Меню

Векторная диаграмма для несимметричной нагрузки с нулевым проводом

Несимметричный режим трехфазных цепей

а) Назначение нулевого провода.
При несимметричной нагрузке звездой без нулевого провода (на рис. 11.19 ключ разомкнут) сопротивления всех фаз неодинаковы: Z А Z В Z С . Вследствие этого появляется напряжение смещения нейтрали U N’N , определяемое по формуле двух узлов:

Это напряжение U N, действующее между точками N и N’ (рис. 11.19), показано на рис. 11.20. При любом направлении вектора U N напряжения на фазах нагрузки будут неодинаковы.

При включении и выключении приемников проводимости фаз Y А, Y B и Y C изменяются произвольным образом, это приводит к изменению напряжения смещения нейтрали U N, ведущее, в свою очередь, к произвольному изменению напряжений на фазах нагрузки. Подавляющее большинство электросиловых приемников функционирует только при номинальном питающем напряжении. Поэтому соединение звездой без нулевого провода для несимметричной или изменяемой нагрузки практически не используется вследствие невозможности обеспечить номинальное питающее напряжение. При большом числе приемников, статистически в «среднем» обеспечивающих примерно одинаковую нагрузку фаз, несмотря на включение и выключение отдельных потребителей, смещение нейтрали невелико. Это позволяет использовать соединение звездой без нулевого провода для мощных линий электропередач на трансформаторные подстанции напряжением до 6,3 кВ. Соединение звездой без нулевого провода используется и в устройствах, предназначенных для контроля и анализа режимов трехфазных цепей.



б) Соединение звездой с нулевым проводом.
Для соединения звездой с нулевым проводом (на рис. 11.19 ключ замкнут) определим напряжение нейтрали также по формуле двух узлов:

В реальных системах электроснабжения проводимость нулевого провода Y N много больше проводимостей фаз и практически можно считать, что сопротивление нулевого провода близко к нулю. Тогда при Y N → ∞ знаменатель в выше написанной формуле стремится к бесконечности, U N → 0 и при наличии нулевого провода с достаточно малым сопротивлением смещение потенциала нулевой точки N’ нагрузки отсутствует. На фазах нагрузки независимо от их сопротивлений поддерживаются напряжения, составляющие симметричную трехфазную систему.
Токи фаз нагрузки определяются по закону Ома:

На рис. 11.22 показана векторная диаграмма токов при несимметричной активной нагрузке. Из векторной диаграммы видно, что токи фаз при несимметричной нагрузке не равны по модулю, а в общем случае смещены по фазе на углы, не равные 120°, т. е. они не представляют симметричную трехфазную систему.
Ток нейтрального провода (см. рис. 11.14) можно определить по первому закону Кирхгофа для узла N’ — рис. 11.22 (на рисунке изображен вспомогательный вектор тока, равный сумме токов I А+ I С):

Чем больше несимметрия фаз нагрузки, тем больше «уравнительный» ток I N нулевого провода.

Соединение звездой с нулевым проводом повсеместно используется для электропитания жилых и общественных зданий, производственных приемников энергии и в других случаях с многочисленными приемниками, включаемыми и выключаемыми независимо друг от друга.

Читайте также:  Как подкурить машину с помощью проводов 1



в) Соединение треугольником.
Если пренебречь сопротивлением соединительных проводов, то напряжения на фазах нагрузки равны линейным напряжениям трехфазного источника . Фазные токи при несимметричной нагрузке Z А B Z ВС Z С A определяются по закону Ома:

На рис. 11.25 показана векторная диаграмма токов при несимметричной активной нагрузке. Линейные токи определяются по первому закону Кирхгофа для узлов А, В и С рис. 11.17:


Как видно из векторной диаграммы (рис. 11.25), линейные токи не равны по модулю и смещены по фазе на углы, не равные 120°. В общем случае и фазные токи не равны по модулю и смещены по фазе на углы, не равные 120°.


