Меню

Высота розеток компьютерный класс

Электрооборудование школ в вопросах и ответах

По всей стране идёт масштабная программа капитального ремонта и нового строительства общеобразовательных учреждений. Например, в Нижегородской области в ближайшую пятилетку будет возведено 101 учебное заведение, в Подмосковье планируют построить 200 и реконструировать более 112 школ. У специалистов, впервые привлекаемых к проектированию электрооборудования данных объектов, возникает множество вопросов. Ответы на самые распространённые из них дают эксперты:

  • Владимир Закускин, советник генерального директора Группы компаний IEK, одного из крупнейших производителей и поставщиков электротехники и светотехники;
  • Максим Карелин, технический специалист ООО «ЗОМФИ»;
  • Олег Печенев, региональный представитель ГК IEK (г. Тюмень);
  • Роман Сазонов, главный инженер ООО «Энергосервис» (г. Иркутск);
  • Алексей Щукин, генеральный директор инжиниринговой компании «Регион» (г. Санкт-Петербург).

Основные регламентирующие акты в действующих редакциях:

— СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»;

— СП 251.1325800.2016 «Здания общеобразовательных организаций. Правила проектирования»;

— СанПиН 2.4.1.3049-13 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы дошкольных образовательных организаций»;

— СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях»;

— СП 52.13330.2016 «Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95»;

— ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»;

— ГОСТ Р 50030.2-2010 (МЭК 60947-2:2006) «Аппаратура распределения и управления низковольтная.
Часть 2. Автоматические выключатели».

Какие требования необходимо выполнять при устройстве электросетей, чтобы обеспечить электробезопасность школьников?

Роман Сазонов (Р.С.): В общеобразовательных организациях применяются как меры, общие практически для всех электроустановок общественных зданий (защитное заземление, недоступность для прикосновения токоведущих частей и др.), так и характерные только для детских образовательных учреждений. К специфическим требованиям можно отнести расположение розеток и выключателей на высоте 1,8 метра, применение разделительных трансформаторов, сверхнизкого напряжения либо дифференциальной защиты для оборудования, на котором занимаются школьники. Конструкция штепсельных розеток должна предусматривать защитные устройства, автоматически закрывающие гнёзда при вынутой вилке (шторки).

Разумеется, проект электрических сетей школы обязан не только соответствовать нормам безопасности, но и отвечать потребностям современного образовательного процесса: включать в себя организацию информационных сетей и точек подключения медиаоборудования (интерактивных школьных досок, проекторов, ноутбуков). Соответствующие требования заказчика должны быть отражены в техническом задании.

Какие устройства предотвращают возникновение чрезвычайных ситуаций в учебных заведениях и требуют бесперебойного электроснабжения?

Алексей Щукин (А.Щ.): Полные требования к оснащению школ системами электросвязи приведены в таблице 1 СП 134.13330.2012. В обязательном порядке в общеобразовательных организациях устанавливаются системы дымоудаления 1 , пожаротушения 2 и предупреждения загазованности, охранная и пожарная сигнализация. Они относятся к потребителям первой категории. Согласно ПУЭ 3 , необходимо обеспечить бесперебойное электроснабжение данного оборудования с возможностью автоматического переключения на резервные источники питания в случае отключения электроэнергии.

Владимир Закускин (В.З.): Кроме того, согласно п. 6.1.23 ПУЭ, школы необходимо оснащать аварийным освещением, задача которого — способствовать своевременной эвакуации людей в случае возникновения пожара и других нештатных ситуаций. Можно обеспечить автономное питание соответствующих осветительных приборов от дизель-генератора, но чаще применяется простой и менее затратный путь — установка светильников со встроенной батареей. Так, в ряде моделей серии ДПА эвакуационное освещение продолжительностью до четырёх часов обеспечивает никель-металлгидридный (NiMH) аккумулятор, защищённый от глубокого разряда и перезарядки.

Есть ли специфические требования к модульному электрооборудованию, устанавливаемому в школе?

Олег Печенев (О.П.): Согласно ПУЭ, аппараты защиты для школ выбираются так же, как для любого административного здания. Однако нередко проектировщики делают больший акцент на безопасность, например устанавливая автоматические выключатели с повышенной до 6 кА отключающей способностью на все отходящие линии.

Можно отметить тренд на усиление мер активной защиты школьников от электротравм, отразившийся в повсеместном использовании устройств дифференциального тока — полтора десятилетия назад их было минимальное количество, а в зданиях старой постройки они отсутствовали вовсе. Но с 2002 года, согласно седьмому изданию ПУЭ, данные аппараты стали обязательными. Так, проектом строительства школы на 1100 учебных мест в микрорайоне Ямальский-2 города Тюмени предусмотрена установка более 160 единиц АВДТ 32-2Р 30 мА. Они отвечают за пожаробезопасность всех помещений, включая столовые, мастерские, классы физики, химии и информатики, укомплектованные значительным числом розеток, к которым подключается различное оборудование.

