Меню

Устойчивость действию токов короткого замыкания

Выбор проводников по термической и динамической устойчивости к току к.з.

Проводники и токопроводы в электрических сетях выше 1000 в, как правило, подлежат проверке на условия нагревания током к. з.
В электрических сетях до 1000 в на термическую устойчивость проверяются только токопроводы.
Повышение температуры жил изолированных проводников и кабелей в результате прохождения тока к. з. ведет к химическому разложению изоляции и резкому снижению ее электрической и механической прочности, а следовательно, и к возможности аварии. Поэтому установлены определенные максимально допустимые пределы температур в режиме к. з., указанные в табл. 6-1.

Проверка кабелей на нагревание от токов к. з. должна производиться:
1)для одиночных кабелей небольшой протяженности, исходя из к. з. в начале кабеля;
2)для одиночных кабелей, имеющих соединительные муфты, исходя из к. з. s начале каждого участка, с тем чтобы иметь возможность ступенями уменьшать сечение кабеля по его длине;
3)для двух и более параллельно включенных кабелей, исходя из к. з. непосредственно за пучком (по сквозному току).

Допускается не проверять проводники по режиму к. з. в случае их защиты плавкими предохранителями. Линия считается защищенной предохранителем, когда отключающая способность предохранителя достаточна для отключения наибольшего возможного аварийного тока линии.
Для линий к индивидуальным электроприемникам, в том числе к цеховым трансформаторам общей мощностью до 1000 ква включительно, допускается не проверять сечения проводников по току к. з при одновременном соблюдении следующих условий:

1.В электрической или технологической части предусмотрено резервирование, гарантирующее от расстройства производственного процесса.
2.Повреждение проводников при к. з. не может вызвать взрыва.
3.Возможна замена проводников без значительных затруднений.

Для линий к индивидуальным электроприемникам или небольшим распределительным пунктам неответственного назначения допускается не производить проверку проводников на термическую устойчивость при к. з., если обеспечивается только одно условие 2 (отсутствие опасности взрыва).
Провода воздушных линий до 10 кв не проверяются по току к. з.
Допустимые величины тока к. з. для кабелей определяются в зависимости от материала и сечения кабеля и длительности прохождения тока к. з.
Термическое действие тока к. з. в течение действительного времени прохождения его t д , характеризуется величиной фиктивного времени t ф прохождения установившегося тока к. з. с одинаковым по термическому действию эффектом.
Фиктивное время определяется в зависимости от отношения

где I» — действующее значение периодической составляющей тока к. з. в начальный момент, а
— установившийся ток к. з. (действующее значение), а.
Действительное время I д слагается из выдержки времени, установленной на максимально-токовой защите линии, и собственного времени отключающего аппарата (выключателя мощности).
При проверке на термическую устойчивость проводников линий, оборудованных быстродействующим автоматическим повторным включением, должно учитываться повышение нагревания проводников из-за увеличения суммарной продолжительности к. з.
При расчетах тока к. з. в распределительных сетях 6-10 кв весьма часто затухание не учитывают. В этом случае фиктивное время может быть принято равным действительному и задача проверки проводников на термическую устойчивость упрощается отсутствием необходимости определения фиктивного времени.
Сечение, обеспечивающее термическую устойчивость проводника к току к. з. при заданной величине фиктивного времени t ф , определяется из выражения

где F-сечение жилы кабеля, мм кв
С — постоянная, определяемая в зависимости от заданной ПУЭ конечной температуры нагревания жил и напряжения; числовые значения постоянной С- указаны в табл. 6-1.
Ниже приведена табл. 6-2 для проверки кабелей на термическую устойчивость, составленная по формуле (6-2) в величинах допустимого установившегося тока к. з. в килоамперах.
В дополнение к расчету на термическую устойчивость сечение шин токопроводов должно быть проверено также на механическую прочность при к. з. (динамическая устойчивость токопровода).

