона Ома для участка цепи следует, что потеря напряжения в вольтах на участке цепи равно току в амперах, протекающему по этому участку, умноженному на сопротивление в омах того же участка:

Пример 4. От генератора, напряжение на зажимах которого 115 В, электроэнергия передается электродвигателю по проводам, сопротивление которых 0,1 Ом. Определить напряжение на зажимах двигателя, если он потребляет ток в 50 А.

Очевидно, что на зажимах двигателя напряжение будет меньше, чем на зажимах генератора, так как в линии будет потеря напряжения. По формуле определяем, что потеря напряжения равна:

Если в линии потеря напряжения равна 5 В, то напряжение у электродвигателя будет 115 – 5 = 110 В.

Пример 5. Генератор дает напряжение 240 В. Электроэнергия по линии из двух медных проводов длиной по 350 м, сечением 10 мм² передается к электродвигателю, потребляющему ток в 15 А. Требуется узнать напряжение на зажимах двигателя.

Напряжение на зажимах двигателя будет меньше напряжения генератора на величину потери напряжения в линии. Потеря напряжения в линии U = I × r.

Так как сопротивление r проводов неизвестно, определяем его по формуле:

где ρ – удельное сопротивление меди (таблица 1, в статье «Электрическое сопротивление и проводимость»); длина l равна 700 м, так как току приходится идти от генератора к двигателю и оттуда обратно к генератору.

Подставляя r в формулу, получим:

Следовательно, напряжение на зажимах двигателя будет 240 – 18,3 = 221,7 В

Пример 6. Определить поперечное сечение алюминиевых проводов, которое необходимо применить, чтобы подвести электрическую энергию к двигателю, работающему при напряжении в 120 В и токе в 20 А. Энергия к двигателю будет подаваться от генератора напряжением 127 В по линии длиной 150 м.

Находим допустимую потерю напряжения:

Сопротивление проводов линии должно быть равно:

определим сечение провода:

где ρ – удельное сопротивление алюминия (таблица 1, в статье «Электрическое сопротивление и проводимость»).

По справочнику выбираем имеющееся сечение 25 мм².
Если ту же линию выполнить медным проводом, то сечение его будет равно:

где ρ – удельное сопротивление меди (таблица 1, в статье «Электрическое сопротивление и проводимость»).

Выбираем сечение 16 мм².

Отметим еще, что иногда приходится умышленно добиваться потери напряжения, чтобы уменьшить величину приложенного напряжения.

Пример 7. Для устойчивого горения электрической дуги требуется ток 10 А при напряжении 40 В. Определить величину добавочного сопротивления, которое нужно включить последовательно с дуговой установкой, чтобы питать ее от сети с напряжением 120 В.

Потеря напряжения в добавочном сопротивлении составит:

Зная потерю напряжения в добавочном сопротивлении и ток, протекающий через него, можно по закону Ома для участка цепи определить величину этого сопротивления:

Закон Ома для полной цепи

При рассмотрении электрической цепи мы до сих пор не принимали в расчет того, что путь тока проходит не только по внешней части цепи, но также и по внутренней части цепи, внутри самого элемента, аккумулятора или другого источника напряжения.

Электрический ток, проходя по внутренней части цепи, преодолевает ее внутреннее сопротивление и потому внутри источника напряжения также происходит падение напряжения.

Следовательно, электродвижущая сила (э. д. с.) источника электрической энергии идет на покрытие внутренних и внешних потерь напряжения в цепи.

Если обозначить E – электродвижущую силу в вольтах, I – ток в амперах, r – сопротивление внешней цепи в омах, r – сопротивление внутренней цепи в омах, U – внутреннее падение напряжения и U – внешнее падение напряжения цепи, то получим, что

Это и есть формула закона Ома для всей (полной) цепи. Словами она читается так: ток в электрической цепи равен электродвижущей силе, деленной на сопротивление всей цепи (сумму внутреннего и внешнего сопротивлений).

Видео 2. Закон Ома для полной цепи

Пример 8. Электродвижущая сила E элемента равна 1,5 В, его внутреннее сопротивление r = 0,3 Ом. Элемент замкнут на сопротивление r = 2,7 Ом. Определить ток в цепи.

Пример 9. Определить э. д. с. элемента E, замкнутого на сопротивление r = 2 Ом, если ток в цепи I = 0,6 А. Внутреннее сопротивление элемента r = 0,5 Ом.

Вольтметр, включенный на зажимы элемента, покажет напряжение на них, равное напряжению сети или падению напряжения во внешней цепи.

Следовательно, часть э. д. с. элемента идет на покрытие внутренних потерь, а остальная часть – 1,2 В отдается в сеть.

Внутреннее падение напряжения

Тот же ответ можно получить, если воспользоваться формулой закона Ома для полной цепи:

Вольтметр, включенный на зажимы любого источника э. д. с. во время его работы, показывает напряжение на них или напряжение сети. При размыкании электрической цепи ток по ней проходить не будет. Ток не будет проходить также и внутри источника э. д. с., а следовательно, не будет и внутреннего падения напряжения. Поэтому вольтметр при разомкнутой цепи покажет э. д. с. источника электрической энергии.

Таким образом, вольтметр, включенный на зажимы источника э. д. с. показывает:
а) при замкнутой электрической цепи – напряжение сети;
б) при разомкнутой электрической цепи – э. д. с. источника электрической энергии.

Пример 10. Электродвижущая сила элемента 1,8 В. Он замкнут на сопротивление r =2,7 Ом. Ток в цепи равен 0,5 А. Определить внутреннее сопротивление r элемента и внутреннее падение напряжения U.

Так как r = 2,7 Ом, то

Из решенных примеров видно, что показание вольтметра, включенного на зажимы источника э. д. с., не остается постоянным при различных условиях работы электрической цепи. При увеличении тока в цепи увеличивается также внутреннее падение напряжения. Поэтому при неизменной э. д. с. на долю внешней сети будет приходиться все меньшее и меньшее напряжение.

В таблице 3 показано, как меняется напряжение электрической цепи (U) в зависимости от изменения внешнего сопротивления (r) при неизменных э. д. с. (E) и внутреннем сопротивлении (r) источника энергии.

Зависимость напряжения цепи от сопротивления r при неизменных э. д. с. и внутреннем сопротивлении r

E r r U = I × r U = I × r
2
2
2
0,5
0,5
0,5
2
1
0,5
0,8
1,33
2
0,4
0,67
1
1,6
1,33
1

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Источник