Залогом высокой надёжности и точности функционирования модульного оборудования в детских учреждениях становится строгий контроль качества на всех этапах производства. Но мы в ГК IEK идём дальше, постоянно внося конструктивные изменения в аппараты защиты, в том числе с целью увеличения их срока службы, снижения энергозатрат и повышения удобства эксплуатации. Например, наличие индикации в дифференциальных выключателях позволяет определить, что именно стало причиной срабатывания автомата — сверхток или ток утечки. А это в свою очередь даёт возможность вовремя принять необходимые меры безопасности.

Какие требования предъявляются к осветительным приборам?

А.Щ.: Чтобы обеспечить эффективный учебный процесс и сохранить здоровье детей и подростков, освещённость в классах (на поверхностях учебных столов) должна составлять не меньше 400 лк, а у доски — 500 лк. Рекомендуемый уровень дискомфорта от искусственного света — менее 15 %, а коэффициент пульсаций светильников — менее 10 %. Цветопередача в учебных помещениях нормируется на уровне 80 единиц, для школьных коридоров — не ниже 40 единиц.

Применять исключительно искусственные источники можно в кладовых, душевых и подсобных помещениях для хранения инвентаря.

Во всех учебных комнатах следует организовать достаточное естественное освещение. Оно должно быть боковым и левосторонним. Двустороннее освещение допускается в помещениях глубиной свыше шести метров. Для равномерного распределения света необходимо предусмотреть в проекте электроснабжения правостороннюю подсветку на высоте 2,2 м. Коэффициент естественного освещения таких мест должен быть равен 1,5 %.

В качестве основных источников света в образовательных учреждениях рекомендуется использование трубчатых и компактных люминесцентных ламп, ламп накаливания. Если производителем осветительных устройств пройдена сертификация под нормативные спектральные биологические требования, то допускается применение светодиодов с удалённым люминофором или комбинированным удалённым фотолюминесцентным конвертером.

Как регламентируется энергоэффективность освещения?

Максим Карелин (М.К.): Во-первых, СП 251.1325800.2016 вводит ограничения на предельную установленную мощность осветительных устройств в помещениях школы, указанные в таблице 8.1. Во-вторых, приложение Д предлагает снижать потребление электроэнергии при помощи датчиков движения, учитывающих уровень естественного света.

На практике некоторые общеобразовательные организации перевыполняют требования нормативов, используя интеллектуальные системы управления освещением, позволяющие экономить электроэнергию и обеспечивать комфортный уровень яркости в классах. Так, в 2017 году при строительстве Хорошёвской гимназии в Москве во всех помещениях с окнами было установлено 558 бесшумных радиоуправляемых приводов Sonesse производства французской компании Somfy. Данные устройства на основании показаний датчиков автоматически меняют положение рулонных штор, создавая в классах оптимальные световые условия: при ярком солнце система отключает искусственное освещение и, не затемняя комнату, предотвращает появление бликов. В пасмурную погоду, наоборот, максимально открывает шторы и включает столько светильников, сколько необходимо, что также обеспечивает экономию электричества.

При проектировании таких автоматизированных систем следует учитывать требование нормативов: не использовать искусственный и естественный свет одновременно в классах, предназначенных для занятий детей до 12 лет.

Есть ли какие-то изменения в нормативах, которые следует учитывать при проектировании систем электроснабжения в образовательных учреждениях?

Р.С.: За последние пять — десять лет произошли лишь незначительные корректировки нормативно-технической документации, регламентирующей проектирование электроустановок школ. Например, разработан и рекомендован к применению кабель с низкой токсичностью продуктов горения (LTx).

Электрификация современной школы может не только в полной мере отвечать всем государственным стандартам и санитарным нормам, но и опережать их — если на стадии планирования будут заложены прогрессивные технические решения и более высокие параметры оборудования. Следует учитывать, что безопасность детей в значительной степени зависит и от высокопрофессионального выполнения монтажных работ, а также от дальнейшего соблюдения правил эксплуатации инженерных сетей.

1 Согласно СП 7.13130.2013 «Отопление, вентиляция и кондиционирование. Требования пожарной безопасности».
2 Согласно СП 5.13130.2009 «Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования».
3 ПУЭ – правила устройства электроустановок, 6-е и 7-е издания.