Источник

Устойчивость действию токов короткого замыкания

ГОСТ Р 52736-2007

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Короткие замыкания в электроустановках

МЕТОДЫ РАСЧЕТА ЭЛЕКТРОДИНАМИЧЕСКОГО
И ТЕРМИЧЕСКОГО ДЕЙСТВИЯ ТОКА КОРОТКОГО ЗАМЫКАНИЯ

Short-circuits in electrical installations.
Calculation methods of electrodynamics and thermal effects of short-circuit current

Дата введения 2008-07-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 РАЗРАБОТАН Филиалом ОАО «НТЦ электроэнергетики» — ВНИИЭ, Московским энергетическим институтом (Техническим университетом) (МЭИ (ТУ))

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 437 «Токи короткого замыкания»

Информация об изменениях к настоящему стандарту публикуется ежегодно в издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт распространяется на трехфазные электроустановки промышленной частоты и определяет методы расчета и проверки проводников и электрических аппаратов на электродинамическую и термическую стойкость при коротких замыканиях (КЗ).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 687-78 Выключатели переменного тока на напряжение свыше 1000 В. Общие технические условия

ГОСТ 16442-80 Кабели силовые с пластмассовой изоляцией. Технические условия

ГОСТ 18410-73 Кабели силовые с пропитанной бумажной изоляцией. Технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

термическое действие тока короткого замыкания в электроустановке: Изменение температуры элементов электроустановки под действием тока короткого замыкания.

электродинамическое действие тока короткого замыкания в электроустановке: Механическое действие электродинамических сил, обусловленных током короткого замыкания, на элементы электроустановки.

интеграл Джоуля: Условная величина, характеризующая тепловое действие тока короткого замыкания на рассматриваемый элемент электроустановки, численно равная интегралу от квадрата тока короткого замыкания по времени, в пределах от начального момента короткого замыкания до момента его отключения.

ток термической стойкости электрического аппарата при коротком замыкании (ток термической стойкости): Нормированный ток, термическое действие которого электрический аппарат способен выдержать при коротком замыкании в течение нормированного времени термической стойкости.

ток электродинамической стойкости электрического аппарата при коротком замыкании (ток электродинамической стойкости): Нормированный ток, электродинамическое действие которого электрический аппарат способен выдержать при коротком замыкании без повреждений, препятствующих его дальнейшей работе.

4 Общие положения

4.1 Исходные положения

4.1.1 При проверке проводников и электрических аппаратов электроустановок на электродинамическую и термическую стойкость при КЗ предварительно должны быть выбраны расчетные условия КЗ, т.е. расчетная схема электроустановки, расчетный вид КЗ в электроустановке, расчетная точка КЗ, а также расчетная продолжительность КЗ в электроустановке (последнюю используют при проверке на термическую стойкость проводников и электрических аппаратов, а также при проверке на невозгораемость кабелей).

Читайте также:  Плотность тока для алюми

4.1.2 Расчетная схема электроустановки должна быть выбрана на основе анализа возможных электрических схем этой электроустановки при продолжительных режимах ее работы. К последним следует относить также ремонтные и послеаварийные режимы работы.

4.1.3 В качестве расчетного вида КЗ следует принимать:

— при проверке электрических аппаратов и жестких проводников с относящимися к ним поддерживающими и опорными конструкциями на электродинамическую стойкость — трехфазное КЗ;

— при проверке электрических аппаратов и проводников на термическую стойкость — трех- или однофазное КЗ, а на генераторном напряжении электростанций — трех- или двухфазное КЗ, в зависимости от того, какое из них приводит к большему термическому воздействию;

— при проверке гибких проводников по условию их допустимого сближения во время КЗ — двухфазное КЗ.

4.1.4 В качестве расчетной точки КЗ следует принимать такую точку на расчетной схеме, при КЗ в которой проводник или электрический аппарат подвергается наибольшему электродинамическому или термическому воздействию.

Примечание — Исключения из этого требования допустимы лишь при учете вероятностных характеристик КЗ и должны быть обоснованы требованиями соответствующих ведомственных нормативных документов.

4.1.5 Расчетную продолжительность КЗ при проверке проводников и электрических аппаратов на термическую стойкость следует определять путем сложения времени действия основной релейной защиты, в зону которой входят проверяемые проводники и электрические аппараты, и полного времени отключения соответствующего выключателя, а при проверке кабелей на невозгораемость — путем сложения времени действия резервной релейной защиты и полного времени отключения ближайшего к месту КЗ выключателя.

При наличии устройств автоматического повторного включения (АПВ) цепи следует учитывать суммарное термическое действие тока КЗ.

