Меню

Ветвь с источником тока второй закон кирхгофа

Правила (законы) Кирхгофа простыми словами

На практике часто встречаются задачи по расчётам параметров токов и напряжений в различных разветвлённых цепях. В качестве инструмента для расчётов используют правила Кирхгофа (в некоторой литературе их называют еще законами, хотя это не совсем корректно) – одни из фундаментальных правил, которые совместно с законами Ома позволяет определять параметры независимых контуров в самых сложных цепях.

Учёный Густав Киргхоф сформулировал два правила [1], для понимания которых введено понятие узла, ветви, контура. В нашей ситуации ветвью будем называть участок, по которому протекает один и тот же ток. Точки соединения ветвей образуют узлы. Ветви вместе с узлами образуют контуры – замкнутые пути, по которым течёт ток.

Первое правило Кирхгофа

Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.

На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.

Схема контура

Рис. 1. Схема контура

Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.

На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.

Абстрактный узел

Рис. 2. Абстрактный узел

Запишем наши выводы в алгебраической форме, для общего случая:

Формула сумма токов

Для использования этой формулы, требуется учитывать знаки. Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору.

Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.

Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».

Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.

Второе правило Киргхофа

Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.

При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.

Иллюстрация второго правила Кирхгофа

Рис. 4. Иллюстрация второго правила Кирхгофа

Формулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.

Формулировки уравнений общего характера:

Формулы для второго правила киргхофа

, где где Lk и Ck – это индуктивности и ёмкости, соответственно.

Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.

Закон Кирхгофа для магнитной цепи

Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.

Магнитные контуры цепей

Рис. 4. Магнитные контуры цепей

То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.

Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений». Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода. ( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).

Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.

При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».

Примеры расчета цепей

Рассмотрим ещё раз рисунок 3. На нём изображено 4 разнонаправленных вектора: i1, i2, i3, i4. Из них – два входящие ( i2, i3) и два исходящие из узла (i1, i4). Положительными будем считать те векторы, которые направлены в точку соединения ветвей, а остальные – отрицательными.

Тогда, по формуле Кирхгофа, составим уравнение и запишем его в следующем виде: – i1 + i2 + i3 – i4 = 0.

На практике такие узлы являются частью контуров, обходя которые можно составить ещё несколько линейных уравнений с этими же неизвестными. Количество уравнений всегда достаточно для решения задачи.

Рассмотрим алгоритм решения на примере рис. 5.

Пример для расчёта

Рис. 5. Пример для расчёта

Схема содержит 3 ветви и два узла, которые образуют три пары по два независимых контура:

  1. 1 и 2.
  2. 1 и 3.
  3. 2 и 3.

Запишем независимое уравнение, выполняющееся, например, в точке а. Из первого правила Кирхгофа вытекает: I1 + I2 – I3 = 0.

Воспользуемся вторым правилом Кирхгофа. Для составления уравнений можно выбрать любой из контуров, но нам необходимы контуры с узлом а, так как для него мы уже составили уравнение. Это будут контуры 1 и 2.

Пишем уравнения:

Решаем систему уравнений:

Система уравнений

Так как значения R и E известны (см. рисунок 5), мы придём к системе уравнений:

Система уравнений

Решая эту систему, получим:

  1. I1 = 1,36 (значения в миллиамперах).
  2. I2 = 2,19 мА.;
  3. I3 = 3,55 мА.

Потенциал узла а равен: Ua = I3*R3 = 3,55 × 3 = 10,65 В. Чтобы убедиться в верности наших расчётов, проверим выполнение второго правила по отношению к контуру 3:

E1 – E2 + I1R1+ I2R2 = 12 – 15 + 1,36 – 4,38 = – 0,02 ≈ 0 (с учётом погрешностей, связанных с округлениями чисел при вычислениях).

Если проверка выполнения второго правила успешно завершена, то расчёты сделаны правильно, а полученные данные являются достоверными.

Применяя правила (законы) Кирхгофа можно вычислять параметры электрической энергии для магнитных цепей.

Источник



Основы электротехники и электроники: Курс лекций , страница 3

При свертке параллельных ветвей эквивалентное сопротивление всегда меньше наименьшего из сворачиваемых.

Если параллельно соединены n одинаковых сопротивлений (Рис. 3.3), эквивалентное сопротивление в n раз меньше сопротивления любой из ветвей.

Если на участке цепи параллельно соединены лишь два элемента (Рис. 3.4), выражение (3.2) упрощается. В этом случае эквивалентное сопротивление можно определить как отношение произведения двух сопротивлений к их сумме:

4. ОСНОВНЫЕ ЗАКОНЫ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

К основным законам электрических цепей относятся закон Ома и законы Кирхгофа.

