Меню

Учет реактивной мощности электросчетчиком

Что такое активная и реактивная электроэнергия на счетчике

С одной стороны, работу тока можно легко посчитать, зная силу тока, напряжение и сопротивление нагрузки. До боли знакомые формулы из курса школьной физики выглядят так.

И здесь нет ни слова про реактивную составляющую.

С другой стороны, ряд физических процессов на самом деле накладывают свои особенности на эти расчёты. Речь идёт о реактивной энергии. Проблемы с пониманием реактивных процессов приходят вместе со счетами за электроэнергию в крупных предприятиях, ведь в бытовых сетях мы платим только за активную энергию (размеры потребления реактивной энергии настолько малы, что ими просто пренебрегают).

Чтобы понять суть физических процессов начнём с определений.

Активная электроэнергия – это полностью преобразуемая энергия, поступающая в цепь от источника питания. Преобразование может происходить в тепло или в другой вид энергии, но суть остаётся одна – принятая энергия не возвращается обратно в источник.

Пример работы активной энергии: ток, проходя через элемент сопротивления, часть энергии преобразует в нагрев. Эта совершённая работа тока и является активной.

Реактивная электроэнергия – это энергия, возвращаемая обратно источнику тока. То есть ранее полученный и учтённый счётчиком ток, не совершив работы, возвращается. Помимо прочего ток совершает скачок (на короткое время нагрузка сильно возрастает).

Тут без примеров сложно понять процесс.

Самый наглядный – работа конденсатора. Сам по себе конденсатор не преобразует электроэнергию в полезную работу, он её накапливает и отдаёт. Конечно, если часть энергии всё-таки уходит на нагрев элемента, то её можно считать активной. Реактивная же выглядит так:

1. При питании ёмкости переменным напряжением, вместе с увеличением U растёт и заряд конденсатора.

2. В момент начала падения напряжения (второй четвертьпериод на синусоиде) напряжение на конденсаторе оказывается выше, чем у источника. И поэтому конденсатор начинает разряжаться, отдавая энергию обратно в цепь питания (ток течёт в обратном направлении).

3. В следующих двух четвертьпериодах ситуация полностью повторяется, то только напряжение меняется на противоположное.

Ввиду того, что сам конденсатор работы не совершает, принимаемое напряжение достигает своего максимального амплитудного значения (то есть в √2=1,414 раза больше действующего 220В, или 220·1,414=311В).

При работе с индуктивными элементами (катушки, трансформаторы, электродвигатели и т.п.) ситуация аналогична. График показателей можно увидеть на изображении ниже.

Рис. 2. Графики показателей

Ввиду того, что современные бытовые приборы состоят из множества разных элементов с «реактивным» эффектом питания и без него, то реактивный ток, протекая в обратном направлении, совершает вполне реальную работу по нагреву активных элементов. Таким образом, реактивная мощность цепи – по сути выражается в побочных потерях и скачках напряжения.

Очень сложно отделить один показатель мощности от другого при расчётах. А система качественного и эффективного учёта стоит дорого, что, собственно, и привело к отказу от измерения объёма потребления реактивных токов в быту.

В крупных коммерческих объектах наоборот, объем потребления реактивной энергии намного больше (из-за обилия силовой техники, снабжаемой мощными электродвигателями, трансформаторами и другими элементами, порождающими реактивный ток), поэтому для них вводится раздельный учёт.

Как считается активная и реактивная электроэнергия

Большинство производителей счётчиков электроэнергии для предприятий реализуют простой алгоритм.

Здесь из полной мощности S отнимается активная мощность P (в облегчённом для понимания виде).

Таким образом, производителю не обязательно организовывать полностью раздельный учёт.

Читайте также:  Трехфазные электросчетчики как подключить

Что такое cosϕ (косинус фи)

Ввиду того, что большой объем фактически паразитных реактивных токов нагружает сети поставщика электроэнергии, последние стимулируют потребителей снижать реактивную мощность.

Для числового выражения соотношения активной и реактивной мощностей применяется специальный коэффициент – косинус фи.

Вычисляется он по формуле.

Где полная мощность – это сумма активной и реактивной.

Чем ближе показатель к единице, тем меньше паразитной нагрузки на сеть.