4.1.6 При расчетной продолжительности КЗ до 1 с допустимо процесс нагрева проводников под действием тока КЗ считать адиабатическим, а при расчетной продолжительности КЗ более 1 с и при небыстродействующих АПВ следует учитывать теплоотдачу в окружающую среду.

5 Электродинамическое действие тока короткого замыкания

5.1 Расчет электродинамических сил взаимодействия проводников

5.1.1 Электродинамические силы взаимодействия , Н, двух параллельных проводников с токами следует определять по формуле

где — постоянный параметр, Н/А ;

— мгновенные значения токов проводников, А;

— длина проводников, м;

— расстояние между осями проводников, м;

Для проводников прямоугольного сечения коэффициент формы следует определять по кривым, приведенным на рисунке 1.

Рисунок 1 — Диаграмма для определения коэффициента формы проводников прямоугольного сечения

Для круглых проводников сплошного сечения, проводников кольцевого сечения, а также проводников (шин) корытообразного сечения с высотой профиля 0,1 м и более следует принимать =1,0.

5.1.2 Наибольшее значение электродинамической силы имеет место при ударном токе КЗ.

5.1.3 Максимальную силу , Н, (эквивалентную равномерно распределенной по длине пролета нагрузки), действующую в трехфазной системе проводников на расчетную фазу при трехфазном КЗ, следует определять по формуле

где — длина пролета, м;

— ударный ток трехфазного КЗ, А;

— коэффициент, зависящий от взаимного расположения проводников.

Значения коэффициента для некоторых типов шинных конструкций (рисунок 2) указаны в таблице 1.

Рисунок 2 — Схемы взаимного расположения шинных конструкций

Источник



Динамическое действие токов короткого замыкания. Электродинамическая стойкость электрических аппаратов.

I.Системы проводников при протекании по ним токов испытывают электродинамические взаимодействия, сопровождающиеся значительными механическими напряжениями. При одинаковом направлении тока проводники притягиваются, а если токи направлены в противоположные стороны, то отталкиваются.

Сила взаимодействия токов определяется по формулам, вытекающим из закона Био-Савара. Для двух параллельных проводников длиной l, расположенных на расстоянии а друг от друга, она может быть найдена из выражения

Если токи выражены в амперах, а сила F — в ньютонах, то коэффициент k равен 2×10 7 ; коэффициент kф учитывает форму проводника и может быть принят равным 1 для проводников круглого сечения независимо от расстояния между ними и для проводников любой формы, если расстояние в свету между ними больше периметра поперечного сечения токоведущей части.

Сила F распределена равномерно по длине параллельных проводников. Удельное усилие на единицу длины проводника для условий равно:

Электродинамические взаимодействия в трехфазных установках переменного тока имеют ряд ocoбенностей. Усилия изменяются во времени по значению и направлению и имеют колебательный характер.

Сила, действующая на проводник с током, определяется как результат взаимодействия его с токами в проводниках двух других фаз, при том в наиболее тяжелых условиях оказывается проводник средней фазы. Наибольшее удельное усилие на проводник средней фазы может быть определено из выражения, Н/м,

где Imамплитуда тока в фазе, А; а — расстояние между соседними фазами, м.

Коэффициент учитывает фазовые смещения токов в проводниках.

Взаимодействие проводников существенно возрастает в режиме КЗ, когда полный ток КЗ достигает своего наибольшего значения- ударного.

Для определения удельного усилия при трехфазном КЗ в системе проводников, пользуются выражением при условии , тогда

где — ударный ток трехфазного КЗ, А.

Выше рассматривались междуфазные усилия. Однако в реальных аппаратах и шинных конструкциях могут возникать довольно большие силы взаимодействия токов одной фазы. Это происходит при расщеплении фазы на ряд параллельных проводов, а также тогда, когда проводники не прямолинейны, а образуют петли, изгибаются под углом. Подобные силы имеют место в разъединителях, реакторах и других аппаратах.

Для предотвращения механических повреждении под действием усилий, возникающих в проводниках при протекании по ним токов КЗ, все элементы токоведущей конструкции должны обладать достаточной электродинамической стойкостью.

Под электродинамической стойкостью понимают обычно способность аппаратов или проводников выдерживать механические усилия, возникающие при протекании токов КЗ, без деформаций, препятствующих их дальнейшей нормальной работе.

