Меню

Возникновение электрического тока под действием переменного магнитного поля прибор

Переменное магнитное поле

Переменное магнитное поле 1Магнитное поле всегда возникает вокруг движущихся электрических зарядов, или при взаимодействии тел, обладающих магнитным моментом. Поскольку современные электрические сети используют в основном переменный электрический ток, то магнитное поле изменяет своё значение и направление периодически. Таким образом, можно сказать, что большинство электрических сетей являются источниками переменного магнитного поля.

Величина магнитного поля характеризуется векторной величиной — магнитной индукцией (B).

Переменное магнитное поле

Движущиеся в магнитном поле частицы, движутся под действией силы Лоренца. Именно этой силой часто характеризуют магнитную составляющую в электромагнитном поле. Она характеризует напрваление движенися конкретных частиц. Под действием электромагнитного поля на проводник, в нём возникает ток, величина которого определяется законом Ампера.

Переменное магнитное поле используется в промышленности для различных технологических и производственных целей, а также нашло широкое применение в медицине, биологии и других областях.

Для размагничивания ферромагнетиков используется затухающее переменное магнитное поле. При этом необходимо учитывать, что чем больше частота переменного магнитного поля, тем меньше глубина его проникновения в материал. Так, в сплошную сталь переменное магнитное поле частотой 10-ти герц проникает примерно на 10 миллиметров. Для размагничивания объёмных сплошных деталей используются переменные магнитные поля с небольшой частотой в единицы герц, но большой мощности. Скорость затухания частоты в таких устройствах регулируется контроллером.

Применение магнитных полей в промышленности

Сепарация взвешенных жидкостей

В нефтедобывающей промышленности применяются переменные магнитные поля. С их помощью выполняется обработка тонкодисперсной эмульсии. Эта эмульсия является продуктом смешения нефти с водой, что входит в технологический цикл нефтедобычи. При отстаивании эмульсии происходит разделение слоёв воды и нефти, но это достаточно длительный и, следовательно, дорогостоящий процесс. Воздействие переменным магнитным полем на эмульсию позволяет существенно ускорить процесс разделения сред.

Переменные магнитные поля способны отказывать влияние на клетки и микроорганизмы, которые являются устойчивыми к другим типам воздействия (УФ-облучению, антибиотикам, вирусам, фагам и т.д.). Таким образом удаётся бороться с некоторыми враждебными человеку микроорганизмами.

В основе работы многих физиотерапевтических аппаратов лежит переменное магнитное поле, особенно СВЧ-диапазона. Такие устройства сейчас разделяют на две категории в зависимости от используемой длины волны: «ДЦВ-терапия» и «микроволновая терапия». Наиболее разработана на сегодняшний день теория о тепловом влиянии СВЧ-полей на организмы.

Под воздействием переменного магнитного поля высоких частот происходит периодическая переориентация электрических диполей в организме, что вызывает нагрев тканей. При этом ткани, на которые будет оказываться наибольшее влияние можно выбрать в зависимости от используемой частоты переменного магнитного поля.

Источник



Возникновение электрического тока под действием переменного магнитного поля прибор

«Физика — 11 класс»

Электроизмерительные приборы

Действие магнитного поля на контур с током используют в электроизмерительных приборах магнитоэлектрической системы — амперметрах и вольтметрах.

Как устроен измерительный прибор магнитоэлектрической системы?
В основе устройства электроизмерительных приборов магнитоэлектрической системы лежит ориентирующее действие магнитного поля на рамку с током.

Амперметр

На алюминиевую рамку 2 со стрелкой 4 намотана катушка. Рамка укреплена на двух полуосях ОО’. В положении равновесия ее удерживают две тонкие спиральные пружины 3. Силы упругости пружин, возвращающие катушку в положение равновесия, зависят от угла отклонения стрелки от равновесия.
Катушка находится между полюсами постоянного магнита М. Внутри катушки расположен цилиндр 1 из железа, что обеспечивает радиальное направление линий магнитной индукции в области витков катушки.
При любом положении катушки силы, действующие на нее со стороны магнитного поля, максимальны и при неизменной силе тока постоянны.

Векторы сил F, действующие на катушку со стороны магнитного поля, поворачивают ее. Катушка с током поворачивается до тех пор, пока силы упругости пружин не уравновесят силы магнитного поля.

Силу тока после градуирования шкалы определяют по углу поворота катушки.