Такой же коэффициент указывается на шильдиках электроинструмента, оснащённого двигателями. В этом случае cosϕ используется для оценки пиковой потребляемой мощности. Например, номинальная мощность прибора составляет 600 Вт, а cosϕ = 0,7 (средний показатель для подавляющего большинства электроинструмента), тогда пиковая мощность, необходимая для старта электродвигателя будет считаться как Pномин / cosϕ, = 600 Вт / 0,7 = 857 ВА (реактивная мощность выражается в вольт-амперах).

Применение компенсаторов реактивной мощности

Чтобы стимулировать потребителей эксплуатировать электросеть без реактивной нагрузки, поставщики электроэнергии вводят дополнительный оплачиваемый тариф на реактивную мощность, но оплату взимают только если среднемесячное потребление превысит определённый коэффициент, например, при соотношении полной и активной мощностей составит свыше 0,9, счёт на оплату реактивной мощности не выставляется.

Для того, чтобы снизить расходы, предприятия ставят специальное оборудование – компенсаторы. Они могут быть двух видов (в соответствии с принципом работы):

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Источник

Счётчик реактивной энергии

Многие слышали о реактивной электрической энергии. Учитывая сложность понимания этого термина, сначала необходимо детально разобрать отличия между активной и реактивной энергиями. Приступить необходимо с осознания того факта, что реактивная энергия проявляет себя только в сетях переменного тока. В цепях, где течёт постоянный ток, реактивной энергии не существует. Это обусловлено самой природой её появления.

Переменный ток поступает к потребителю от генерирующих мощностей через ряд понижающих трансформаторов, конструкция которых предусматривает разделение обмоток высокого и низкого напряжения. То есть, в трансформаторе нет прямого физического контакта между обмотками, а ток, тем не менее, течёт. Объяснение этому довольно простое. Электрическая энергия передаётся через воздух, являющийся хорошим диэлектриком, с помощью электромагнитного поля. Его составляющая — переменное магнитное поле, появляющееся в одной из обмоток трансформатора, постоянно пересекает другую обмотку, не имеющей с первой прямого электрического контакта, наводя в её витках электродвижущую силу.

КПД современных трансформаторов очень велик, поэтому потери электроэнергии составляют незначительную величину и вся мощность переменного тока, протекающего в первичной обмотке, переходит в цепь вторичной обмотки. Такая же картина повторяется в конденсаторе. Только за счёт электрического поля. И индуктивность, и емкость порождают реактивную энергию, периодически возвращая источнику переменного тока часть энергии. Запасание и возврат энергии (реактивной её части) мешают течению активной энергии, которая и выполняет всю полезную работу в сетях — она преобразуется в механическую, тепловую и иные виды работы.

Для компенсации противодействия реактивной энергии потребители, у которых много индуктивной нагрузки применяют специально устанавливаемые емкости (конденсаторы). Это позволяет минимизировать негативное влияние появляющейся реактивной энергии. Как уже отмечено, реактивная мощность оказывает существенное влияние на величину потерь электрической энергии в сети. Помимо этого, большой объём реактивной энергии может снизить уровень электромагнитной совместимости оборудования. Из-за этого величину этой негативной энергии необходимо постоянно контролировать и лучший способ для этого – организация её учёта.

Читайте также:  Срок годности электросчетчика со 505

Промышленные предприятия (где, в основном, озабочены проблемой реактивной энергии) часто ставят отдельные приборы учёта для реактивной и активной энергии. Счётчики реактивной энергии ведут её учёт в трёхфазных сетях по двум составляющим (индуктивной и емкостной) в вольт-амперах реактивных часов. Как правило, счётчик реактивной энергии — это аналого-цифровое устройство, преобразующее мощность в аналоговый сигнал, который потом превращается в частоту следования электрических импульсов, сложение которых позволяет судить о величине потребляемой энергии. Конструкция счётчика предусматривает пластмассовый корпус, в котором установлены три трансформатора тока и печатная плата с блоком учёта. На внешней стороне прибора размещены светодиоды и (или) жидкокристаллический экран.