Для электрических аппаратов завод-изготовитель указывает гарантийный ток КЗ, при котором обеспечивается электродинамическая стойкость. Чаще всего в каталогах на оборудование задается мгновенное значение тока электродинамической стойкости iдин (или imax ,или iпр.скв ).При выборе аппаратов гарантированный заводом-изготовителем ток сравнивается с расчетным ударным током КЗ. Должно быть выполнено условие .

Электродинамическая стойкость жестких шин, за исключением комплектных токопроводов и шин КРУ, определяется расчетом механических напряжений в материале проводника при КЗ. Критерием стойкости служит выполнение условия , где и — соответственно допустимое и расчетное значения механических напряжении и материале проводника.

Согласно ПУЭ на электродинамическую стойкость не проверяют аппараты и проводники, защищенные предохранителями с плавкими вставками на ток до 60 A, a также аппараты и шины цепей трансформаторов напряжения при условии их расположения в отдельной камере.

Не рассчитывают механические напряжения от сил электродинамического взаимодействия в гибких проводах. Однако при ударных токах более 50 кА такие провода требуется проверять на схлестывание.

В ПУЭ оговорены также другие частные случаи, когда допустимо не проверять аппараты и проводники на электродинамическую стойкость при КЗ.

II.Известно, что системы проводников при протекании по ним токов испытывают электродинами­ческие взаимодействия, сопровождающиеся значительными механическими напряжениями.

При одинаковом направлении тока проводники притягиваются, а если токи направлены в противоположные стороны, то отталкиваются

Читайте также:  Как определить силу тока если известно площадь поперечного сечения

Рис. 18.1. Электродинамическое взаимодействие между двумя токоведущими частями при согласном (а) и встречном (б) направлениях токов.

Сила взаимодействия токов определяется по формулам, вытекающим из закона Био-Савара. Для двух параллельных проводников длиной l, расположенных на расстоянии а друг от друга, она может быть найдена из выражения

Если токи выражены в амперах, а сила F — в ньютонах, то коэффи­циент k равен 2∙10 -7 ; коэффициент kф учитывает форму провод­ника и может быть принят равным единице для проводников круглого сечения независимо от расстояния между ними и для проводников любой формы, если расстояние в свету между ними будет больше периметра поперечного сечения токоведущей части. В противном случае коэффициент kф отличен от единицы и при вычислении усилий должен быть предварительно определен по специальным графикам.

Сила F распределена равномерно по длине параллельных проводни­ков. Удельное усилие на единицу длины проводника для условий рис. 18.1 равно:

Электродинамические взаимодействия в трехфазных установках пере­менного тока имеют ряд особенностей. На рис. 18.2 изображены векторы усилий между проводниками отдельных фаз, расположенных в одной плоскости, в различные моменты времени на протяжении одного периода переменного тока. Усилия изменяются во времени по значению и направ­лению и имеют колебательный характер.

Сила, действующая на проводник с током, определяется как резуль­тат взаимодействия его с токами в проводниках двух других фаз, при этом в наиболее тяжелых условиях оказывается проводник средней фазы. Наибольшее удельное усилие на проводник средней фазы может быть определено из выражения, Н/м,

где Im — амплитуда тока в фазе, А; а — расстояние между соседними фазами, м.

Коэффициент учитывает фазовые смещения токов в проводниках.

Рис. 18.2.Электродинамические взаи­модействия в трехфазной системе про­водников:

а-в — силы взаимодействия для разных моментов периода;

г — кривые изменения токов в фазах

Взаимодействие проводников существенно возрастает в режиме КЗ, когда полный ток КЗ, достигает своего наибольшего значения — ударного. При оценке взаимодействия фаз необходимо рассматривать двух­фазное и трехфазное КЗ.

Для определения удельного усилия при трехфазном КЗ в системе проводников, показанной на рис. 18.2, пользуются выражением (18.3) при условии тогда,

где ίy (3) — ударный ток трехфазного КЗ, А.

В случае двухфазного КЗ влияние третьей (неповрежденной) фазы ничтожно мало, поэтому для определения удельного усилия используют выражение (18.2), принимая во внимание, что .Следова­тельно,

где ίy (2) — ударный ток двухфазного КЗ, А.