Векторная диаграмма линейных токов показана на рис. 11.25.

г) Аварийные режимы в трехфазных цепях.
Частными случаями несимметричных режимов являются аварийные режимы в трехфазных цепях: обрывы нейтрального и линейных проводов, КЗ в фазах.
Абсолютно безопасными являются разрывы в фазах нагрузки, соединенной треугольником или звездой с нулевым проводом (отключения фаз)
Аварийными, пожароопасными являются КЗ фаз нагрузки таких соединений. Все другие случаи приводят к резкому изменению номинальных напряжений на фазах нагрузки и могут привести к аварийной ситуации. Обрыв нулевого провода несимметричной звезды был рассмотрен в примере 11.9.

Источник

Построение векторных диаграмм

Рассмотрим построение векторной диаграммы фазных и линейных напряжений с привязкой к комплексной плоскости.

Вектора фазных напряжений удобно направлять противоположно условно-положительно направлению напряжений. Вектор фазы А направим по положительной вещественной полуоси, при этом вектора фазных напряжений должны составить правильную трехлучевую звезду

Для нахождения необходимо к с противоположным знаком прибавить . Соединим А с В, получим вектор и т.д. для и .

Векторы линейных напряжений образуют равносторонний треугольник.

Рассмотрим частные случаи работы данной электрической цепи.

Первый случай – симметричная нагрузка без нейтрального провода:

Нагрузка называется симметричной, если комплексы фазных сопротивлений равны.

За основу векторной диаграммы принимается симметричная система фазных напряжений. Так как нагрузка в фазах чисто активная вектора фазных токов совпадают с векторами фазных напряжений

Второй случай — симметричная нагрузка с нейтральным проводом:

Векторная диаграмма строится аналогично первому случаю.

Вывод: из сравнения векторных диаграмм видно, что при симметричной нагрузке необходимость в нейтральном проводе отпадает. При симметричной нагрузке используется трехпроходная сеть (трёхфазные электродвигатели, электрические печи).

Третий случай – несимметричная нагрузка с нейтральным проводом:

Нагрузка называется несимметричной если комплексы фазных сопротивлений неравны.

Читайте также:  Какие провода для автомата 25а

За основу векторной диаграммы принимается симметричная система фазных напряжений.

Целью построения векторной диаграммы является нахождение тока в нейтральном проводе, для этого используем метод параллельного переноса векторов. Таким образом вектор тока в нейтральном проводе определяется как сумма векторов фазных токов.

Случай четыре – несимметричная нагрузка без нейтрального провода.

Источник



Цепи при соединении нагрузки в треугольник

Аварийный режим при соединении звездой с нейтральным проводом в случае обрыва нейтрали и одной из фаз. Схема аварийного случая. Векторные диаграммы токов и напряжений для такого случая. Последствия аварийного случая.

Аварийными являются режимы, возникают при коротких замыканиях в нагрузке

или в линиях и обрыве проводов. Остановимся на некоторых типичных аварийных

Обрыв нейтрального провода при несимметричной нагрузке

В симметричном режиме IN= 0, поэтому обрыв нейтрального провода не приводит

к изменению токов и напряжений в цепи и такой режим не является аварийным. Однако,

при несимметричной нагрузке IN¹ 0, поэтому обрыв нейтрали приводит к изменению всех

фазных токов и напряжений. На векторной диаграмме напряжений точка «0» нагрузки,

совпадающая до этого с точкой « N» генератора, смещается таким образом, чтобы сумма

фазных токов оказалась равной нулю (рис.8.4.1). Напряжения на отдельных фазах могут

существенно превысить номинальное напряжение.

Обрыв фазы при симметричной нагрузке в схеме без нулевого провода

При обрыве, например, фазы А сопротивления RA и RB оказываются

соединёнными последовательно и к ним приложено линейное напряжение UBC.