Учитывая растущую конкуренцию, промышленные предприятия всё чаще устанавливают универсальные приборы учёта электрической энергии, способные измерять количество активной и реактивной энергии. Кроме того, что приборы совмещают в себе функции двух и более устройств, потребитель снижает затраты на обслуживание системы учёта (вместо двух счётчиков содержится один) и может сэкономить на цене покупки. Эти устройства на базе микропроцессоров способны измерять мгновенные значения напряжений и токов и вычислять реактивную и активную мощности. Прибор фиксирует уровень потребления энергии и отражает информацию на дисплее тремя сменяющимися кадрами (объём активной энергии, индуктивная составляющая реактивной энергии и её ёмкостная составляющая). Новые модели могут учитывать энергию в двух направлениях, предавать полученные данные по инфракрасному цифровому каналу, лучше защищены от воздействия магнитных полей и от хищений энергии. Высокая точность измерений и малое энергопотребление также выгодно отличают их от предшественников.

Источник



Учет реактивной мощности электросчетчиком

Традиционные счётчики с диском специально созданы так, чтобы считать только активную энергию. Реактивную они не считают (по крайней мере если счётчик правильно спроектирован и изготовлен), т.к. там после сдвига по фазе на обмотках тока и напряжения ток, а соотв. и магнитное поле, будут попадать в фазе либо в противофазе, т.е. будут работать как если бы это была одна большая обмотка. А от этого вращающего момента на диске не возникнет. Специально суммировать активную с реактивной обычный счётчик с одним диском просто не может. Можно считать их (таким методом) только отдельно: один счётчик, допустим, активной энергии, и отдельный счётчик реактивной. Считать просто полную энергию не имеет физического и экономического смысла для энергетиков, потому что это на самом деле не энергия никакая. Хотя допускаю, что м.б. и существуют какие-то дурацкие электронные счётчики, которые считают путём интегрирования действующих напряжения и тока без учёта фазовых соотношений. Но это вообще говоря, если и так, то несусветная наглость. К примеру, если я у себя дома поставлю электростанцию, которая будет выдавать ток точно в противофазе с напряжением, такой счётчик насчитал бы всё равно положительное потребление, хотя должен был отрицательное, и никакой реактивной энергии в этом случае тоже нет.

Так ведь дело в том, что эти реактивные потери происходят по большей части не внутри квартиры (а которые происходят — те и учитываются счётчиком уже как активная мощность — но это мелочь, какие-то милливатты, максимум), а на линиях, принадлежащих энергетикам, грубо говоря. Т.е. ни о каком потреблении приборами в квартире, по отношению к реактивной мощности, говорить не приходится. Она не потребляется, то есть. Учёт её имеет смысл, но совсем не в том ключе, как активной. Грубо говоря, активная — это прямая зависимость с тем, сколько нужно топлива, например, сжечь на электростанции. А реактивная — это где и сколько и каких устройств компенсации реактивной мощности в сетях надо поставить энергетикам (или, если оказалось неточно рассчитано — терпеть какую-то долю потерь и дополнительного потребного сечения проводов). При этом может оказаться так, что, допустим, два расположенных по соседству потребителя имеют большую реактивную мощность, но в противофазе друг с другом, и тем самым друг друга почти компенсируют по этой части. Т.е. в зависимости от окружающей обстановки и преобладающих фазовых сдвигов в потреблении какое-то направление реактивной мощности может оказаться де-факто даже очень полезным для энергетиков в глобальных масштабах. Поэтому с учётом и оплатой реактивной энергии всё непросто, и уж всяко не годится её как-то так суммировать с активной.

Читайте также:  Размер штрафа за срыв пломбы электросчетчика

Редактировано 1 раз(а). Последний раз 11.02.11 12:38 пользователем Toman.

Что значит ближайшая розетка? В квартире можно с хорошей точностью считать, что там все розетки одинаково ближайшие к счётчику. Ему абсолютно всё равно, в какую розетку включать какое угодно устройство. Компенсировать реактивную составляющую, конечно, можно. Вотни в розетку конденсатор или дроссель соответственно, и компенсируй. Только для этого надо вначале узнать, в какую сторону и насколько компенсировать. А вот откуда это узнает прибор, просто воткнутый в одну из розеток, совершенно непонятно. Он же не знает общий ток, потребляемый всеми потребителями на всех ветвях в квартире.

