Меню

Угловая скорость через силу тока

Формула угловой скорости

Определение и формула угловой скорости

Круговым движением точки вокруг некоторой оси называют движение, при котором траекторией точки является окружность с центром, который лежит на оси вращения, при этом плоскость окружности перпендикулярна этой оси.

Вращением тела вокруг оси называют движение, при котором все точки тела совершают круговые движения около этой оси.

Перемещение при вращении характеризуют при помощи угла поворота $(\varphi)$ . Часто используют вектор элементарного поворота $\bar$ , который равен по величине элементарному углу поворота тела $(d \varphi)$ за маленький отрезок времени dt и направлен по мгновенной оси вращения в сторону, откуда этот поворот виден реализующимся против часовой стрелки. Надо отметить, что только элементарные угловые перемещения являются векторами. Углы вращения на конечные величины векторами не являются.

Угловой скоростью называют скорость изменения угла поворота и обозначают ее обычно буквой $\omega$ . Математически определение угловой скорости записывают так:

Угловая скорость — векторная величина (это аксиальный вектор). Она имеет направление вдоль мгновенной оси вращения совпадающее с направлением поступательного правого винта, если его вращать в сторону вращения тела (рис.1).

Вектор угловой скорости может претерпевать изменения как за счет изменения скорости вращения тела вокруг оси (изменение модуля угловой скорости), так и за счет поворота оси вращения в пространстве ($\bar<\omega>$ при этом изменяет направление).

Равномерное вращение

Если тело за равные промежутки времени поворачивается на один и тот же угол, то такое вращение называют равномерным. При этом модуль угловой скорости находят как:

где $(\varphi)$ – угол поворота, t – время, за которое этот поворот совершён.

Равномерное вращение часто характеризуют при помощи периода обращения (T), который является временем, за которое тело производит один оборот ($\Delta \varphi=2 \pi$). Угловая скорость связана с периодом обращения как:

С числом оборотов в единицу времени ($\nu) угловая скорость связана формулой:

Понятия периода обращения и числа оборотов в единицу времени иногда используют и для описания неравномерного вращения, но понимают при этом под мгновенным значением T, время за которое тело делало бы один оборот, если бы оно вращалось равномерно с данной мгновенной величиной скорости.

Формула, связывающая линейную и угловую скорости

Линейная скорость $\bar$ точки А (рис.1), которая расположена на расстоянии R от оси вращения связана с вектором угловой скорости следующим векторным произведением:

где $\bar$ – перпендикулярная к оси вращения компонента радиус-вектора точки $A (\bar)$ (рис.1). Вектор $\bar$ проводят от точки, находящейся на оси вращения к рассматриваемой точке.

Единицы измерения угловой скорости

Основной единицей измерения угловой скорости в системе СИ является: [$\omega$]=рад/с

В СГС: [$\omega$]=рад/с

Примеры решения задач

Задание. Движение тела с неподвижной осью задано уравнением $\varphi=2 t-4 t^<3>$, $(\varphi)$ в рад, t в сек. Начало вращения при t=0 c. Положительным считают углы указанные направлением стрелки (рис.2). В каком направлении ( относительно часовой стрелки поворачивается тело) в момент времени t=0,5 c.

Решение. Для нахождения модуля угловой скорости применим формулу:

Используем заданную в условии задачи функцию $\varphi(t)$, возьмем производную от нее по времени, получим функцию $\omega(t)$:

Вычислим, чему будет равна угловая скорость в заданный момент времени (при t=0,5 c):

Ответ. В заданный момент времени тело имеет угловую скорость равную нулю, следовательно, она останавливается.

Формула угловой скорости не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Скорости вращения тела заданы системой уравнений:

где $\bar$ и $\bar$ – единичные ортогональные векторы. На какой угол $(\varphi)$ поворачивается тело за время равное 3 с?

Решение. Определим, какова функция, которая связывает модуль скорости вращения тела и время (t) ($\omega(t)$). Так как вектора $\bar$ и $\bar$ перпендикулярны друг другу, значит:

Модуль угловой скорости связан с углом поворота как:

Следовательно, угол поворота найдем как:

Ответ. $\varphi = 20$ рад.

Источник



Условия возникновения электродвижущей силы индукции, как её рассчитать

  • Что такое ЭДС индукции — когда возникает, при каких условиях
  • ЭДС в быту, как обозначается, единицы измерения
  • Законы Фарадея и Ленца
  • Как рассчитать электродвижущую силу индукции, формулы
    • Через магнитный поток
    • Через силу тока
    • Через сопротивление
    • Через угловую скорость
    • Через площадь

Что такое ЭДС индукции — когда возникает, при каких условиях

Электродвижущая сила, ЭДС — физическая величина, описывающая работу любых сил, которые действуют в квазистационарных цепях постоянного или переменного тока, за исключением диссипативных и электростатических сил.