Читайте также:  Электрический ток в домашних условиях с помощью овощей

Закон Ома

Если в ветви не содержится ЭДС, к ней применим уже известный закон Ома для пассивного участка цепи (1.1). Его можно сформулировать и следующим образом. Ток в ветви, не содержащей ЭДС, равен падению напряжения в ветви, деленному на сопротивление ветви (Рис. 4.1):

Закон Ома для ветви, содержащей ЭДС, позволяет найти ток этой ветви по известной разности потенциалов на концах ветви. Ток в ветви, содержащей ЭДС, равен дроби, знаменатель которой – это сопротивление ветви. В числителе дроби – напряжение на концах ветви плюс алгебраическая сумма ЭДС, заключенных между концами ветви. С плюсом берутся напряжения и ЭДС, направление которых совпадает с направлением тока, с минусом – противоположные.

В частности, ток в ветви, изображенной на Рис. 4.2, равен:

Первый закон Кирхгофа

В любом узле цепи алгебраическая сумма токов равна нулю. При этом, токи, направленные к узлу, принято считать положительными, токи, направленные от узла, принято считать отрицательными (Рис. 4.3).

По первому закону Кирхгофа можно написать столько уравнений, сколько узлов содержит схема. Но не все они будут независимыми. Если схема содержит узлов, независимыми будут уравнений. Оставшееся уравнение будет являться следствием всех предыдущих.

Второй закон Кирхгофа

В любом замкнутом контуре цепи алгебраическая сумма напряжений равна алгебраической сумме ЭДС, включенных в контур.

При этом, положительными считаются те напряжения и ЭДС, которые совпадают с направлением обхода контура, отрицательными считаются напряжения и ЭДС, которые противоположны направлению обхода контура. Направление обхода контура можно выбирать произвольно.

Алгоритм составления уравнения по второму закону Кирхгофа для замкнутого контура цепи

Для заданного контура (Рис. 4.4 а) уравнение по второму закону Кирхгофа составляется в следующем порядке:

  1. Задается направление токов в ветвях (Рис. 4.4 б).
  1. Выбирается направление обхода контура (Рис. 4.4 в).

  1. Записывается уравнение, в левой части которого – сумма падений напряжений на сопротивлениях ветвей. В правой части – сумма ЭДС контура.

Примечание: Падение напряжения на сопротивлении ветви записывается в соответствии с известным уже законом Ома (1.1):

Применение второго закона Кирхгофа для незамкнутого участка цепи

Второй закон Кирхгофа справедлив только для замкнутого контура. При этом, любой незамкнутый участок цепи можно дополнить до замкнутого контура с помощью напряжения в разрыве незамкнутого участка.

Незамкнутый участок цепи abcd изображен на Рис. 4.5 а.

Дополняем участок до замкнутого контура, добавляя напряжение между незамкнутыми точками c и d (Рис. 4.5 б). Теперь для контура abcd можно записать второй закон Корхгофа:

Применение законов Кирхгофа при наличии в цепи источника тока

Источник тока имеет бесконечно большое сопротивление, поэтому не образует замкнутого контура и не может входить в уравнения второго закона Кирхгофа. Однако, в уравнениях первого закона Кирхгофа источник тока должен содержаться обязательно.

При необходимости записать уравнение по второму закону Кирхгофа для контура, содержащего источник тока, его заменяют напряжением на выводах источника тока.

Написать уравнение по первому закону Кирхгофа для узла a и уравнение по второму закону Кирхгофа для контура abcd (Рис. 4.6 а).

Уравнение по первому закону Кирхгофа для узла a содержит источник тока и имеет вид:

Для того чтобы написать уравнение по второму закону Кирхгофа для контура abcd, заменяем источник тока напряжением на его выводах (Рис. 4.6 б), задаем направление обхода контура против часовой стрелки и получаем:

Для упрощения расчетов источник тока с параллельным сопротивлением можно заменить на эквивалентный источник ЭДС (Рис. 4.7). После расчета необходимо обязательно вернуться к исходной схеме.

Независимый контур цепи

В принципе, по второму закону Кирхгофа можно составить столько уравнений, сколько контуров содержит цепь. Но не все эти уравнения будут независимыми. Для определения независимости уравнений по второму закону Кирхгофа вводится такое понятие как независимый контур цепи.

Независимый контур цепи – это такой контур, который содержит хотя бы одну новую ветвь, не вошедшую в другие контуры цепи.