Источник: Пресс-служба ГК IEK

Источник



Высота розеток компьютерный класс

РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ
ЭЛЕКТРООБОРУДОВАНИЯ КОМПЬЮТЕРНЫХ КЛАССОВ

1. РАЗРАБОТАНО Московским научно-исследовательским и проектным институтом типологии, экспериментального проектирования (МНИИТЭП).

Составители: Кузилин А.В., Савинкин В.Ф.

2. Подготовлено к утверждению и изданию Управлением перспективного проектирования и нормативов Москомархитектуры: инженеры: Ионин В.А., Щипанов Ю.Б.

3. СОГЛАСОВАНО Центром Государственного санитарно-эпидемиологического надзора (ЦГСЭН) в г.Москве.

4. УТВЕРЖДЕНО И ВВЕДЕНО В ДЕЙСТВИЕ указанием Москомархитектуры от 26.07.2000 N 31.

Введение

В настоящем «Дополнении» приводятся рекомендации по проектированию компьютерных классов, которые могут быть также использованы при проектировании офисных и производственных помещений с компьютерным оборудованием.

В основу «Рекомендаций» положены действующие ГОСТ Р, СанПиН и справочное руководство «Электромагнитная безопасность при работе с компьютерной техникой», разработанное ГНПП «Циклон-Тест» г. Фрязино Московской области.

Источниками электромагнитных полей на учебных местах в компьютерных классах являются поля:

создаваемые окружающими учебное место источниками электромагнитных полей (электропроводка, розетки и т.п.);

создаваемые ПЭВМ (электростатическое поле; переменные низкочастотные электрические поля; переменные низкочастотные магнитные поля).

Рентгеновское и ультрафиолетовое излучение электронно-лучевых трубок и электромагнитное излучение радиочастотного диапазона от электронных узлов существенно ниже предельно допустимых уровней, регламентируемых санитарными нормами, и далее не рассматриваются.

Электростатическое поле на экране дисплея возникает в связи с наличием ускоряющего напряжения. Переменные электрические и магнитные поля создаются узлами ПЭВМ, которые работают с большими токами и на переменном высоком напряжении.

Большое значение для повышения безопасной работы на ПЭВМ имеет организация рабочего места и размещение компьютерной техники в помещениях.

Санитарные правила и нормы СанПиН 2.2.2.542-96 дают следующие рекомендации по организации рабочего места:

рабочее место должно быть автономным;

экран видеомонитора должен находиться от глаз пользователя на оптимальном расстоянии 70-90 см, но не ближе 50 см;

в помещениях с ПЭВМ ежедневно должна проводиться влажная уборка.

1. Схемные и конструктивные решения

1.1. Сеть питания компьютерных классов должна быть, как правило, самостоятельной от вводно-распределительного устройства или от этажного распределительного щитка при 5-ти проводных распределительных линиях (стояках).

1.2. Сечение линии питания компьютеров должно выбираться из расчета 450 Вт на одно рабочее место.

1.3. Коэффициент спроса для определения нагрузки на распределительных линиях следует принимать из расчета при количестве рабочих мест до 8-0,9, от 20-0,8.

1.4. К одной групповой линии следует подключать не более 3 ПЭВМ. Нагрузка групповой линии определяется с коэффициентом спроса, равным 1.

1.5. Распределительная и групповая сеть питания компьютеров должна выполняться с защитным нулевым проводником (5-ти и 3-х проводными).

1.6. Штепсельные розетки для подключения ПЭВМ должны иметь заземляющий контакт и должны позволять беспрепятственно изменять полярность вилки.

1.7. Провода должны иметь в соответствии с ПУЭ расцветку (нулевой рабочий провод — голубой, нулевой защитный — желто-зеленый).

1.8. Сеть питания, проходящая внутри классов, должна быть проложена экранированным кабелем или проводами в стальных трубах. Экран кабелей, стальные трубы и корпуса вводных щитков должны быть соединены с нулевым защитным проводом.

1.9. Групповую сеть внутри классов рекомендуется прокладывать, начиная от вводных щитков по разным трассам и, по возможности, ближе к полу или в подготовке пола.

1.10. Розетки, питающиеся по одной групповой линии, рекомендуется размещать в металлическом щитке, соединенном с нулевым защитным проводником.

1.11. Каждая групповая линия розеточной сети должна быть защищена устройством защитного отключения (УЗО) с уставкой по току утечки не более 30 мА. Рекомендуется уставка на ток утечка — 10 мА.

1.12. Нулевой защитный проводник распределительной сети должен быть на вводе в здание присоединен к общей системе уравнивания потенциала.

Доступ к полной версии этого документа ограничен

Ознакомиться с документом вы можете, заказав бесплатную демонстрацию систем «Кодекс» и «Техэксперт».

Источник

Читайте также:  Розетка резинки для плетения

Приборы счетчики инструменты © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.