При замкнутой цепи можно найти ЭДС, воспользовавшись законом Ома:

R здесь — сопротивление цепи, r — внутреннее сопротивление источника.
Создание Алессандро Вольтой надежного источника электричества, гальванического элемента, и открытие Хансом Кристианом Эрстедом магнитного действия электрического тока послужили толчком к интенсивному развитию техники электрических измерений в XIX веке.

Выдающаяся роль здесь принадлежит немецкому физику Георгу Симону Ому. Для определения силы тока он использовал принцип крутильных весов Кулона. На длинной тонкой нити подвешено горизонтальное коромысло с заряженным шариком на конце. Второй заряд закреплен на спице, пропущенной сквозь крышку весов.

При их взаимодействии коромысло поворачивается. Вращение головки в верхней части весов закручивало нить, возвращая коромысло в исходное состояние. По углу закручивания можно рассчитать силу взаимодействия зарядов в зависимости от расстояния между ними.

Читайте также:  Bluetooth модуль ток потребления

Ом по величине угла закрутки судил о силе тока I в проводнике, т. е. количестве электричества, перенесенном через поперечное сечение проводника за единицу времени.

В качестве основной характеристики источника тока Ом брал величину напряжения \varepsilon на электродах гальванического элемента при разомкнутой цепи. Эту величину \varepsilon он назвал электродвижущей силой, сокращенно ЭДС.

Движущиеся заряды создают вокруг себя магнитное поле. Однако действующая в нем на магнит или другой ток сила отличается от электрической своим направлением — магнитная стрелка старается развернуться перпендикулярно проводу.

Изучение действующей на другой ток силы переросло в отдельное исследование с неожиданным результатом: сила оказалась направленной всегда перпендикулярно внесенному в магнитное поле проводнику, который для простоты исследования был прямолинейным.

Математическое выражение для этой силы, названной силой Ампера, проще всего записать в виде векторного произведения:

\(d\overrightarrow F\;=\;Id\overrightarrow l\;\times\;\overrightarrow B\) .

I здесь — сила тока, протекающего через проводник; l — вектор длины проводника, направленный в ту же сторону, куда течет ток; В — характеристика поля. Величина В называется магнитной индукцией и является аналогом электрической напряженности.

Максвелл поставил целью создать теорию эфира, связав его механические характеристики с электрическими и магнитными силами. Тщательно изучив труды Фарадея, он пришел к выводу, что напряженность \(\overrightarrow Е\) электрического поля объясняется упругими напряжениями в эфире, а магнитная индукция \(\overrightarrow B\) — его вихревыми движениями.

Рассматривая замкнутый проводящий контур С, где действует ЭДС индукции \(\varepsilon_i\) , Максвелл для получения числа силовых линий магнитного потока \(\triangle Ф\) , пересекаемых контуром за время \triangle t, «натягивал» на него некую поверхность S, разбитую на элементарные площадки \(\triangle S\) , и отождествлял Ф с магнитным потоком сквозь всю поверхность. Математически это можно выразить так:

Объединив это соотношение с идеей Фарадея, Максвелл пришел к собственной формуле:

Выбор коэффициента пропорциональности \(\alpha\) здесь обусловлен необходимостью согласования формулы с законом Био — Савара — Лапласа, в котором появляется та же электродинамическая постоянная с.

Электродинамическая постоянная с — универсальная постоянная, равная скорости распространения электромагнитных волн в вакууме.

Но в опытах Фарадея ЭДС индукции регистрировалась как в движущемся, так и в покоящемся проводящем контуре С, если последний находился в переменном магнитном поле. И здесь встал вопрос, что конкретно перемещает заряды в неподвижном проводнике.

Само по себе магнитное поле не воздействует на заряды, находящиеся в покое, из чего следует: условие возникновения индукционного тока — возникающее в контуре электрическое поле \overrightarrow Е. Так как электростатическое поле в замкнутом контуре не совершает работы, значит, происходит работа вихревого поля, и она равна ЭДС индукции:

\(\varepsilon_i\;=\;\underset С<\oint\;>\;(\overrightarrow<Е\;>\times\;d\overrightarrow l)\)

Самоиндукция — частный случай магнитной индукции, возникновение ЭДС индукции в проводящем контуре, когда в нем меняется ток.