Независимые контуры в общем случае выбираются произвольно, но проще всего выбирать их так, чтобы они совпадали с ячейками цепи (Рис. 4.8 б).

Если схема содержит ветвей и узлов, число независимых контуров равно

Схема на Рис. 4.8 б содержит три независимых контура.

5. СИСТЕМА УРАВНЕНИЙ ПО ЗАКОНАМ КИРХГОФА ДЛЯ РАСЧЕТА ТОКОВ ЦЕПИ

Законы Кирхгофа можно использовать для расчета токов в ветвях цепи. Главное требование при этом – получение системы независимых уравнений, в которой число неизвестных равно количеству токов, подлежащих определению.

Алгоритм составления системы уравнений по законам Кирхгофа

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309
Читайте также:  Ток потребления сверхяркого светодиода

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Законы Кирхгофа для расчёта электрических цепей

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие полностью определить режим её работы.

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

Прежде чем перейти к самим законам Кирхгофа, дадим определение ветвей и узлов электрической цепи.

Ветвью электрической цепи называется такой её участок, который состоит только из последовательно включённых источников ЭДС и сопротивлений, вдоль которого протекает один и тот же ток. Узлом электрической цепи называется место (точка) соединения трёх и более ветвей. При обходе по соединённым в узлах ветвям можно получить замкнутый контур электрической цепи. Каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел в рассматриваемом контуре встречается не более одного раза [1].

Первый закон Кирхгофа

Первый закон Кирхгофа применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю:

или в комплексной форме

Второй закон Кирхгофа

Второй закон Кирхгофа применяется к контурам электрической цепи и формулируется следующим образом: в любом замкнутом контуре алгебраическая сумма напряжений на сопротивлениях, входящих в этот контур, равна алгебраической сумме ЭДС:

Количество уравнений, составляемых для электрической цепи по первому закону Кирхгофа, равно $ N_\textrm<у>-1 $, где $ N_\textrm <у>$ – число узлов. Количество уравнений, составляемой для электрической цепи по второму закону Кирхгофа, равно $ N_\textrm<в>-N_\textrm<у>+1 $, где $ N_\textrm <в>$ – число ветвей. Количество составляемых уравнений по второму закону Кирхгофа легко определить по виду схемы: для этого достаточно посчитать число «окошек» схемы, но с одним уточнением: следует помнить, что контур с источником тока не рассматривается.

Опишем методику составления уравнений по законам Кирхгофа. Рассмотрим её на примере электрической цепи, представленной на рис. 1.

Электрическая схема первый и второй закон Кирхгофа теоретические основы электротехники ТОЭ

Рис. 1. Рассматриваемая электрическая цепь

Для начала необходимо задать произвольно направления токов в ветвях и задать направления обхода контуров (рис. 2).

Электрическая схема первый и второй закон Кирхгофа теоретические основы электротехники ТОЭ направление токов и обход контуров

Рис. 2. Задание направления токов и направления обхода контуров для электрической цепи

Количество уравнений, составляемых по первому закону Кирхгофа, в данном случае равно 5 – 1 = 4. Количество уравнений, составляемых по второму закону Кирхгофа, равно 3, хотя «окошек» в данном случае 4. Но напомним, что «окошко», содержащее источник тока $ \underline_ <1>$, не рассматривается.

Составим уравнения по первому закону Кирхгофа. Для этого «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» — со знаком «-». Отсюда для узла «1 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

$$ \underline_<1>— \underline_<2>— \underline_ <3>= 0; $$

для узла «2 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

$$ -\underline_<1>— \underline_ <4>+ \underline_ <6>= 0; $$

$$ \underline_<2>+ \underline_ <4>+ \underline_<5>— \underline_ <7>= 0; $$

$$ \underline_<3>— \underline_<5>— \underline_ <1>= 0. $$

Уравнение для узла «5 у.» можно не составлять.

Составим уравнения по второму закону Кирхгофа. В этих уравнениях положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура. Для контура «1 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

$$ \underline_ \cdot \underline_ <1>+ R_ <2>\cdot \underline_<2>— \underline_ \cdot \underline_ <4>= \underline_<1>; $$

для контура «2 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

$$ -R_ <2>\cdot \underline_ <2>+ R_ <4>\cdot \underline_ <3>+ \underline_ \cdot \underline_ <5>= \underline_<2>; $$

для контура «3 к.»:

$$ \underline_ \cdot \underline_ <4>+ (\underline_ + R_<1>) \cdot \underline_ <6>+ R_ <3>\cdot \underline_ <7>= \underline_<3>; $$

где $ \underline_ = -\frac<1> <\omega C>$, $ \underline_ = \omega L $.