Напряжение на каждом из сопротивлений составляет 3 / 2 от фазного напряжения в

нормальном режиме. Нулевая точка нагрузки на векторной диаграмме напряжений

смещается на линию ВС, и при RB = RC она находится точно в середине отрезка ВС

Аварийный режим при соединении звездой с нейтральным проводом в случае обрыва одной из фаз при целой нейтрали. Схема аварийного случая. Векторные диаграммы токов и напряжений. Последствия аварийного случая.

Обрыв фазы при симметричной нагрузке в схеме с нулевым проводом

При обрыве провода, например, в фазе А ток этой фазы становится равным нулю,

напряжения и токи в фазах В и С не изменяются, а в нулевом проводе появляется ток

IN = IB + IC.Он равен току, который до обрыва протекал в фазе А (рис. 8.4.2).

Аварийный режим при соединении звездой с нейтральным проводом в случае короткого замыкания одной из фаз при целой нейтрали. Схема аварийного случая. Векторные диаграммы токов и напряжений. Последствия аварийного случая

При коротком замыкании фазы нагрузки в схеме с нулевым проводом ток в этой

Читайте также:  Шаговое напряжение действия при обнаружении оборванного контактного провода

фазе становится очень большим (теоретически бесконечно большим) и это приводит к

аварийному отключению нагрузки защитой. В схеме без нулевого провода при

замыкании, например, фазы А, нулевая точка нагрузки смещается в точку «А» генератора.

Тогда к сопротивлениям фаз В и С прикладываются линейные напряжения. Токи в этих

фазах возрастают в 3 раз, а ток в фазе А – в 3 раза (рис. 8.4.4).

Короткие замыкания между линейными проводами и в той и в другой схеме

приводят к аварийному отключению нагрузки.

Аварийный режим при соединении треугольником в случае короткого замыкания одной из фаз. Схема аварийного случая. Векторные диаграммы токов и напряжений. Последствия аварийного случая.

Аварийные режимы трёхфазной

цепи при соединении нагрузки в треугольник

При коротких замыканиях в фазах нагрузки или между линейными проводами токи

резко возрастают и происходит аварийное отключение установки защитой.

Обрывы фаз или линейных проводов при соединении нагрузки в треугольник не

приводят к перегрузкам по токам или напряжениям, как это иногда случается при

соединении нагрузки в звезду.

При обрыве одной фазы нагрузки (рис. 8.5.1) ток этой фазы становится равным

нулю, а в оставшихся двух фазах ток не меняется. Два линейных тока уменьшаются в 3

раз, т. е. становятся равными фазному току, а третий остаётся неизменным.

Аварийный режим при соединении треугольником в случае обрыва одного из проводов линии. Схема аварийного случая. Векторные диаграммы токов и напряжений. Последствия аварийного случая.

При обрыве линейного провода (например, В) фазные сопротивления RAB и RBC

оказываются соединёнными последовательно и включёнными параллельно с

сопротивлением RCA на напряжение UCA (рис. 8.5.2). Цепь фактически становится

70 Расчёт мощности в трёхфазных цепях, как для звезды, так и для треугольника. Расчёт для симметричных и несимметричных схем. Схемы с двумя и тремя ваттметрами. Их вид и использование.

Измерение активной мощности в трехфазных цепях производят с помощью трех, двух или одного ваттметров, используя различные схемы их включения. Схема включения ваттметров для измерения активной мощности определяется схемой сети (трех- или четырехпроводная), схемой соединения фаз приемника (звезда или треугольник), характером нагрузки (симметричная или несимметричная), доступностью нейтральной точки.

При несимметричной нагрузке в четырехпроводной цепи активную мощность измеряют тремя ваттметрами (рис. 3.18), каждый из которых измеряет мощность одной фазы – фазную мощность.

Активная мощность приемника определяют по сумме показаний трех ваттметров

где P 1 = U A I A cos φ A; P 2 = U B I B cos φ B; P 3 = U C I C cos φ C.

Источник