Меню

Виток с током прямолинейный проводник

6.2. Магнитное поле прямолинейного проводника с током

Вычислим поле, создаваемое током, текущим по тонкому прямолинейному проводу бесконечной длины.

Индукция магнитного поля в произвольной точке А (рис. 6.12), создаваемого элементом проводника dl, будет равна

Рис. 6.12. Магнитное поле прямолинейного проводника

Поля от различных элементов имеют одинаковое направление (по касательной к окружности радиусом R, лежащей в плоскости, ортогональной проводнику). Значит, мы можем складывать (интегрировать) абсолютные величины

Выразим r и sin через переменную интегрирования l

Тогда (6.7) переписывается в виде

Картина силовых линий магнитного поля бесконечно длинного прямолинейного проводника с током представлена на рис. 6.13.

Рис. 6.13. Магнитные силовые линии поля прямолинейного проводника с током:
1 — вид сбоку; 2, 3 — сечение проводника плоскостью, перпендикулярной проводнику

Для обозначения направления тока в проводнике, перпендикулярном плоскости рисунка, будем использовать следующие обозначения (рис. 6.14):

Рис. 6.14. Обозначения направления тока в проводнике

Для обозначения направления тока в проводнике, перпендикулярном плоскости рисунка, будем использовать следующие обозначения (рис. 6.14):

Напомним выражение для напряженности электрического поля тонкой нити, заряженной с линейной плотностью заряда

Сходство выражений очевидно: мы имеем ту же зависимость от расстояния до нити (тока), линейная плотность заряда заменилась на силу тока. Но направления полей различны. Для нити электрическое поле направлено по радиусам. Силовые линии магнитного поля бесконечного прямолинейного проводника с током образуют систему концентрических окружностей, охватывающих проводник. Направления силовых линий образуют с направлением тока правовинтовую систему.

На рис. 6.15 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг прямолинейного проводника с током. Толстый медный проводник пропущен через отверстия в прозрачной пластинке, на которую насыпаны железные опилки. После включения постоянного тока силой 25 А и постукивания по пластинке опилки образуют цепочки, повторяющие форму силовых линий магнитного поля.

Вокруг прямого провода, перпендикулярного пластинке, наблюдаются кольцевые силовые линии, расположенные наиболее густо вблизи провода. При удалении от него поле убывает.

Рис. 6.15. Визуализация силовых линий магнитного поля вокруг прямолинейного проводника

На рис. 6.16 представлены опыты по исследованию распределения силовых линий магнитного поля вокруг проводов, пересекающих картонную пластинку. Железные опилки, насыпанные на пластинку, выстраиваются вдоль силовых линий магнитного поля.

Рис. 6.16. Распределение силовых линий магнитного поля
вблизи пересечения с пластинкой одного, двух и нескольких проводов

Источник



Прямолинейный проводник в магнитном поле

Поместим прямолинейный проводник с током в магнитном поле постоянного магнита, как на рис. 8.1 и 8.2.

Опыт на рис. 8.1 показывает, что сила F отталкивает вправо прямолинейный проводник с током ab.

На рис. 8.2 при перемене направления тока изменяется направление силы :проводник с током, который выталкивался из магнитного поля ),начинает втягиваться в него (б). Если направление тока па­раллельно линиям магнитного поля, то оно не действует на проводник с током (в).

Выполняя разнообразные опыты такого рода можно сделать общий вывод: направление силы , с которой магнитное поле дейст­вует на прямолинейный проводник с током I, всегда перпен­дикулярно к проводнику и к направлению магнитной индукции . На проводники, расположенные вдоль направления линий магнитного поля, поле не действует.

Направление силы определяется правилом левой руки (рис. 8.3).

Если расположить левую руку так, чтобы вытянутые четыре пальца указывали направление тока I, а линии магнитной индукции входили в ладонь, то отведенный в сторону большой палец укажет направление силы , действующей на проводник.

Читайте также:  Когда он ко мне прикосается нас бьет током

Силу, действующую на проводник с током, помещенный в магнитное поле, физики условились называть силой Ампера.

Читатель: А как направлена сила Ампера , если вектор и направление тока образуют некоторый угол a (рис. 8.4)?