И есть ли в плане учёта полной энергии разница между индукционными счётчиками и электронными?

В принципе, если проводка плохая, а токи большие, то лучше воткнуть его в ближайшую к потребителю розетку, просто чтобы минимизировать пути прохождения реактивных токов, и соответственно, нагрев проводов и падение напряжения в них.

Можно сделать, как один мой знакомый у себя в гараже. Основные его потребители — электродвигатели переменного тока, соотстветственно, велика доля индуктивной мощности. Он подключил сразу после счётчика в гараже батарею из четырёх конденсаторов, каждый включается своим тумблером, и амперметр, показывающий полный потребляемый ток. И дальше уже вручную «набирает» тумблерами необходимую ёмкость, чтобы ток минимизировался. Сейчас он хочет усовершенствовать и автоматизировать это дело, используя микроконтроллер. По его замыслу, контроллер будет отслеживать действующее значение тока. Если оно изменилось на какую-то величину за определённый промежуток времени, значит, изменилась нагрузка. Тогда контроллер увеличит ёмкость компенсатора (каждый конденсатор будет управляться своим реле от контроллера). Если ток уменьшился, увеличит ещё; если увеличился, то, наоборот, уменьшит ёмкость и т. д., пока не найдёт, где минимум. Всё это нужно не для счётчика, а для минимизации потребляемого гаражом реактивного тока, чтобы зря не срабатывал вводной автомат и не превышать выделенный кооперативу лимит.
Вообще, с микроконтроллером большое поле для фантазий: если отслеживать мгновенные значения тока и напряжения, то можно вообще в реальном времени рассчитывать необходимую ёмкость компенсирующей батареи конденсаторов. Можно ещё и переменный конденсатор использовать для плавного регулирования.

Я в детстве экспериментировал со своим счётчиком СО-2М2, подключая асинхронные двигатели и конденсаторы в разных комбинациях. Не похоже, чтобы скорость вращения диска существенно менялась.

Редактировано 1 раз(а). Последний раз 11.02.11 13:23 пользователем Неунывающий питерский бродяга.

Источник

Учет реактивной мощности электросчетчиком

Счётчик реактивной энергии

Многие слышали о реактивной электрической энергии. Учитывая сложность понимания этого термина, сначала необходимо детально разобрать отличия между активной и реактивной энергиями. Приступить необходимо с осознания того факта, что реактивная энергия проявляет себя только в сетях переменного тока. В цепях, где течёт постоянный ток, реактивной энергии не существует. Это обусловлено самой природой её появления.

Переменный ток поступает к потребителю от генерирующих мощностей через ряд понижающих трансформаторов, конструкция которых предусматривает разделение обмоток высокого и низкого напряжения. То есть, в трансформаторе нет прямого физического контакта между обмотками, а ток, тем не менее, течёт. Объяснение этому довольно простое. Электрическая энергия передаётся через воздух, являющийся хорошим диэлектриком, с помощью электромагнитного поля. Его составляющая — переменное магнитное поле, появляющееся в одной из обмоток трансформатора, постоянно пересекает другую обмотку, не имеющей с первой прямого электрического контакта, наводя в её витках электродвижущую силу.

КПД современных трансформаторов очень велик, поэтому потери электроэнергии составляют незначительную величину и вся мощность переменного тока, протекающего в первичной обмотке, переходит в цепь вторичной обмотки. Такая же картина повторяется в конденсаторе. Только за счёт электрического поля. И индуктивность, и емкость порождают реактивную энергию, периодически возвращая источнику переменного тока часть энергии. Запасание и возврат энергии (реактивной её части) мешают течению активной энергии, которая и выполняет всю полезную работу в сетях — она преобразуется в механическую, тепловую и иные виды работы.

Для компенсации противодействия реактивной энергии потребители, у которых много индуктивной нагрузки применяют специально устанавливаемые емкости (конденсаторы). Это позволяет минимизировать негативное влияние появляющейся реактивной энергии. Как уже отмечено, реактивная мощность оказывает существенное влияние на величину потерь электрической энергии в сети. Помимо этого, большой объём реактивной энергии может снизить уровень электромагнитной совместимости оборудования. Из-за этого величину этой негативной энергии необходимо постоянно контролировать и лучший способ для этого – организация её учёта.