Источником энергии, возникающей в цепи, является в этом случае запас энергии магнитного поля. Полное количество выделившейся джоулевой теплоты можно вычислить, изобразив на графике зависимость магнитного потока Ф(I) от силы тока I:

Самоиндукция

ЭДС в быту, как обозначается, единицы измерения

В быту явление электромагнитной индукции используют для изменения величины напряжения тока в трансформаторах и дросселях. На принципе магнитной индукции работают электрические счетчики, реле мощности, успокоительные системы стрелочных измерительных приборов.

Существуют также магнитные газовые генераторы, в которых благодаря магнитному полю возникает электродвижущая сила, создающая ток.

Электродвижущая сила индукции в системе СИ измеряется в вольтах. Просто электродвижущая сила обозначается греческой буквой \(\varepsilon \) , электродвижущая сила индукции — \( \varepsilon_i.\)

Законы Фарадея и Ленца

Фарадей опытным путем выяснил, что при пересечении проводником магнитных силовых линий по нему проходит заряд \(\triangle Q\) . Он связан с числом пересеченных силовых линий \( \triangle Ф\) и электрическим сопротивлением контура R, что выражается законом Фарадея:

Соприкосновение поля и проводника вызвано либо движением проводника, либо изменениями самого магнитного поля.

Саму электродвижущую силу индукции, связанную с сопротивлением контура и силой тока согласно закону Ома, можно найти по формуле

\(\triangle t\) здесь — время, за которое проходит через поперечное сечение проводника количество электричества \(\triangle Q.\)
Ленц доказал, что индукционный ток всегда направлен так, чтобы противодействовать вызвавшей его причине. Согласно правилу Ленца, в вышеприведенном соотношении следует выбрать отрицательный знак, считая коэффициент \( \alpha \) положительным:

Как рассчитать электродвижущую силу индукции, формулы

Через магнитный поток

Через силу тока

ЭДС самоиндукции зависит от изменения силы тока, при этом магнитный поток собственного поля через цепь пропорционален току в ней:

L здесь — индуктивность проводника.

Через сопротивление

Для ЭДС индукции уравнение закона Ома можно переписать в виде:
\(\varepsilon_\;=\;IR\;-\;\varepsilon.\)

Через угловую скорость

B здесь — индукция магнитного поля, \(\omega\) — угловая скорость вращения рамки, S — площадь рамки, N — число витков, \(\alpha\) — угол между векторами индукции магнитного поля и скорости движения проводника.

Читайте также:  True rms для постоянного тока

Через площадь

Если магнитный поток изменяется без деформации витков, т. е. их количество и площадь не меняются, то можно найти электродвижущую силу индукции через площадь.
Угол \alpha между вектором магнитного поля и нормалью к плоскости витков будет равен:

\(2\mathrm\pi\;\times\;\mathrm v\;\times\;\mathrm t. \) Полный магнитный поток в момент времени t будет равен:

\(\psi_B\;=\;N\;\times\;B\;\times\;S\;\times\;\cos\left(\alpha\right)=\;N\;\times\;B\;\times\;S\;\times\;\cos\left(2\mathrm\pi\;\times\;\mathrm v\;\times\;\mathrm t\right).\)

Источник

Угловая скорость.

Угловой скоростью называется величина, численно равная скорости точек, расположенных от оси на расстоянии единицы длины.

Угловая скорость

При вращении тела вокруг неподвижной оси АВ каждая точка тела М описывает окружность, перпендикулярную к оси, центр Р которой лежит на оси.

Скорость точки M направлена нормально к плоскости МАВ в сторону вращения. Равномерное вращение точки характеризуется постоянной угловой скоростью.

Угловой скоростью тела называют отношение угла поворота к интервалу времени, в течение которого совершен этот поворот. Если угловую скорость обозначить через w, то:

Угловая скорость выражается в радианах в секунду (рад/с).

При равномерном вращении, когда известна угловая скорость в начальный момент времени t = 0, можно определить угол поворота тела за время t и тем самым положение точек тела:

За один период (промежуток времени Т, в течение которого тело совершает один оборот по окружности) угол поворота φ равен рад: = wT, откуда:

Связь угловой скорости с периодом Т и частотой вращения ν выражается соотношением:

А связь между линейной и угловой скоростями определяется соотношением:

Источник

Частота вращения: формула

Количество повторений каких-либо событий или их возникновения за одну единицу таймера называется частотой. Это физическая величина измеряется в герцах – Гц (Hz). Она обозначается буквами ν, f, F, и есть отношение количества повторяющихся событий к промежутку времени, в течение которого они произошли.