Вольтметр

Такой же прибор может измерять и напряжение. Для этого нужно градуировать прибор так, чтобы угол поворота стрелки соответствовал определенным значениям напряжения.
Однако сопротивление вольтметра должно быть много больше сопротивления амперметра.

Громкоговоритель

Громкоговоритель служит для возбуждения звуковых волн под действием переменного электрического тока звуковой частоты.
В электродинамическом громкоговорителе (иначе динамик) используется действие магнитного поля постоянного магнита на переменный ток в подвижной катушке.

Звуковая катушка ЗК располагается в зазоре кольцевого магнита М. С катушкой жестко связан бумажный конус — диафрагма D. Диафрагма укреплена на подвесах, что позволяет ей совершать вынужденные колебания вместе с подвижной катушкой.

По катушке проходит переменный электрический ток с частотой, равной звуковой частоте сигнала с микрофона или с выхода радиоприемника. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя ОО1 в такт с колебаниями тока. Эти колебания передаются диафрагме, и поверхность диафрагмы излучает звуковые волны.

Взаимодействие токов и пьезоэлектрический эффект положены в основу принципа работы современных громкоговорителей.

D настоящее время широкое применение получили громкоговорители, основанные на пьезоэлектрическом эффекте. Этот эффект проявляется в виде деформации кристаллов в электростатическом поле.

Пьезоэлектрический элемент состоит из пььезоэлектрических пластинок, которые могут менять свои размеры под действием поля. В результате элемент сильно изгибается, создавая при переменном электрическом поле акустическую волну.
Пьезогромкоговорители имеют малые размеры, поэтому нашли широкое применение в мобильных телефонах, ноутбуках и микрокомпьютерах.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Магнитное поле. Физика, учебник для 11 класса — Класс!ная физика

Источник

Прибор электромагнитной системы

Электроизмерительные приборы электромагнитной системы (рис.12) предназначены для измерения силы тока и напряжения в цепях постоянного и переменного тока.

Принцип действия приборов электромагнитной системы основан на взаимодействии магнитного поля создаваемого протекающим по неподвижной катушке тока и подвижного железного сердечника.

Читайте также:  Как рассчитать силу тока потребляемую электроприбором

Приборы электромагнитной системы состоят из

неподвижной катушки, по которой протекает измеряемый ток,

железного сердечника особой формы с отверстиями закрепленного эксцентрично на оси и имеющего возможность перемещаться относительно катушки,

противодействующих спиральных пружин и воздушного успокоителя, представляющего собой камеру в которой перемещается алюминиевый поршенек.

Под действием магнитного поля неподвижной катушкиподвижный сердечник стремясь, расположится так, чтобы его пересекало, возможно, больше силовых линий магнитного поля, втягивается в катушку по мере увеличения в ней силы тока.

Магнитное поле катушки пропорционально току;

намагничивание железного сердечника тоже увеличивается с увеличением тока.

Поэтому можно приближенно считать, что в электромагнитных приборахсоздаваемый вращающий магнитный момент пропорционален квадрату тока. Противодействующий механический момент создаваемый спиральными пружинами пропорционален углу поворота подвижной части прибора, поэтому шкала электромагнитного прибора неравномерная, квадратичная.

В электромагнитных приборах при изменении направления тока меняется как направление создаваемого магнитного поля, так и полярность намагничивания сердечника. Поэтому приборы электромагнитной системы применяются для измерения физических величин в цепях как постоянного, так и переменного токов низких частот без дополнительных устройств.

Достоинствами приборов электромагнитной системы являются:

возможность измерения физических величин в цепях как постоянного, так и переменного токов;

выносливость в отношении перегрузок.

К недостаткам приборов этой системы относятся:

меньшая точность, чем в магнитоэлектрических приборах;

зависимость показаний от внешних магнитных полей.

Прибор электродинамической системы

Электроизмерительные приборы электродинамической системы (рис.13) предназначены для измерения силы тока, напряжения и мощности в цепях постоянного и переменного тока.

Принцип действия приборов электродинамической системы основан на взаимодействии магнитных полей создаваемых измеряемым током, протекающим по неподвижной и подвижной катушкам.