Рис. 18.3. Эпюры элект­родинамических взаимо­действий в пределах одной фазы масляного выклю­чателя

Учитывая, что , нетрудно по­казать, что междуфазное усилие при трех­фазном КЗ больше, чем при двухфазном. Поэтому расчетным видом КЗ при оценке электродинамических сил считают трехфазное.

Выше рассматривались междуфазные уси­лия. Однако в реальных аппаратах и шин­ных конструкциях могут возникать довольно большие силы взаимодействия токов одной фазы. Это происходит при расщеплении фазы на ряд параллельных проводов, а также тогда, когда проводники не прямолинейны, а обра­зуют петли, изгибаются под углом. На рис. 18.3 в качестве примера показана эпюра усилий, возникающих в пределах токоведущего контура фазы масляного выключателя.

Такие силы могут привести к самопроизволь­ному отключению выключателя, если не при­нять соответствующих мер. Так, например, при токе ίy = 50 кА на траверсу подвиж­ных контактов выключателя МКП-35 дей­ствует сила, равная примерно 2000Н. Подобные силы имеют место в разъединителях, реакторах и других аппаратах.

Для предотвращения механических повреждений под действием усилий, возникающих в проводниках при протекании по ним токов КЗ, все эле­менты токоведущей конструкции должны обладать достаточной электро­динамической стойкостью.

Под электродинамической стойкостью понимают обычно способность аппаратов или проводников выдерживать механические усилия, возникающие при протекании токов КЗ, без деформации, препятствующих их дальней­шей нормальной работе.

Для электрических аппаратов завод-изготовитель указывает гарантий­ный ток КЗ, при котором обеспечивается электродинамическая стой­кость. Чаще всего в каталогах на оборудование задается мгновенное значение тока электро- динамической стойкости ίдин, (или ίmax, или ίпр.скв). При выборе аппаратов гарантированный заводом-изготовителем ток сравнивается с расчетным ударным током КЗ. Должно быть выполнено условие ίдин (max, пр.скв) ίy (3) .

Электродинамическая стойкость жестких шин, за исключением комп­лектных токопроводов и шин КРУ, определяется расчетом механических напряжений в материале проводника при КЗ. Критерием стойкости служит выполнение условия

где σдоп и σрасч — соответственно допустимое и расчетное значения меха­нических напряжений в материале проводника.

Согласно ПУЭ на электродинамическую стойкость не проверяют аппа­раты и проводники, защищенные предохранителями с плавкими вставками на ток до 60 А, а также аппараты и шины цепей трансформаторов напряжения при условии их расположения в отдельной камере.

Не рассчитывают механические напряжения от сил электродинамиче­ского взаимодействия в гибких проводах. Однако при ударных токах более 50 кА такие провода требуется проверять на схлестывание.

В ПУЭ оговорены также другие частные случаи, когда допустимо не проверять аппараты и проводники на электродинамическую стойкость при КЗ.

Источник

Действие токов КЗ и последствия коротких замыканий

date image2014-02-09
views image8204

facebook icon vkontakte icon twitter icon odnoklasniki icon

Можно выделить несколько последствий КЗ:

Наибольшая опасность при коротком замыкании угрожает элементам системы, прилегающим к месту его возникновения. В зависимости от места и продолжительности КЗ его последствия могут иметь местный характер (удаленное от источников питания КЗ) или отражаться на функционировании всей системы.

При анализе работы энергосистемы, а также при выборе электрооборудования необходимо учитывать следующие влияния токов КЗ на элементы системы.

1. Термическое действие, которое оценивается следующим выражением:

Термическое действие вызывает повреждение электрооборудования, связанное с его недопустимым нагревом токами КЗ.

2. Динамическое действие оценивается следующим условием:

Динамическое действие может вызывать механическое повреждение электро-

оборудования из-за воздействия больших электромагнитных сил между токоведущими частями. Последствия термического и динамического действия в большей степени угрожают элементам системы, прилегающим к месту возникновения КЗ.

3. Отрицательные влияния на линии других напряжений и на линии связи (проявляется при несимметрии). При этом при несимметричных КЗ наводятся ЭДС в соседних линиях связи и сигнализации, опасные для обслуживающего персонала и оборудования.