Вращение планет вокруг Солнца

При обращении предмета вокруг своего центра можно говорить о такой физической величине, как частота вращения, формула:

где:

  • N – количество оборотов вокруг оси или по окружности,
  • t – время, за которое они были совершены.

В системе СИ обозначается как – с-1 (s-1) и именуется как обороты в секунду (об/с). Применяют и другие единицы вращения. При описании вращения планет вокруг Солнца говорят об оборотах в часах. Юпитер делает одно вращение в 9,92 часа, тогда как Земля и Луна оборачиваются за 24 часа.

Номинальная скорость вращения

Прежде, чем дать определение этому понятию, необходимо определиться, что такое номинальный режим работы какого-либо устройства. Это такой порядок работы устройства, при котором достигаются наибольшая эффективность и надёжность процесса на продолжении длительного времени. Исходя из этого, номинальная скорость вращения – количество оборотов в минуту при работе в номинальном режиме. Время, необходимое для одного оборота, составляет 1/v секунд. Оно называется периодом вращения T. Значит, связь между периодом обращения и частотой имеет вид:

К сведению. Частота вращения вала асинхронного двигателя – 3000 об./мин., это номинальная скорость вращения выходного хвостовика вала при номинальном режиме работы электродвигателя.

Как найти или узнать частоты вращений различных механизмов? Для этого применяется прибор, который называется тахометр.

 Прибор для измерения частоты вращения – тахометр Testo 477

Угловая скорость

Когда тело движется по окружности, то не все его точки движутся с одинаковой скоростью относительно оси вращения. Если взять лопасти обычного бытового вентилятора, которые вращаются вокруг вала, то точка расположенная ближе к валу имеет скорость вращения больше, чем отмеченная точка на краю лопасти. Это значит, у них разная линейная скорость вращения. В то же время угловая скорость у всех точек одинаковая.

Угловая скорость представляет собой изменение угла в единицу времени, а не расстояния. Обозначается буквой греческого алфавита – ω и имеет единицу измерения радиан в секунду (рад/с). Иными словами, угловая скорость – это вектор, привязанный к оси обращения предмета.

Формула для вычисления отношения между углом поворота и временным интервалом выглядит так:

где:

  • ω – угловая скорость (рад./с);
  • ∆ϕ – изменение угла отклонения при повороте (рад.);
  • ∆t – время, затраченное на отклонение (с).

Обозначение угловой скорости употребляется при изучении законов вращения. Оно употребляется при описании движения всех вращающихся тел.

Угловая скорость в конкретных случаях

На практике редко работают с величинами угловой скорости. Она нужна при конструкторских разработках вращающихся механизмов: редукторов, коробок передач и прочего.

Вычислить её, применяя формулу, можно. Для этого используют связь угловой скорости и частоты вращения.

где:

  • π – число, равное 3,14;
  • ν – частота вращения, (об./мин.).

В качестве примера могут быть рассмотрены угловая скорость и частота вращения колёсного диска при движении мотоблока. Часто необходимо уменьшить или увеличить скорость механизма. Для этого применяют устройство в виде редуктора, при помощи которого понижают скорость вращения колёс. При максимальной скорости движения 10 км/ч колесо делает около 60 об./мин. После перевода минут в секунды это значение равно 1 об./с. После подстановки данных в формулу получится результат:

ω = 2*π*ν = 2*3,14*1 = 6,28 рад./с.

К сведению. Снижение угловой скорости часто требуется для того, чтобы увеличить крутящий момент или тяговое усилие механизмов.

Читайте также:  Сопротивление резины электрическому току

Шестерёнчатый уменьшитель хода для мотокультиватора

Как определить угловую скорость

Принцип определения угловой скорости зависит от того, как происходит движение по окружности. Если равномерно, то употребляется формула:

Если нет, то придётся высчитывать значения мгновенной или средней угловой скорости.

Величина, о которой идёт разговор, векторная, и при определении её направления используют правило Максвелла. В просторечии – правило буравчика. Вектор скорости имеет одинаковое направление с поступательным перемещением винта, имеющего правую резьбу.

Правило Максвелла для угловой скорости

Рассмотрим на примере, как определить угловую скорость, зная, что угол поворота диска радиусом 0,5 м меняется по закону ϕ = 6*t:

ω = ϕ / t = 6 * t / t = 6 с-1

Вектор ω меняется из-за поворота в пространстве оси вращения и при изменении значения модуля угловой скорости.