Приборы электродинамической системы состоят из

жестко закрепленной неподвижной катушки,

закрепленной на оси подвижной катушки (расположена внутри неподвижной катушки) с которой жестко связана стрелка, перемещающаяся над шкалой,

противодействующих спиральных пружин и

Под действием магнитного поля неподвижной катушки и тока в подвижной катушке создается вращающий магнитный момент, под влиянием которого подвижная катушка будет стремиться повернуться так, чтобы плоскость ее витков стала параллельной плоскости витков неподвижной катушки, а их магнитные поля совпадали бы по направлению. В первом приближении вращающий магнитный момент, действующий на подвижную катушку, пропорционален как току в подвижной катушке, так и току в неподвижной катушке. Противодействующий механический момент создаваемый спиральными пружинами пропорционален углу поворота подвижной части прибора, поэтому шкала электродинамического прибора неравномерная. Однако подбором конструкции катушек можно улучшить шкалу, то есть получить равномерную шкалу.

При перемене направления тока в обеих катушках направление вращающего магнитного момента не меняется. Поэтому приборы электродинамической системы применяются для измерения физических величин в цепях как постоянного, так и переменного токовбез дополнительных устройств.

В зависимости от назначения электродинамического прибора катушки внутри него соединяются между собой последовательно или параллельно.

Если катушки прибора соединить параллельно и установить добавочное сопротивление (шунт – уменьшает сопротивление прибора до требуемого минимального значения), то он может быть использован как амперметр.

Если катушки соединить последовательно и присоединить к ним добавочное сопротивление, то прибор может быть использован как вольтметр.

Приборы электродинамической системы используются для измерения потребляемой в цепи мощности – электродинамический ваттметр.

Он состоит из двух катушек:

неподвижной, с небольшим числом витков толстой проволоки, включенной последовательнос тем участком цепи, в котором требуется измерить расходуемую мощность, и

подвижной, содержащей большое число витков тонкой проволоки и помещенной на оси внутри неподвижной катушки. Подвижная катушка включается в цепь подобно вольтметру, то есть параллельнопотребителю, и для увеличения её сопротивления последовательно с ней вводится добавочное сопротивление. Отклонение подвижной части прибора пропорционально мощности и поэтому шкалу прибора градуируют в ваттах. Ваттметры электродинамической системы имеют равномерную шкалу.

Достоинствамиприборов электродинамической системы являются:

возможность измерения физических величин в цепях как постоянного, так и переменного токов;

Электродинамические амперметры и вольтметры применяются главным образом в качестве контрольных приборов для измерений в цепях переменного тока.

К недостаткамприборов этой системы относятся:

неравномерность шкалы у амперметров и вольтметров;

чувствительность к внешним магнитным полям;

большая чувствительность к перегрузкам.

Электростатический вольтметр

Электростатические приборы служат преимущественно для непосредственного измерения высоких напряжений в цепях постоянного и переменного токов – электростатический вольтметр (рис.14).

Принцип действия электростатического вольтметра основан на электростатическом взаимодействии заряженных проводников.

Электростатический вольтметр состоит из неподвижного электрода, представляющего собой металлическую камеру, подвижного алюминиевого электрода в форме пластинки закрепленного на оси, противодействующей спиральной пружины или системы растяжек, системы быстрого успокоения использующей постоянный магнит и светового указателя.

Измеряемое напряжение подводится одним полюсом к неподвижному электроду, а другим к подвижному электроду. Подвижный и неподвижный электроды заряжаются противоположными по знаку зарядами, и возникающая сила притяжения втягивает подвижный электрод внутрь неподвижного. Противодействующий механический момент создается упругими силами спиральной пружины или системы растяжек.

В электростатических приборах моменты, действующие на подвижную часть малы, поэтому для отсчета показаний прибора пользуются световым лучом, отраженным от небольшого легкого зеркальца, укрепленного на оси.

Угол поворота подвижного электрода зависит как от квадрата напряжения, так и от изменения емкости, поэтому шкала электростатического прибора неравномерная, квадратичная. Подбор размеров и формы электродов позволяет получить зависимость емкости от угла поворота постоянной.

Квадратичная зависимость угла поворота подвижного электрода от напряжения позволяет применять такие приборы для измерения не только постоянного напряжения, но и напряжения переменного тока (до частоты прядка 30МГц).

Электростатические приборы имеют малую входную емкость и высокое сопротивление изоляции; поэтому измерение постоянного напряжения происходит практически без потребления мощности самим прибором и с очень малым потреблением мощности при измерении переменного напряжения.