4. Ухудшение показателей качества электрической энергии, таких как отклонение напряжения, несинусоидальность кривой напряжения и тока, несимметрия трехфазной системы и т.д. При этом ухудшаются условия работы потребителей. При понижении напряжения, например, до 60–70 % от номинального в течение 1 с и более возможна остановка двигателей ответственных механизмов промышленных предприятий. Это, в свою очередь, может вызвать нарушение технологического процесса, приводящее к экономическому ущербу.

5. Потеря устойчивости системы (выпадение генераторов из синхронизма). Данный вопрос рассматривается в курсе «Устойчивость узлов нагрузки».

Потеря устойчивости может привести к системной аварии. Это наиболее опасное последствие коротких замыканий. Оно приводит к значительным технико-экономическим ущербам и нарушениям электроснабжения регионов.

Существуют определенные противоречия между некоторыми действиями токов КЗ, а именно: при ограничении величины токов КЗ падает запас статической и динамической устойчивости системы и ухудшаются условия пуска и самозапуска электродвигателей.

В связи со сложностью комплексного исследований переходных процессов принято их разделение по скорости протекания, что сформировало несколько дисциплин:

техника высоких напряжений (изоляция и защита от перенапряжений), изучающая быстро протекающие процессы (до 1 мс);

Читайте также:  Ток асинхронного двигателя при максимальном моменте

электромагнитные переходные процессы − предмет настоящего курса, изучающий процессы при синхронной скорости вращения электрических машин ( ) (до 0,5с);

электромеханические переходные процессы (устойчивость узлов нагрузки) при одновременном учете электромагнитных и механических процессов
(0,1…10 с);

электрические системы и сети, изучающие стационарные режимы работы систем.

1.3. Задачи расчета электромагнитных переходных процессов

К основным задачам расчета электромагнитных переходных процессов относят следующие.

1. Выбор схемных решений.

Ярким примером тому являются исторические изменения схемы питания.

Рис. 1.1. Блочные схемы электроснабжения

При использовании блочных схем, представленных на рисунке 1.1, снижаются токи КЗ, поскольку увеличивается количество ступеней трансформации.

2. Выбор и проверка оборудования к термическому и динамическому действию тока КЗ. Например, нормирование параметров выключателя.

3. Выбор уставок устройств релейной защиты. При этом при расчете необходимо найти минимальные и максимальные значения токов КЗ в различных точках системы электроснабжения.

4. Выбор и проверка устройств системной автоматики.

5. Проверка условий работы оборудования в пусковых и аварийных режимах.

Расчеты токов КЗ необходимы для достижения следующих целей:

1) определения условий работы потребителей в аварийных режимах;

2) выбора аппаратов и проводников, их проверки по условиям электродина-

3) проектирования и настройки устройств релейной защиты и автоматики;

4) сопоставления, оценки и выбора схем электрических соединений;

5) определения влияния линий электропередачи на линии связи;

6) определения числа заземленных нейтралей и их размещения в ЭС;

7) выбора разрядников;

8) анализа аварий;

9) подготовки к проведению различных испытаний в ЭС.

Точность расчета КЗ зависит от его цели. В связи с этим вводятся понятия:

расчетные условия КЗ, т.е. наиболее тяжелые, но достаточно вероятные условия КЗ;

расчетная схема, как правило, включающая в себя все элементы электроустановки, через которые протекает ток в режиме КЗ;

расчетный вид короткого замыкания для определения максимальных и минимальных величин тока КЗ;

расчетная точка короткого замыкания, находящаяся непосредственно с одной или с другой стороны от рассматриваемого элемента электроустановки в зависимости от того, когда для него создаются наиболее тяжелые условия в режиме КЗ;

расчетная продолжительность короткого замыкания, понимаемая как сумма времен действия токовой защиты ближайшего к месту КЗ выключателя и полного времени отключения этого выключателя.

Так, при выборе и проверке электрических аппаратов не требуется высокая точность расчета, потому что параметры аппаратов ступенчато изменяются в случае перехода от одного их типа к другому. При выборе устройств релейной защиты и автоматики точность расчета должна быть значительно выше, необходимо определение максимальных и минимальных токов КЗ для момента отключения КЗ. Часто не рабочие режимы, а условия выбора и проверки оборудования и кабельных линий к действию токов КЗ являются определяющими.

1.4. Координация и оптимизация токов короткого замыкания

Сущность задач, решаемых в курсе «Электромагнитные переходные процессы», кроме непосредственного расчета уровней токов КЗ, заключается в нижеследующем.