Угол поворота и период обращения

Рассмотрим точку А на предмете, вращающимся вокруг своей оси. При обращении за какой-то период времени она изменит своё положение на линии окружности на определённый угол. Это угол поворота. Он измеряется в радианах, потому что за единицу берётся отрезок окружности, равный радиусу. Ещё одна величина измерения угла поворота – градус.

Когда в результате поворота точка А вернётся на своё прежнее место, значит, она совершила полный оборот. Если её движение повторится n-раз, то говорят о некотором количестве оборотов. Исходя из этого, можно рассматривать 1/2, 1/4 оборота и так далее. Яркий практический пример этому – путь, который проделывает фреза при фрезеровании детали, закреплённой в центре шпинделя станка.

Внимание! Угол поворота имеет направление. Оно отрицательное, когда вращение происходит по часовой стрелке и положительное при вращении против движения стрелки.

Если тело равномерно продвигается по окружности, можно говорить о постоянной угловой скорости при перемещении, ω = const.

В этом случае находят применения такие характеристики, как:

  • период обращения – T, это время, необходимое для полного оборота точки при круговом движении;
  • частота обращения – ν, это полное количество оборотов, которое совершает точка по круговой траектории за единичный временной интервал.

Интересно. По известным данным, Юпитер обращается вокруг Солнца за 12 лет. Когда Земля за это время делает вокруг Солнца почти 12 оборотов. Точное значение периода обращения круглого гиганта – 11,86 земных лет.

Циклическая частота вращения (обращения)

Скалярная величина, измеряющая частоту вращательного движения, называется циклической частотой вращения. Это угловая частота, равная не самому вектору угловой скорости, а его модулю. Ещё её именуют радиальной или круговой частотой.

Циклическая частота вращения – это количество оборотов тела за 2*π секунды.

У электрических двигателей переменного тока это частота асинхронная. У них частота вращения ротора отстаёт от частоты вращения магнитного поля статора. Величина, определяющая это отставание, носит название скольжения – S. В процессе скольжения вал вращается, потому что в роторе возникает электроток. Скольжение допустимо до определённой величины, превышение которой приводит к перегреву асинхронной машины, и её обмотки могут сгореть.

Устройство этого типа двигателей отличается от устройства машин постоянного тока, где токопроводящая рамка вращается в поле постоянных магнитов. Большое количество рамок вместил в себя якорь, множество электромагнитов составили основу статора. В трёхфазных машинах переменного тока всё наоборот.

При работе асинхронного двигателя статор имеет вращающееся магнитное поле. Оно всегда зависит от параметров:

  • частоты питающей сети;
  • количества пар полюсов.

Скорость вращения ротора состоит в прямом соотношении со скоростью магнитного поля статора. Поле создаётся тремя обмотками, которые расположены под углом 120 градусов относительно друг друга.

Переход от угловой к линейной скорости

Существует различие между линейной скоростью точки и угловой скоростью. При сравнении величин в выражениях, описывающих правила вращения, можно увидеть общее между этими двумя понятиями. Любая точка В, принадлежащая окружности с радиусом R, совершает путь, равный 2*π*R. При этом она делает один оборот. Учитывая, что время, необходимое для этого, есть период Т, модульное значение линейной скорости точки В находится следующим действием:

ν = 2*π*R / Т = 2*π*R* ν.

Так как ω = 2*π*ν, то получается:

Следовательно, линейная скорость точки В тем больше, чем дальше от центра вращения находится точка.

К сведению. Если рассматривать в качестве такой точки города на широте Санкт-Петербурга, их линейная скорость относительно земной оси равна 233 м/с. Для объектов на экваторе – 465 м/с.

Числовое значение вектора ускорения точки В, движущейся равномерно, выражается через R и угловую скорость, таким образом:

а = ν2/ R, подставляя сюда ν = ω* R, получим: а = ν2/ R = ω2* R.

Это значит, чем больше радиус окружности, по которой движется точка В, тем больше значение её ускорения по модулю. Чем дальше расположена точка твердого тела от оси вращения, тем большее ускорение она имеет.

Поэтому можно вычислять ускорения, модули скоростей необходимых точек тел и их положений в любой момент времени.

Связь между угловой и линейной скоростями

Понимание и умение пользоваться расчётами и не путаться в определениях помогут на практике вычислениям линейной и угловой скоростей, а также свободно переходить при расчётах от одной величины к другой.

Видео

Источник