Промышленные предприятия (где, в основном, озабочены проблемой реактивной энергии) часто ставят отдельные приборы учёта для реактивной и активной энергии. Счётчики реактивной энергии ведут её учёт в трёхфазных сетях по двум составляющим (индуктивной и емкостной) в вольт-амперах реактивных часов. Как правило, счётчик реактивной энергии — это аналого-цифровое устройство, преобразующее мощность в аналоговый сигнал, который потом превращается в частоту следования электрических импульсов, сложение которых позволяет судить о величине потребляемой энергии. Конструкция счётчика предусматривает пластмассовый корпус, в котором установлены три трансформатора тока и печатная плата с блоком учёта. На внешней стороне прибора размещены светодиоды и (или) жидкокристаллический экран.

Учитывая растущую конкуренцию, промышленные предприятия всё чаще устанавливают универсальные приборы учёта электрической энергии, способные измерять количество активной и реактивной энергии. Кроме того, что приборы совмещают в себе функции двух и более устройств, потребитель снижает затраты на обслуживание системы учёта (вместо двух счётчиков содержится один) и может сэкономить на цене покупки. Эти устройства на базе микропроцессоров способны измерять мгновенные значения напряжений и токов и вычислять реактивную и активную мощности. Прибор фиксирует уровень потребления энергии и отражает информацию на дисплее тремя сменяющимися кадрами (объём активной энергии, индуктивная составляющая реактивной энергии и её ёмкостная составляющая). Новые модели могут учитывать энергию в двух направлениях, предавать полученные данные по инфракрасному цифровому каналу, лучше защищены от воздействия магнитных полей и от хищений энергии. Высокая точность измерений и малое энергопотребление также выгодно отличают их от предшественников.

Читайте также:  Электро щитки для электросчетчика

Источник

Что такое активная и реактивная электроэнергия на счетчике

С одной стороны, работу тока можно легко посчитать, зная силу тока, напряжение и сопротивление нагрузки. До боли знакомые формулы из курса школьной физики выглядят так.

И здесь нет ни слова про реактивную составляющую.

С другой стороны, ряд физических процессов на самом деле накладывают свои особенности на эти расчёты. Речь идёт о реактивной энергии. Проблемы с пониманием реактивных процессов приходят вместе со счетами за электроэнергию в крупных предприятиях, ведь в бытовых сетях мы платим только за активную энергию (размеры потребления реактивной энергии настолько малы, что ими просто пренебрегают).

Чтобы понять суть физических процессов начнём с определений.

Активная электроэнергия – это полностью преобразуемая энергия, поступающая в цепь от источника питания. Преобразование может происходить в тепло или в другой вид энергии, но суть остаётся одна – принятая энергия не возвращается обратно в источник.

Пример работы активной энергии: ток, проходя через элемент сопротивления, часть энергии преобразует в нагрев. Эта совершённая работа тока и является активной.

Реактивная электроэнергия – это энергия, возвращаемая обратно источнику тока. То есть ранее полученный и учтённый счётчиком ток, не совершив работы, возвращается. Помимо прочего ток совершает скачок (на короткое время нагрузка сильно возрастает).

Тут без примеров сложно понять процесс.

Самый наглядный – работа конденсатора. Сам по себе конденсатор не преобразует электроэнергию в полезную работу, он её накапливает и отдаёт. Конечно, если часть энергии всё-таки уходит на нагрев элемента, то её можно считать активной. Реактивная же выглядит так:

1. При питании ёмкости переменным напряжением, вместе с увеличением U растёт и заряд конденсатора.

2. В момент начала падения напряжения (второй четвертьпериод на синусоиде) напряжение на конденсаторе оказывается выше, чем у источника. И поэтому конденсатор начинает разряжаться, отдавая энергию обратно в цепь питания (ток течёт в обратном направлении).

3. В следующих двух четвертьпериодах ситуация полностью повторяется, то только напряжение меняется на противоположное.

Ввиду того, что сам конденсатор работы не совершает, принимаемое напряжение достигает своего максимального амплитудного значения (то есть в √2=1,414 раза больше действующего 220В, или 220·1,414=311В).