Читайте также:  Пути токов в транзисторе

Электростатические вольтметры применяются для измерений высоких напряжений постоянного, а также переменного токов, причем при измерении высокого напряжения переменного тока не требуется применения специальных измерительных трансформаторов.

Электронные приборы

Приборы такой системы содержат одну или несколько электронных ламп и измерительный прибор магнитоэлектрической системы, соединенных в схему позволяющую производить измерения электрических величин(Ламповый милливольтметр В3–38Б рис.15).

Электронные приборы обладают большим входным сопротивлением, выдерживают достаточно большие перегрузки, но имеют малую точность измерений.

Цифровые измерительные приборы

В цифровых измерительных приборах (относятся к электронным приборам) непрерывно измеряемая величина или её аналог, то есть физическая величина, пропорциональная измеряемой, преобразуется в дискретную форму и результат измерения выводится в виде числа, появляющегося на отсчетном или цифропечатающем устройстве.

Достоинствами цифровых измерительных приборов являются: возможность измерения физических величин в цепях как постоянного, так и переменного токов без дополнительных устройств; быстродействие и устойчивость к помехам. Наличие цифрового отсчетного устройства исключает погрешность отсчета измеряемой величины.

Примером многопредельного комбинированного универсального цифрового полупроводникового прибора является вольтметр В7–22А рис.16. Данный прибор используется в цепях как постоянного, так и переменного токов для измерения напряжения, силы тока и сопротивления в широких пределах.

На передней панели полупроводникового вольтметра В7–22А расположены кнопки, нажатием которых, можно выбрать диапазон измерения (например, от 0 до 0,2; от 0 до 2; от 0 до 20 и т.д.) и измеряемую физическую величину (например, напряжение V в вольтах, силу тока mA в миллиамперах, сопротивление kΩ в килоомах).

Многопредельные приборы

Измерительный прибор, электрическую схему которого можно переключать для изменения интервалов измеряемой физической величины, называется многопредельным (рис.17). В случае амперметров изменение пределов измерений достигается включением различных дополнительных сопротивлений называемых шунтами (рис.18а), в случае вольтметров – включением добавочных сопротивлений (рис.18б) расположенных внутри многопредельного прибора.

Применение многопредельных приборов связано с тем, что часто требуется измерять электрические величины в очень широких пределах с достаточной степенью точности в каждом интервале (электромеханические приборы обеспечивают высокую точность, если снимаемые показания находятся в третьей четверти шкалы). В этом случае многопредельный прибор заменяет несколько однотипных приборов с различными пределами измерения.

Например, при снятии анодных характеристик ламповых и полупроводниковых диодов величина анодного тока, в зависимости от анодного напряжения, может изменяться в пределах от 0 до 5А. Если измерения производить прибором (рис.17), шкала которого рассчитана на 5А, то небольшие токи будут измерены таким прибором с большой погрешностью.

1. Шкала прибора;

2. Зеркало, позволяющее исключить погрешность параллакса;

3. Переключатель пределов измерений;

4. Клеммы, предназначенные для подключения прибора в электрическую цепь.

Наряду с электромеханическими, электронными и цифровыми приборами в лабораторных работах широко используются электронные осциллографы, генераторы сигналов звуковой частоты, блоки питания, реостаты, потенциометры, магазины сопротивлений, добавочные сопротивления и шунты.

Электронный осциллограф

Электронный осциллограф – прибор для графического изображения функциональной зависимости между двумя или более величинами, характеризующими какой–либо физический процесс.

Основной частью осциллографа является электронно-лучевая трубка (ЭЛТ). ЭЛТ состоит из стеклянного болона, из которого выкачан воздух до давления порядка 10 -8 мм.рт.ст. рис.19.

Источником электронов служит катод 2, подогреваемый спиралью 1. Фокусирующий цилиндр 3, регулирует количество вылетающих в единицу времени электронов, то есть яркость пятна на экране. Потенциал фокусирующего цилиндра отрицательный, его иначе называют управляющим электродом. Аноды 4 и 5 ускоряют и фокусируют электроны, концентрируют их в узкий пучок. Подогреватель 1, катод 2, фокусирующий цилиндр 3 и оба анода 4 и 5 образуют так называемую электронную пушку, а фокусирующий цилиндр 3 и система анодов 4 и 5 фокусирующую систему. Выходя из второго анода, электронный пучок проходит между двумя парами пластин 6 и 7 – это вертикально и горизонтально отклоняющие пластины. Между катодом и первым анодом приложено напряжение порядка 10 3 В, электроны ускоряются. Второй анод имеет потенциал выше первого и фокусирует электроны. Между катодом и вторым анодом напряжение составляет 2…5 кВ.