1. Координация – согласование параметров оборудования с существующими уровнями токов КЗ электрических сетей при минимальных расчетных затратах и при соблюдении технических ограничений. Эта задача имеет место при расширении и реконструкции предприятий и электрических сетей со сложившимися исторически уровнями токов КЗ. При решении этой задачи необходима ориентация на новые типы оборудования.

2. Оптимизация – определение оптимальных с экономической точки зрения уровней токов КЗ электрических сетей при минимальных расчетных затратах и соблюдении технических ограничений. Такая задача возникает при проектировании новых предприятий и электрических систем. Поскольку наиболее дешевое оборудование ориентировано на уровни токов, не превышающие 20 кА, допущение иных уровней токов КЗ должно быть экономически обосновано.

Таким образом, как задача координации, так и задача оптимизации являются задачами технико-экономическими и требуют, кроме расчета уровней токов КЗ, сведения к минимуму затрат

где З – затраты на строительство и реконструкцию энергосистемы, определяются по следующему выражению:

где − доля ежегодных отчислений на капитальные вложения;

− эксплуатационные расходы, включающие стоимость потерь электрической энергии;

− ущерб от перерывов электроснабжения, вызванный различным уровнем надежности оборудования.

В связи с дискретным рядом параметров электротехнического оборудования решение этих задач сводится к технико-экономическому сравнению двух или нескольких вариантов.

Источник

Электродинамическое и термическое действие токов КЗ. Ограничение токов КЗ.

В электрических установках могут возникать различные виды коротких замыканий , которые сопровождаются резким увеличением тока.

Все установленное электрооборудование в системах электроснабжения должно быть устойчивым к токам короткого замыкания и выбираются с учетом этих токов.

Электродинамические действия токов К.З.

При к.з. в результате возникновения наибольшего ударного тока к.з. в шинах и других конструкциях распред устройств возникают электродинамические усилия, которые в свою очередь создают изгибающий момент, а следовательно, механическое напряжение в металле, которое должно быть меньше допустимого напряжения для данного металла.

Электродинамическое действие ударного тока к.з. при трехфазном к.з. определяется наибольшей силой F( 3 ) (кГ), действующей на шину средней фазы при условии расположения проводников в одной плоскости:

Где l,a-длинна и расстояние между токоведущими частями (см)

–коэффициент, учитывающий несовпадение и неодинаковое значение ударного тока в фазах.

Рассматривая шину как равномерно нагруженную многопролетную балку, изгибающий момент, создаваемый ударным током :

Термическое действие токов К.З.

Токоведущие части в том числе и кабели при к.з. могут нагреваться до температуры значительно большей, чем при нормальном режиме. Что бы токоведущие части были термически устойчивы к токам к.з., величина расчетной температуры tрасч должна быть ниже температуры допустимой tдоп для данного материала.

За действительное время протекания тока к.з. принимается суммарное время действия защиты tз и выключающей аппаратуры tв

При проверки токоведущих частей на термич. Устойчивость обычно пользуются понятием приведенного времени Tпр, в течение которого установившийся ток к.з. I∞ выделяется то же кол.во тепла что и изменяющийся во времени ток к.з. за действительное время t.

Приведенное время определяется составл. времени апериодической слагающих тока к.з. :

Величину tпр.п при действительном времени t 5 сек величина tпр.п= tпр.5+(t-5) где tпр.5-приведенное время для t=5сек. Приведенное время апериодической слагающей

При действительном времени t 2

Tпр — приведенное время действия тока к.з. (сек)

Ограничение токов К.з.

При питании электроустановок пром. Предприятий от мощных энергосистем приходится значительно повышать сечение токоведущих частей и габариты аппаратов, выбирать их по условиям как нормального так и динамич. и термич. устойчивости.

Наиболее распростр. Способами ограничения токов к.з. являются:

А) раздельная работа трансформаторов и пит. Линий

Б) включение в сеть доп. Сопротивлений-реакторов

В) применение трансформаторов с защищенной обмоткой

Наиболее целесообразна и эффективна установка реакторов на линиях потребителей, подключаемых непосредственно на шины электрический станций, а так же на районных подстанциях большой мощности, питающих маломощные заводские подстанции.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Источник