При работе с индуктивными элементами (катушки, трансформаторы, электродвигатели и т.п.) ситуация аналогична. График показателей можно увидеть на изображении ниже.

Рис. 2. Графики показателей

Ввиду того, что современные бытовые приборы состоят из множества разных элементов с «реактивным» эффектом питания и без него, то реактивный ток, протекая в обратном направлении, совершает вполне реальную работу по нагреву активных элементов. Таким образом, реактивная мощность цепи – по сути выражается в побочных потерях и скачках напряжения.

Очень сложно отделить один показатель мощности от другого при расчётах. А система качественного и эффективного учёта стоит дорого, что, собственно, и привело к отказу от измерения объёма потребления реактивных токов в быту.

В крупных коммерческих объектах наоборот, объем потребления реактивной энергии намного больше (из-за обилия силовой техники, снабжаемой мощными электродвигателями, трансформаторами и другими элементами, порождающими реактивный ток), поэтому для них вводится раздельный учёт.

Как считается активная и реактивная электроэнергия

Большинство производителей счётчиков электроэнергии для предприятий реализуют простой алгоритм.

Читайте также:  Трехфазные электросчетчики как подключить

Здесь из полной мощности S отнимается активная мощность P (в облегчённом для понимания виде).

Таким образом, производителю не обязательно организовывать полностью раздельный учёт.

Что такое cosϕ (косинус фи)

Ввиду того, что большой объем фактически паразитных реактивных токов нагружает сети поставщика электроэнергии, последние стимулируют потребителей снижать реактивную мощность.

Для числового выражения соотношения активной и реактивной мощностей применяется специальный коэффициент – косинус фи.

Вычисляется он по формуле.

Где полная мощность – это сумма активной и реактивной.

Чем ближе показатель к единице, тем меньше паразитной нагрузки на сеть.

Такой же коэффициент указывается на шильдиках электроинструмента, оснащённого двигателями. В этом случае cosϕ используется для оценки пиковой потребляемой мощности. Например, номинальная мощность прибора составляет 600 Вт, а cosϕ = 0,7 (средний показатель для подавляющего большинства электроинструмента), тогда пиковая мощность, необходимая для старта электродвигателя будет считаться как Pномин / cosϕ, = 600 Вт / 0,7 = 857 ВА (реактивная мощность выражается в вольт-амперах).

Применение компенсаторов реактивной мощности

Чтобы стимулировать потребителей эксплуатировать электросеть без реактивной нагрузки, поставщики электроэнергии вводят дополнительный оплачиваемый тариф на реактивную мощность, но оплату взимают только если среднемесячное потребление превысит определённый коэффициент, например, при соотношении полной и активной мощностей составит свыше 0,9, счёт на оплату реактивной мощности не выставляется.

Для того, чтобы снизить расходы, предприятия ставят специальное оборудование – компенсаторы. Они могут быть двух видов (в соответствии с принципом работы):

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Источник



Учет реактивной мощности электросчетчиком

Традиционные счётчики с диском специально созданы так, чтобы считать только активную энергию. Реактивную они не считают (по крайней мере если счётчик правильно спроектирован и изготовлен), т.к. там после сдвига по фазе на обмотках тока и напряжения ток, а соотв. и магнитное поле, будут попадать в фазе либо в противофазе, т.е. будут работать как если бы это была одна большая обмотка. А от этого вращающего момента на диске не возникнет. Специально суммировать активную с реактивной обычный счётчик с одним диском просто не может. Можно считать их (таким методом) только отдельно: один счётчик, допустим, активной энергии, и отдельный счётчик реактивной. Считать просто полную энергию не имеет физического и экономического смысла для энергетиков, потому что это на самом деле не энергия никакая. Хотя допускаю, что м.б. и существуют какие-то дурацкие электронные счётчики, которые считают путём интегрирования действующих напряжения и тока без учёта фазовых соотношений. Но это вообще говоря, если и так, то несусветная наглость. К примеру, если я у себя дома поставлю электростанцию, которая будет выдавать ток точно в противофазе с напряжением, такой счётчик насчитал бы всё равно положительное потребление, хотя должен был отрицательное, и никакой реактивной энергии в этом случае тоже нет.