Рис. 8.4 Рис. 8.5

Автор: В этом случае сила Ампера будет направлена точно так же, как и в случае, когда a = 90°, только величина этой силы будет меньше. Сила Ампера направлена перпендикулярно вектору и направлению тока, а значит (как мы знаем из геометрии) и плоскости, образованной проводом и вектором (рис. 8.5).

Рис. 8.6

Читатель: А можно ли с помощью правила левой руки объяснить, почему прямолинейные параллельные проводники с токами, текущими в одном направлении, притягиваются, а с токами, текущими в противоположных направлениях, отталкиваются?

Автор: Конечно! Рассмотрим два проводника с токами (рис. 8.6). С помощью правила буравчика или ППК установим направление линий магнитной индукции поля, созданного левым проводником. В обоих случаях вектор входит в плоскость чертежа. Располагаем левую руку так, чтобы вектор входил в ладонь, а четыре пальца указывали направление тока в правом проводнике.

Из рис. 8.7 видно, что в случае, когда направления токов совпадают (а), сила направлена влево, т.е. правый проводник притягивается к левому. В случае, когда направления токов противоположны (б), сила направлена право, т.е. правый проводник отталкивается от левого.

СТОП! Решите самостоятельно: А1–А5, В1–В4, С1–С4.

Источник

Источники магнитного поля

В школьной физике в качестве источников магнитного поля рассматриваются постоянные магниты и проводники с током. Если постоянные магниты мы уже рассмотрели, то с проводниками давайте разберёмся в данном разделе. Простейшие формы проводников для расчёта магнитных полей:

  • бесконечный прямолинейный проводник с током
  • круговой виток с током (проводник в форме окружности)

Для каждого из этих проводников можно рассчитать напряжённость магнитного поля в точке.

Итак, движущийся заряд создаёт вокруг себя магнитное поле. Самый простой тип движущегося заряда — это обычный электрический ток. Вопрос только в том, как согнуть проводник:

  • бесконечный прямолинейный проводник с током

Магнитное поле бесконечного проводника

Рис. 1. Магнитное поле бесконечного проводника

Итак, возьмём бесконечный прямолинейный проводник с током. Слово «бесконечный» в данном случае небольшое приближение. Так для любой точки, находящейся непосредственно вблизи любого линейного проводника, сам проводник «кажется» бесконечным. Пусть по нашему проводнику течёт ток \displaystyle I(рис. 1). Прямолинейный проводник с током создаёт вихревое (круговое) магнитное поле вокруг себя. Направление вектора магнитной индукции задаётся правилом буравчика (правилом правой руки). Исходя из этого правила, найдём направление вектора (рис. 2).

Магнитное поле бесконечного проводника (магнитная индукция)

Рис. 2. Магнитное поле бесконечного проводника (магнитная индукция)

Для подсчёта модуля вектора магнитной индукции поля вне прямолинейного бесконечного проводника с током можно использовать соотношение (рис. 3):

\displaystyle B=\mu <<\mu data-lazy-src=

  • \displaystyle <<\mu data-lazy-src=
  • \displaystyle \pi \approx 3,1416— константа,
  • \displaystyle R— расстояние от центра проводника до точки наблюдения.
  • Модуль вектора магнитной индукции бесконечного линейного проводника

    Рис. 3. Модуль вектора магнитной индукции бесконечного линейного проводника

    3D модели рисунков достаточно сложны для рассмотрения, поэтому введены условные обозначения для направлений векторов/токов в трёхмерном пространстве (рис. 4).

    Схематические отображения векторов

    Рис. 4. Схематические отображения векторов

    Тогда перерисуем рисунок 3, в случае, если мы смотрим сверху провода (рис. 5.1). В этом случае ток течёт на нас, т.е. из рисунка. И в случае, когда мы смотрим на провод снизу вверх (рис. 5.2). В этом случае ток течёт от нас, т.е. внутрь рисунка.

    Поле проводника (вид сверху)

    Рис. 5. Поле проводника (вид сверху)

    На рисунке 5 точечной линией обозначено магнитное поле прямолинейного тока (оно круговое). Направление вектора магнитной индукции (\displaystyle \vec<B data-lazy-src=

    Рис. 6. Круговой виток с током

    В целом, магнитное поле такого проводника достаточно сложное, однако для центра витка нахождение модуля вектора магнитной индукции не представляет проблем:

    \displaystyle B=\mu <<\mu data-lazy-src=

  • \displaystyle <<\mu data-lazy-src=