Меню

Вещество не проводящее электрич ток диэлектрик

Что такое диэлектрики и где они используются

Диэлектрики — это вещества, которые не проводят электрический ток, до определенной поры. При определенных условиях проводимость в них зарождается. Этими условиями выступают механические, тепловые — в общем, энергетические виды воздействий. Кроме диэлектриков, вещества также классифицируются на проводники и полупроводники.

Чем отличаются диэлектрики от проводников и полупроводников

Теоретическую разницу между этими тремя видами материалов можно представить, и я это сделаю, на рисунке ниже:

энергетические диаграммы диэлектрика, проводника и полупроводника

Рисунок красивый, знакомый со школьной скамьи, но что-то практическое из него не особо вытянешь. Однако, в этом графическом шедевре четко определена разница между проводником, полупроводником и диэлектриком.

И отличие это в величине энергетического барьера между валентной зоной и зоной проводимости.

В проводниках электроны находятся в валентной зоне, но не все, так как валентная зона — это самая внешняя граница. Точно, это как с мигрантами. Зона проводимости пуста, но рада гостям, так как у неё полно для них свободных рабочих мест в виде свободных энергетических зон. При воздействии внешнего электрического поля, крайние электроны приобретают энергию и перемещаются в свободные уровни зоны проводимости. Это движение мы еще называем электрическим током.

В диэлектриках и проводниках всё аналогично, за исключением того, что имеется “забор” — запрещенная зона. Эта зона расположена между валентной и зоной проводимости. Чем больше эта зона, тем больше энергии требуется для преодоления электронами этого расстояния. У диэлектриков величина зоны больше, чем у полупроводников. Этому есть даже условие: если дЭ>3Эв (электронвольт) — то это диэлектрик, в обратном случае дЭ

Главными электрическими свойствами диэлектриков являются поляризация (смещение зарядов) и электропроводность (способность проводить электрический ток) Смещение связанных зарядов диэлектрика или их ориентация в электрическом поле называется поляризацией. Это свойство диэлектрических материалов характеризуется относительной диэлектрической проницаемостью ε. При поляризации на поверхности диэлектрика образуются связанные электрические заряды.

В зависимости от типа диэлектрика поляризация может быть: электронной, ионной, дипольно-релаксационной, спонтанной. Более подробно про их свойства на инфографике ниже.

инфографика поляризации диэлектриков

Под электропроводностью понимают способность диэлектрика проводить электрический ток. Ток, протекающий в диэлектрике называется током утечки. Ток утечки состоит из двух составляющих — тока абсорбционного и тока сквозного. Сквозные токи обусловлены наличием свободных зарядов в диэлектрике, абсорбционный ток — поляризационными процессами до момента установления равновесия в системе.

Величина электропроводности зависит от температуры, влажности и количества свободных носителей заряда.

При увеличении температуры электропроводность диэлектриков увеличивается, а сопротивление падает.

Зависимость от влажности вновь возвращает нас к классификации диэлектриков. Ведь, неполярные диэлектрики не смачиваются водой и на изменение влажности им нет дела. А у полярных диэлектриков при увеличении влажности повышается содержание ионов, и электропроводность увеличивается.

Проводимость диэлектрика состоит из поверхностной и объемной проводимостей. Известно понятие удельной объемной проводимости, обозначается буквой сигма σ. А обратная величина называется удельное объемной сопротивление и обозначается буквой ро ρ.

Резкое увеличение проводимости в диэлектрике при возрастании напряжения может привести к электрическому пробою. И аналогично, если сопротивление изоляции падает, значит изоляция не справляется со своей задачей и необходимо применять меры. Сопротивление изоляции состоит из поверхностного и объемного сопротивлений.

Под диэлектрическими потерями в диэлектриках понимают потери тока внутри диэлектрика, которые рассеиваются в виде тепла. Для определения этой величины вводят параметр тангенс дельта tgδ. δ — угол, дополняющий до 90 градусов, угол между током и напряжением в цепи с емкостью.

Диэлектрические потери бывают: резонансные, ионизационные, на электропроводность, релаксационные. Теперь подробнее поговорим про каждый тип.