Таким образом, для того, чтобы найти искомые токи, необходимо решить следующую систему уравнений:

$$ \begin \underline_<1>— \underline_<2>— \underline_ <3>= 0 \\ -\underline_<1>— \underline_ <4>+ \underline_ <6>= 0 \\ \underline_<2>+ \underline_ <4>+ \underline_<5>— \underline_ <7>= 0 \\ \underline_<3>— \underline_<5>— \underline_ <1>= 0 \\ \underline_ \cdot \underline_ <1>+ R_ <2>\cdot \underline_<2>— \underline_ \cdot \underline_ <4>= \underline_ <1>\\ -R_ <2>\cdot \underline_ <2>+ R_ <4>\cdot \underline_ <3>+ \underline_ \cdot \underline_ <5>= \underline_ <2>\\ \underline_ \cdot \underline_ <4>+ (\underline_ + R_<1>) \cdot \underline_ <6>+ R_ <3>\cdot \underline_ <7>= \underline_ <3>\end $$

В данном случае это система из 7 уравнений с 7 неизвестными. Для решения данной системы уравнений удобно пользоваться Matlab. Для этого представим эту систему уравнений в матричной форме:

$$ \begin 1 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ \underline_ & R_ <2>& 0 & -\underline_ & 0 & 0 & 0 \\ 0 & -R_ <2>& R_ <4>& 0 & \underline_ & 0 & 0 \\ 0 & 0 & 0 & \underline_ & 0 & R_<1>+\underline_ & R_ <3>\\ \end \cdot \begin \underline_ <1>\\ \underline_ <2>\\ \underline_ <3>\\ \underline_ <4>\\ \underline_ <5>\\ \underline_ <6>\\ \underline_ <7>\\ \end = \begin 0 \\ 0 \\ 0 \\ \underline_ <1>\\ \underline_ <1>\\ \underline_ <2>\\ \underline_ <3>\\ \end $$

Для решения данной системы уравнений воспользуемся следующим скриптом Matlab:

В результате получим вектор-столбец $ \underline<\bold> $ токов из семи элементов, состоящий из искомых токов, записанный в общем виде. Видим, что программный комплекс Matlab позволяет существенно упростить решение сложных систем уравнений, составленных по законам Кирхгофа.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.
Читайте также:  Определите направление силы тока в проводнике рисунок

Рекомендуемые записи

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов…

Расчёт матриц передачи многополюсников различной формы осуществляется достаточно просто. Матрицы передачи — это математическое описание рассматриваемой…

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Источник

Закон Кирхгофа

Закон Кирхгофа (правила Кирхгофа), сформулированные Густавом Кирхгофом в 1845 году, являются следствиями из фундаментальных законов сохранения заряда и безвихревости электростатического поля.

Закон Кирхгофа – это соотношения, выполняемые между токами и напряжениями на участках любых электрических цепей. Они позволяют рассчитывать любые электрические цепи: постоянного, переменного или квазистационарного тока.

При формулировании правил Кирхгофа используют такие понятия, как ветвь, контур и узел электрической цепи.

  • Ветвь – участок электрической цепи с одни и тем же током.
  • Узел – точка соединения трех или более ветвей.
  • Контур – замкнутый путь, проходящий через несколько узлов и ветвей разветвлённой электрической цепи.

При обходе надо учесть, что ветвь и узел могут одновременно принадлежать нескольким контурам. Правила Кирхгофа справедливы как для линейных, так и для нелинейных цепей при любом характере изменения во времени токов и напряжений. Правила Кирхгофа широко применяются при решении задач электротехники за счет легкости в расчетах.

1 закон Кирхгофа

В цепях, состоящих из последовательно соединенных источника и приемника энергии, соотношения между током, сопротивлением и ЭДС всей цепи или на каком-либо участке цепи определяются законом Ома. Но на практике в цепях токи от какой-либо точки идут по разным путям (Рис. 1). Поэтому становиться актуальным введение новых правил для проведения расчетов электрических цепей.

Схема параллельного соединения проводников

Рис. 1. Схема параллельного соединения проводников.

Так, при параллельном соединении проводников начала всех проводников соединены в одну точку, а концы проводников – в другую точку. Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.

Из рисунка видно, что при параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления А, растекается далее по трем сопротивлениям и равен сумме токов, выходящих из этой точки: I = I1 + I2 + I3.

Согласно первому правилу Кирхгофа алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла – отрицательным.

