Меню

Вектор магнитной индукции проводника с током формула

Магнитная индукция

Магнитная индукция — это силовая характеристика магнитного поля в выбранной точке пространства. Она определяет силу, с которой магнитное поле воздействует на заряженную частицу, что движется внутри него. Магнитная индукция считается фундаментальной характеристикой магнитного поля (как напряжённость для электрического поля).

Магнитная индукция описывает магнитную силу (вектор) на тестовом объекте (например, на куске железа) в каждой точке пространства. Простыми словами: если естественный магнит поднести к магнитным веществам (таким, как железо, никель, кобальт и т. д.), это вызовет в них магнитные свойства, которые называются «магнитной индукцией». Магнитная индукция используется для создания искусственных магнитов.

Магнитная индукция также называется плотностью магнитного потока.

Магнитная индукция измеряется:

  • в системе СИ единицей тесла (Тл),
  • в системе СГС единицей гаусс (Гс).

Соотношение между Тл и Гс: 1 Тл = 10 000 Гс.

Магнитная индукция — это векторная величина и обозначается буквой B со стрелочкой:

Магнитная индукция векторная величина буква B со стрелочкой

Индукция (от лат. inducere — вводить, наведение) — производство токов в цепи под действием магнита или другого тока.

Формулы вычисления магнитной индукции

Формула магнитной индукции:

Формулы вычисления магнитной индукции B = Mmax/IS

Формула магнитной индукции: B = Mmax/IS

Где:

  • B — индукция магнитного поля (в Тл)
  • Mmax — максимальный крутящий момент магнитных сил, приложенных к рамке (в Нм)
  • l — длина проводника (в м)
  • S — площадь рамки (в м²)

Другие формулы, где встречается B

Эти формулы также можно использовать для её расчёта.

Сила Ампера:

Формулы вычисления магнитной индукции Fa=IBL sinα

Сила Ампера: Fa=IBL sinα

Где:

  • Fa — сила Ампера (в Н — ньютон)
  • I — сила тока (в А — ампер)
  • B — индукция магнитного поля (в Тл)
  • L — длина проводника (в м)
  • α — угол между вектором В и одним из направлений (силы тока, скорости или др.; измеряется в рад. или град.)

Сила Лоренца:

Формулы вычисления магнитной индукции Fл = qvB sinα

Сила Лоренца: Fл = qvB sinα

Где:

  • Fл — сила Лоренца (в Н — ньютон)
  • q — заряд частицы (в Кл — кулон)
  • v — скорость (в м/с)
  • B — индукция (в Тл)
  • α — угол между вектором В и одним из направлений (силы тока, скорости, или др.; измеряется в рад. или град.))

Магнитный поток:

Формулы вычисления магнитной индукции Ф = BS cosα

Магнитный поток: Ф = BS cosα

Где:

  • Ф — магнитный поток (в Вб — вебер)
  • B — индукция (в Тл)
  • S — площадь рамки (в м²)
  • α — угол между вектором В и одним из направлений (силы тока, скорости, или др.; измеряется в рад. или град.))

Электромагнитная индукция и магнитная индукция: какая между ними разница?

Электромагнитная индукция — это производство электродвижущей силы, создаваемой в результате относительного движения между магнитным полем и проводником.

Магнитная индукция может производить постоянный магнит, но может и не производить.

Электромагнитная индукция создаёт ток, но таким образом, что этот созданный ток противодействует изменению магнитного поля.

В электромагнитной индукции используются магниты и электрические цепи, а в магнитной индукции используются только магниты и магнитные материалы.

Источник



Источники магнитного поля

В школьной физике в качестве источников магнитного поля рассматриваются постоянные магниты и проводники с током. Если постоянные магниты мы уже рассмотрели, то с проводниками давайте разберёмся в данном разделе. Простейшие формы проводников для расчёта магнитных полей:

  • бесконечный прямолинейный проводник с током
  • круговой виток с током (проводник в форме окружности)

Для каждого из этих проводников можно рассчитать напряжённость магнитного поля в точке.

Итак, движущийся заряд создаёт вокруг себя магнитное поле. Самый простой тип движущегося заряда — это обычный электрический ток. Вопрос только в том, как согнуть проводник:

  • бесконечный прямолинейный проводник с током

Магнитное поле бесконечного проводника

Рис. 1. Магнитное поле бесконечного проводника

Итак, возьмём бесконечный прямолинейный проводник с током. Слово «бесконечный» в данном случае небольшое приближение. Так для любой точки, находящейся непосредственно вблизи любого линейного проводника, сам проводник «кажется» бесконечным. Пусть по нашему проводнику течёт ток \displaystyle I(рис. 1). Прямолинейный проводник с током создаёт вихревое (круговое) магнитное поле вокруг себя. Направление вектора магнитной индукции задаётся правилом буравчика (правилом правой руки). Исходя из этого правила, найдём направление вектора (рис. 2).

Магнитное поле бесконечного проводника (магнитная индукция)

Рис. 2. Магнитное поле бесконечного проводника (магнитная индукция)

Для подсчёта модуля вектора магнитной индукции поля вне прямолинейного бесконечного проводника с током можно использовать соотношение (рис. 3):

\displaystyle B=\mu <<\mu data-lazy-src=

  • \displaystyle <<\mu data-lazy-src=
  • \displaystyle \pi \approx 3,1416— константа,
  • \displaystyle R— расстояние от центра проводника до точки наблюдения.
  • Модуль вектора магнитной индукции бесконечного линейного проводника

    Рис. 3. Модуль вектора магнитной индукции бесконечного линейного проводника

    3D модели рисунков достаточно сложны для рассмотрения, поэтому введены условные обозначения для направлений векторов/токов в трёхмерном пространстве (рис. 4).

    Схематические отображения векторов

    Рис. 4. Схематические отображения векторов

    Тогда перерисуем рисунок 3, в случае, если мы смотрим сверху провода (рис. 5.1). В этом случае ток течёт на нас, т.е. из рисунка. И в случае, когда мы смотрим на провод снизу вверх (рис. 5.2). В этом случае ток течёт от нас, т.е. внутрь рисунка.

    Поле проводника (вид сверху)

    Рис. 5. Поле проводника (вид сверху)

    На рисунке 5 точечной линией обозначено магнитное поле прямолинейного тока (оно круговое). Направление вектора магнитной индукции (\displaystyle \vec<B data-lazy-src=

    Рис. 6. Круговой виток с током

    В целом, магнитное поле такого проводника достаточно сложное, однако для центра витка нахождение модуля вектора магнитной индукции не представляет проблем:

    \displaystyle B=\mu <<\mu data-lazy-src=

  • \displaystyle <<\mu data-lazy-src=