виды диэлектрических потерь

Электрическая прочность это отношение пробивного напряжения к расстоянию между электродами (или толщина диэлектрика). Эта величина определяется минимальной величиной напряженности электрического поля, при которой произойдет пробой.

Пробой может быть электрическим (ударная ионизация, фотоионизация), тепловым (большие диэлектрические потери, следовательно много тепла, и обугливание с оплавлением может произойти) и электрохимическим (в результате образования подвижных ионов).

И в конце таблица диэлектриков, как же без нее.

электрические характеристики диэлектриков таблица

В таблице выше приведены данные по электрической прочности, удельному объемному сопротивлению и относительной диэлектрической проницаемостью для различных веществ. Также тангенс угла диэлектрических потерь не обошли стороной.

Сохраните в закладки или поделитесь с друзьями

Источник



Диэлектрики

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое «Диэлектрики» в других словарях:

ДИЭЛЕКТРИКИ — ДИЭЛЕКТРИКИ, вещества, плохо проводящие электрический ток (удельное сопротивление порядка 1010 Ом?м). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектрика. В некоторых твердых… … Современная энциклопедия

Диэлектрики — ДИЭЛЕКТРИКИ, вещества, плохо проводящие электрический ток (удельное сопротивление порядка 1010 Ом´м). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектрика. В некоторых твердых… … Иллюстрированный энциклопедический словарь

ДИЭЛЕКТРИКИ — вещества, плохо проводящие электрический ток (удельное электросопротивление 108 1012 Ом?см). Существуют твердые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектриков. В некоторых твердых диэлектриках… … Большой Энциклопедический словарь

Читайте также:  Можно ли повысить постоянный ток

ДИЭЛЕКТРИКИ — (англ. dielectric, от греч. dia через, сквозь и англ. electric электрический), вещества, плохо проводящие электрич. ток. Термин «Д.» введён Фарадеем для обозначения в в, в к рые проникает электрич. поле. Д. явл. все газы (неионизованные), нек рые … Физическая энциклопедия

ДИЭЛЕКТРИКИ — ДИЭЛЕКТРИКИ, непроводники, или изоляторы тела, плохо проводящие или совершенно не проводящие электричества. Такими телами являются напр. стекло, слюда, сера, парафин, эбонит, фарфор и т. п. В течение долгого времени при изучении электричества… … Большая медицинская энциклопедия

ДИЭЛЕКТРИКИ — (изоляторы) вещества, не проводящие электрического тока. Примеры диэлектриков: слюда, янтарь, каучук, сера, стекло, фарфор, различные сорта масел и др. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза … Морской словарь

Диэлектрики — название, данное Михаилом Фарадеем телам непроводящимили, иначе, дурно проводящим электричество, как, напр., воздух, стекло,различные смолы, сера и т. д. Подобные тела называются такжеизоляторами. До исследований Фарадея, произведенных в 30 х… … Энциклопедия Брокгауза и Ефрона

ДИЭЛЕКТРИКИ — вещества, практически не проводящие электрический ток; бывают твёрдыми, жидкими и газообразными. Во внешнем электрическом поле Д. поляризуются. Их используют для изоляции электротехнических устройств, в электрических конденсаторах, в квантовой… … Большая политехническая энциклопедия

диэлектрики — вещества, плохо проводящие электрический ток (электропроводность диэлектрики10 8 10 17 Ом 1·см 1). Существуют твёрдые, жидкие и газообразные диэлектрики. Внешнее электрическое поле вызывает поляризацию диэлектриков. В некоторых твердых… … Энциклопедический словарь

Диэлектрики — Диэлектрик (изолятор) вещество, плохо проводящее или совсем не проводящее электрический ток. Концетрация свободных носителей заряда в диэлектрике не превышает 108 см 3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем … Википедия

Источник

В чём отличие проводников от диэлектриков, их свойства и сфера применения

Проводники и диэлектрики — физические вещества, имеющие различную степень электропроводимости и по-разному реагирующие на воздействие электрического поля. Противоположные свойства материалов широко используются во всех сферах электротехники.