Запишем первый закон Кирхгофа в комплексной форме:

Первый закон Кирхгофа в комплексной форме

Первый закон Кирхгофа гласит, что алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла. То есть, сколько тока втекает в узел, столько же вытекает (как следствие закона сохранения электрического заряда). Алгебраическая сумма — это сумма, в которую входят слагаемые со знаком плюс и со знаком минус.

Рис. 2. i_1+i_4=i_2+i_3.

Рассмотрим применение 1 закона Кирхгофа на следующем примере:

Рассмотрим применение 1 закона Кирхгофа

  • I1 – это полный ток, текущий к узлу А, а I2 и I3 — токи, вытекающие из узла А.
  • Тогда мы можем записать: I1 = I2 + I3.
  • Аналогично для узла B: I3 = I4 + I5.
  • Пусть, что I4 = 5 А и I5 = 1 А, получим: I3 = 5 + 1 = 6 (А).
  • Пусть I2 = 10 А, получим: I1 = I2 + I3 = 10 + 6 = 16 (А).
  • Запишем подобное соотношение для узла C: I6 = I4 + I5 = 5 + 1 = 6 А.
  • А для узла D: I1 = I2 + I6 = 10 + 6 = 16 А
  • Таким образом мы наглядно видим справедливость первого закона Кирхгофа.

2 закон Кирхгофа

При расчете электрических цепей в большинстве случаев нам встречаются цепи, образующие замкнутые контуры. В состав таких контуров, кроме сопротивлений, могут входить ЭДС (источники напряжений). На рисунке 4 представлен участок такой электрической цепи. Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении (выберем по часовой стрелке). Рассмотрим участок АБ: происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).

участок электрической цепи

  • На участке АБ: φА + E1 – I1r1 = φБ.
  • БВ: φБ – E2 – I2r2 = φВ.
  • ВГ: φВ – I3r3 + E3 = φГ.
  • ГА: φГ – I4r4 = φА.
  • Складывая данные уравнения, получим: φА + E1 – I1r1 + φБ – E2 – I2r2 + φВ – I3r3 + E3 + φГ – I4r4 = φБ + φВ + φГ + φА
  • или: E1 – I1r1 – E2 – I2r2 – I3r3 + E3 – I4r4 = 0.
  • Откуда имеем следующее: E1 – E2 + E3 = I1r1 + I2 r2 + I3r3 + I4r4.

Таким образом, получаем формулу второго закона Кирхгофа в комплексной форме:

Уравнение для постоянных напряжений — Формула второго закона Кирхгофа в комплексной форме уравнение для постоянных напряженийУравнение для переменных напряжени — Формула второго закона Кирхгофа в комплексной форме уравнение для переменных напряжений

Теперь можем сформулировать определение 2 (второго) закона Кирхгофа:

Второй закон Кирхгофа гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура, равна алгебраической сумме ЭДС, входящих в этот контур. В случае отсутствия источников ЭДС, суммарное напряжение равно нулю.

2 закон Кирхгофа для электрической цепи e_1-e_2+e_3=I_1 R_1-I_2 R_2+I_3 R_3-I_4 R_4.

Иначе формулируя второе правило Кирхгофа, можно сказать: при полном обходе контура потенциал, изменяясь, возвращается к начальному значению.

При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура, при этом падение напряжения на ветви считается положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, в противном случае – отрицательным.

Определить знак можно по алгоритму:

  • 1. выбираем направление обхода контура (по или против часовой стрелки);
  • 2. произвольно выбираем направления токов через элементы цепи;
  • 3. расставляем знаки для напряжений и ЭДС по правилам (ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура со знаком «+», иначе – «-»; напряжения, падающие на элементах цепи, если ток, протекающий через эти элементы совпадает по направлению с обходом контура, со знаком «+», в противном случае – «-»).

Закон Ома является частным случаем второго правила для цепи.

Приведем пример применения второго правила Кирхгофа:

пример применения второго правила Кирхгофа

По данной электрической цепи (Рис 6) необходимо найти ее ток. Произвольно берем положительное направление тока. Выберем направление обхода по часовой стрелке, запишем уравнение 2 закона Кирхгофа:

Знак минус означает, что выбранное нами направление тока противоположно его действительному направлению.

Решение задач

1. По приведенной схеме записать законы Кирхгофа для цепи.

2. На рисунке приведена цепь с двумя источниками ЭДС величиной 12 В и 5 В, с внутренним сопротивлением источников 0,1 Ом, работающих на общую нагрузку 2 ома. Как будут распределены токи в этой цепи, какие они имеют значения?.

Источник