Так ведь дело в том, что эти реактивные потери происходят по большей части не внутри квартиры (а которые происходят — те и учитываются счётчиком уже как активная мощность — но это мелочь, какие-то милливатты, максимум), а на линиях, принадлежащих энергетикам, грубо говоря. Т.е. ни о каком потреблении приборами в квартире, по отношению к реактивной мощности, говорить не приходится. Она не потребляется, то есть. Учёт её имеет смысл, но совсем не в том ключе, как активной. Грубо говоря, активная — это прямая зависимость с тем, сколько нужно топлива, например, сжечь на электростанции. А реактивная — это где и сколько и каких устройств компенсации реактивной мощности в сетях надо поставить энергетикам (или, если оказалось неточно рассчитано — терпеть какую-то долю потерь и дополнительного потребного сечения проводов). При этом может оказаться так, что, допустим, два расположенных по соседству потребителя имеют большую реактивную мощность, но в противофазе друг с другом, и тем самым друг друга почти компенсируют по этой части. Т.е. в зависимости от окружающей обстановки и преобладающих фазовых сдвигов в потреблении какое-то направление реактивной мощности может оказаться де-факто даже очень полезным для энергетиков в глобальных масштабах. Поэтому с учётом и оплатой реактивной энергии всё непросто, и уж всяко не годится её как-то так суммировать с активной.

Читайте также:  Трехфазная розетка для электросчетчика

Редактировано 1 раз(а). Последний раз 11.02.11 12:38 пользователем Toman.

Что значит ближайшая розетка? В квартире можно с хорошей точностью считать, что там все розетки одинаково ближайшие к счётчику. Ему абсолютно всё равно, в какую розетку включать какое угодно устройство. Компенсировать реактивную составляющую, конечно, можно. Вотни в розетку конденсатор или дроссель соответственно, и компенсируй. Только для этого надо вначале узнать, в какую сторону и насколько компенсировать. А вот откуда это узнает прибор, просто воткнутый в одну из розеток, совершенно непонятно. Он же не знает общий ток, потребляемый всеми потребителями на всех ветвях в квартире.

И есть ли в плане учёта полной энергии разница между индукционными счётчиками и электронными?

В принципе, если проводка плохая, а токи большие, то лучше воткнуть его в ближайшую к потребителю розетку, просто чтобы минимизировать пути прохождения реактивных токов, и соответственно, нагрев проводов и падение напряжения в них.

Можно сделать, как один мой знакомый у себя в гараже. Основные его потребители — электродвигатели переменного тока, соотстветственно, велика доля индуктивной мощности. Он подключил сразу после счётчика в гараже батарею из четырёх конденсаторов, каждый включается своим тумблером, и амперметр, показывающий полный потребляемый ток. И дальше уже вручную «набирает» тумблерами необходимую ёмкость, чтобы ток минимизировался. Сейчас он хочет усовершенствовать и автоматизировать это дело, используя микроконтроллер. По его замыслу, контроллер будет отслеживать действующее значение тока. Если оно изменилось на какую-то величину за определённый промежуток времени, значит, изменилась нагрузка. Тогда контроллер увеличит ёмкость компенсатора (каждый конденсатор будет управляться своим реле от контроллера). Если ток уменьшился, увеличит ещё; если увеличился, то, наоборот, уменьшит ёмкость и т. д., пока не найдёт, где минимум. Всё это нужно не для счётчика, а для минимизации потребляемого гаражом реактивного тока, чтобы зря не срабатывал вводной автомат и не превышать выделенный кооперативу лимит.
Вообще, с микроконтроллером большое поле для фантазий: если отслеживать мгновенные значения тока и напряжения, то можно вообще в реальном времени рассчитывать необходимую ёмкость компенсирующей батареи конденсаторов. Можно ещё и переменный конденсатор использовать для плавного регулирования.

Я в детстве экспериментировал со своим счётчиком СО-2М2, подключая асинхронные двигатели и конденсаторы в разных комбинациях. Не похоже, чтобы скорость вращения диска существенно менялась.

Редактировано 1 раз(а). Последний раз 11.02.11 13:23 пользователем Неунывающий питерский бродяга.

Источник