Таблица с примерами проводников и диэлектриков

Что такое проводники и диэлектрики

Проводники — вещества, со свободными электрическими зарядами, способными направленно перемещаться под воздействием внешнего электрического поля. Такими особенностями обладают:

  • металлы и их расплавы;
  • природный углерод (каменный уголь, графит);
  • электролиты — растворы солей, кислот и щелочей;
  • ионизированный газ (плазма).

Главное свойство материалов : свободные заряды — электроны у твёрдых проводников и ионы у растворов и расплавов, перемещаясь по всему объёму проводника проводят электрический ток. Под воздействием приложенного к проводнику электрического напряжения создаётся ток проводимости. Удельное сопротивление и электропроводимость — основные показатели материала.

Свойства диэлектрических материалов противоположны проводникам электричества. Диэлектрики (изоляторы) — состоят из нейтральных атомов и молекул. Они не имеют способности к перемещению заряженных частиц под воздействием электрического поля. Диэлектрики в электрическом поле накапливают на поверхности нескомпенсированные заряды. Они образуют электрическое поле, направленное внутрь изолятора, происходит поляризация диэлектрика.

В результате поляризации, заряды на поверхности диэлектрика стремятся уменьшить электрическое поле. Это свойство электроизоляционных материалов называется диэлектрической проницаемостью диэлектрика.

Характеристики и физические свойства материалов

Параметры проводников определяют область их применения. Основные физические характеристики:

  • удельное электрическое сопротивление — характеризует способность вещества препятствовать прохождению электрического тока;
  • температурный коэффициент сопротивления — величина, характеризующая изменение показателя в зависимости от температуры;
  • теплопроводность — количество тепла, проходящее в единицу времени через слой материала;
  • контактная разность потенциалов — происходит при соприкосновении двух разнородных металлов, применяется в термопарах для измерения температуры;
  • временное сопротивление разрыву и относительное удлинение при растяжении — зависит от вида металла.

При охлаждении до критических температур удельное сопротивление проводника стремится к нулю. Это явление называется сверхпроводимостью.

Свойства, характеризующие проводник:

  • электрические — сопротивление и электропроводимость;
  • химические — взаимодействие с окружающей средой, антикоррозийность, способность соединения при помощи сварки или пайки;
  • физические — плотность, температура плавления.

Особенность диэлектриков — противостоять воздействию электротока. Физические свойства электроизоляционных материалов:

  • диэлектрическая проницаемость — способность изоляторов поляризоваться в электрическом поле;
  • удельное объёмное сопротивление;
  • электрическая прочность;
  • тангенс угла диэлектрических потерь.

Изоляционные материалы характеризуются по следующим параметрам:

  • электрические — величина пробивного напряжения, электрическая прочность;
  • физические — термостойкость;
  • химические — растворимость в агрессивных средствах, влагостойкость.

Виды и классификация диэлектрических материалов

Изоляторы подразделяются на группы по нескольким критериям.

Классификация по агрегатному состоянию вещества:

  • твёрдые — стекло, керамика, асбест;
  • жидкие — растительные и синтетические масла, парафин, сжиженный газ, синтетические диэлектрики (кремний- и фторорганические соединения хладон, фреон);
  • газообразные — воздух, азот, водород.

Диэлектрики могут иметь природное или искусственное происхождение, иметь органическую или синтетическую природу.

Читайте также:  Разъединитель трехполюсный напряжением до 20 кв ток до 8000 а

К органическим природным изоляционным материалам относят растительные масла, целлюлоза, каучук. Они отличаются низкой термо и влагостойкостью, быстрым старением. Синтетические органические материалы — различные виды пластика.

К неорганическим диэлектрикам естественного происхождения относятся: слюда, асбест, мусковит, флогопит. Вещества устойчивы к химическому воздействию, выдерживают высокие температуры. Искусственные неорганические диэлектрические материалы — стекло, фарфор, керамика.