На передней панели электронного осциллографа С1–68 (рис.20) расположены управляющие лучом устройства, позволяющие регулировать фокус, яркость, синхронизировать исследуемый сигнал, перемещать луч вдоль оси Х и Y.

Дата добавления: 2018-08-06 ; просмотров: 6575 ; Мы поможем в написании вашей работы!

Источник

Как получить переменный электрический ток?

Практически все знают, что в бытовой сети повсеместно используется переменное напряжение, как результат, питание всех домашних устройств осуществляется переменным током. Однако, далеко не всем известны способы получение переменного тока, особенности формирования электрической величины и способы, которыми он генерируется на практике. Поэтому в рамках статьи мы рассмотрим как теоретический, так и практический аспект данного вопроса.

Теория

С одной стороны каждому известно, что первое знакомство человечества с электрической энергией произошло на примере постоянного тока. Только в 1831 году исследование явления магнитной индукции привели к генерации переменных токов. Первые эксперименты задействовали электрический проводник, помещаемый в магнитный поток.

Для примера вам следует рассмотреть обычный проводник, приведенный в состояние замкнутого контура, края проводника можно подключить к измерительному прибору для фиксации изменения электрических величин.

Далее вам необходимо:

  • взять хороший магнит, если под рукой имеется мощный неодимовый, то он подойдет лучше всего;
  • подключите проводник к гальванометру, всю электрическую цепь положите на стол или другую поверхность из изолирующего материала;
  • поднесите магнит к проводнику как можно ближе, желательно, чтобы расстояние было не больше 10 мм;
  • сделайте резкое движение в перпендикулярной плоскости по отношению к проводнику;
  • обратите внимание на прибор, стрелка гальванометра отклонится от равновесного положения в какую-либо сторону – в результате электромагнитных колебаний в проводнике наводится ЭДС индукции, которая и обуславливает возникновение переменного тока в замкнутом контуре.
Читайте также:  Сила тока напряжение мощность сопротивление для чайников

Повторите манипуляцию с магнитом несколько раз, и вы увидите, как гальванометр равномерно отклоняется в сторону, по мере приближения полюса к проводнику и так же равномерно возвращается в исходную позицию по мере удаления магнита. Отклонение стрелки свидетельствует об изменении величины тока и потенциала, индуцируемых в металле. Амплитуда колебаний тока не постоянна во времени, из-за чего данная величина и называется переменной.

Заметьте, если перемещать возле провода один магнитный полюс, то стрелка будет отклоняться в одном направлении, если повернуть противоположным магнитным полюсом, то и направление отклонения стрелки соответственно изменится.

Один контур представляет собой лишь пример для понимания сути получения переменного электрического тока, так как ЭДС в нем будет слишком малой и мощности не хватит даже для питания светодиода. В промышленных масштабах вместо вращения витка используют целые обмотки с множеством витков. На практике не имеет значения, происходит движение магнита относительно проводника или это замкнутый контур движется по отношению к полюсу магнита.

Поэтому для изменения ЭДС в обмотках генератора может применяться как принцип вращения ротора из магнитного материала внутри обмоток статора, так и наоборот, обмоток ротора внутри магнитного статора.

Сама величина электродвижущей силы определяется из соотношения физических параметров по такой формуле:

Формула электродвижущая сила

где n – это количество витков обмоток

а соотношение B/dt – это скорость изменения электромагнитной индукции во времени.

Способы получения

Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.

Рамка с магнитами

Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.

Рамкой и магнитами

Рис. 1. Рамкой и магнитами

Как видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.

При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.

Асинхронный и синхронный генератор

Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.

По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.

Устройство асинхронного генератора

Рис. 2. Устройство асинхронного генератора

Благодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.

Напряжение в трехфазной сети

Рис. 3. Напряжение в трехфазной сети

Однако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:

  • большие пусковые токи;
  • отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
  • меньшая степень контроля за системой.

Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.

схема синхронного генератора

Рис. 4. Схема синхронного генератора

Инвертор

За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.

Схема инвертора

Рис. 5. Схема инвертора

На рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.

Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.

Источник

Adblock
detector