Почему диэлектрики не проводят электрический ток

Низкая проводимость обусловлена строением молекул диэлектрика. Частицы вещества тесно связаны друг с другом, не могут покинуть пределы атома и перемещаться по всему объёму материала. Под воздействием электрического поля частицы атома способны слегка расшатываться — поляризоваться.

В зависимости от механизма поляризации, диэлектрические материалы подразделяются на:

  • неполярные — вещества в различном агрегатном состоянии с электронной поляризацией (инертные газы, водород, полистирол, бензол);
  • полярные — обладают дипольно-релаксационной и электронной поляризацией (различные смолы, целлюлоза, вода);
  • ионные — твёрдые диэлектрики неорганического происхождения (стекло, керамика).

Диэлектрические свойства вещества непостоянны. Под воздействием высокой температуры или повышенной влажности электроны отрываются от ядра и приобретают свойства свободных электрических зарядов. Изоляционные качества диэлектрика в этом случае понижаются.

Надёжный диэлектрик — материал с малым током утечки, не превышающим критическую величину и не нарушающим работу системы.

Где применяются диэлектрики и проводники

Материалы применяются во всех сферах деятельности человека, где используется электрический ток: в промышленности, сельском хозяйстве, приборостроении, электрических сетях и бытовых электроприборах.

Выбор проводника обусловлен его техническими характеристиками. Наименьшим удельным сопротивлением обладают изделия из серебра, золота, платины. Использование их ограничено космическими и военными целями из-за высокой себестоимости. Медь и алюминий проводят ток несколько хуже, но сравнительная дешевизна привела к их повсеместному применению в качестве проводов и кабельной продукции.

Чистые металлы без примесей лучше проводят ток, но в ряде случаев требуется использовать проводники с высоким удельным сопротивлением — для производства реостатов, электрических печей, электронагревательных приборов. Для этих целей используются сплавы никеля, меди, марганца (манганин, константан). Электропроводность вольфрама и молибдена в 3 раза ниже, чем у меди, но их свойства широко используются в производстве электроламп и радиоприборов.

Твёрдые диэлектрики — материалы, обеспечивающие безопасность и бесперебойную работу токопроводящих элементов. Они используются в качестве электроизоляционного материала, не допуская утечки тока, изолируют проводники между собой, от корпуса прибора, от земли. Примером такого изделия являются диэлектрические перчатки, про которые написано в нашей статье.

Жидкие диэлектрики используют в конденсаторах, силовых кабелях , циркулирующих системах охлаждения турбогенераторов и высоковольтных масляных выключателей. Материалы применяют в качестве заливки и пропитки.

Газообразные изоляционные материалы. Воздух — естественный изолятор, одновременно обеспечивающий отвод тепла. Азот применяется в местах, где недопустимы окислительные процессы. Водород применяется в мощных генераторах с высокой теплоёмкостью.

Слаженная работа проводников и диэлектриков обеспечивает безопасную и стабильную работу оборудования и сетей электроснабжения. Выбор конкретного элемента для поставленной задачи зависит от физических свойств и технических параметров вещества.

В чём отличие проводников от диэлектриков, их свойства и сфера применения

Какая проводка лучше — сравнение медной и алюминиевой электропроводки

В чём отличие проводников от диэлектриков, их свойства и сфера применения

Что такое нихромовая проволока, её свойства и область применения

В чём отличие проводников от диэлектриков, их свойства и сфера применения

Что такое электролиз и где он применяется?

В чём отличие проводников от диэлектриков, их свойства и сфера применения

Что такое конденсатор, где применяется и для чего нужен

В чём отличие проводников от диэлектриков, их свойства и сфера применения

Как работает транзистор и где используется?

В чём отличие проводников от диэлектриков, их свойства и сфера применения

Что такое конденсатор, виды конденсаторов и их применение

Источник

Диэлектрик

Поляризованный диэлектрический материал

Диэлектрик (изолятор) — вещество, плохо проводящее или совсем не проводящее электрический ток. Плотность свободных носителей заряда в диэлектрике не превышает 10 8 шт/см³. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле.

Диэлектрический материал как электрический изолятор может быть поляризован с помощью приложенного электрического поля. Если диэлектрик поместить в электрическое поле, электрические заряды не проходят через материал, но стоит только немного сместить заряды от их средних положений равновесия вызывается диэлектрическая поляризация. Из-за диэлектрической поляризации, положительные заряды смещаются в направлении поля, а отрицательные заряды имеют сдвиг в противоположном направлении. Это создает внутреннее электрическое поле, которое снижает обще поле внутри диэлектрика. [1] Если диэлектрик состоит из слабо связанных молекул, эти молекулы не только становятся поляризованными, а также переориентируются так, что их оси симметрии выравнивают поля. [2]

Исследование диэлектрических свойств касается хранения и диссипации электрической и магнитной энергии в материалы. [3] Диэлектрики имеют важное значение для объяснения различных явлений в электронике, оптике и физике твердого тела.

Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию.

К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Химически чистая вода также является диэлектриком.

Диэлектрики используются не только как изоляционные материалы.

Ряд диэлектриков проявляют интересные физические свойства.

К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики. При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов. Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных емкостей. Если материал используется в качестве диэлектрика конденсатора определенной емкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость. Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др. Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ -5 Ом·м, а к диэлектрикам — материалы, у которых ρ > 10 8 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10 -8 Ом·м, а у лучших диэлектриков превосходить 10 16 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10 -5 —10 8 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причем двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Четкую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков — возбужденным. Развитие радиотехники потребовало создания материалов, в которых специфические высокочастотные свойства сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными. Для понимания электрических, магнитных и механических свойств материалов, а также причин старения нужны знания их химического и фазового состава, атомной структуры и структурных дефектов. Совокупность научно-технических знаний о физико-химической природе, методах исследования и изготовления различных материалов составляет основу материаловедения, ведущая роль которого в настоящее время широко признана во многих областях техники и промышленности. Успехи материаловедения позволили перейти от использования уже известных к целенаправленному созданию новых материалов с заранее заданными свойствами.

Читайте также:  Явление электромагнитной индукции заключается в возникновении электрического тока в проводнике

Содержание

  • 1 Диэлектрическая поляризация
    • 1.1 Основы атомной модели
    • 1.2 Дипольная поляризация
    • 1.3 Ионная поляризация
  • 2 См. также
  • 3 Примечания

Диэлектрическая поляризация [ править | править код ]

Основы атомной модели [ править | править код ]

Электрическое поле взаимодействия с атомом в классической модели диэлектрической проницаемости.

Классический подход к диэлектрической модели, материала состоит из атомов. Каждый атом состоит из облака отрицательного заряда (электронов), привязанных к и окружающим положительный точечный заряд облаком отрицательного заряда (электронами) в центре. В присутствии электрического поля заряда облако искажается, как показано в правой верхней части фигуры.

Это может быть сведен к простой диполи [1] , используя принцип суперпозиции [2]. Диполь характеризуется дипольным моментом [3], векторная величина, показанная на рисунке синяя стрелка с надписью M. Это связь между электрическим полем и дипольным моментом, что порождает поведение диэлектрика. (Обратите внимание, что дипольный момент пунктов в том же направлении, что и электрическое поле на рисунке. Это не всегда так, и это сильное упрощение, но это справедливо для многих материалов.)

Когда электрическое поле удаляется атом возвращается в исходное состояние. Время, необходимое для этого является так называемая релаксация [4] времени; экспоненциального распада.

В этом и заключается суть модели в физике. Поведение диэлектрическое теперь зависит от ситуации. Чем сложнее ситуация, тем богаче модель должна быть точно описана поведением. Важные вопросы:

  • Создается электрическое поле, постоянное или оно меняется со временем? По какой ставке?
  • Не ответ зависит от направления приложенного поля (изотропность [5] материала)?
  • Ответ везде одинаковый (однородность материала)?
  • Делать каких-либо границ или интерфейсы должны быть учтены?
  • Это отклик линейноcти систем [6] относительно поля, или есть нелинейности [7] систем ?

Связь между электрическим полем E и дипольным моментом M порождает поведение диэлектрической проницаемости, которая для данного материала, может быть охарактеризована функцией F и определяется уравнением: