Меню

Цепь с катушкой индуктивности в цепи синусоидального тока

Цепь с катушкой индуктивности в цепи синусоидального тока

Идеальный резистивный элемент не обладает ни индуктивностью, ни емкостью. Если к нему приложить синусоидальное напряжение (см. рис. 1), то ток i через него будет равен

Соотношение (1) показывает, что ток имеет ту же начальную фазу, что и напряжение. Таким образом, если на входе двухлучевого осциллографа подать сигналы u и i , то соответствующие им синусоиды на его экране будут проходить (см. рис. 2) через нуль одновременно, т.е. на резисторе напряжение и ток совпадают по фазе.

Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:

— разделим первый из них на второй:

Полученный результат показывает, что отношение двух комплексов есть вещественная константа. Следовательно, соответствующие им векторы напряжения и тока (см. рис. 3) совпадают по направлению.

2. Конденсатор

Идеальный емкостный элемент не обладает ни активным сопротивлением (проводимостью), ни индуктивностью. Если к нему приложить синусоидальное напряжение (см. рис. 4), то ток i через него будет равен

Полученный результат показывает, что напряжение на конденсаторе отстает по фазе от тока на /2. Таким образом, если на входы двухлучевого осциллографа подать сигналы u и i , то на его экране будет иметь место картинка, соответствующая рис. 5.

Введенный параметр называют реактивным емкостным сопротивлением конденсатора. Как и резистивное сопротивление, имеет размерность Ом. Однако в отличие от R данный параметр является функцией частоты, что иллюстрирует рис. 6. Из рис. 6 вытекает, что при конденсатор представляет разрыв для тока, а при .

Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:

— разделим первый из них на второй:

В последнем соотношении — комплексное сопротивление конденсатора. Умножение на соответствует повороту вектора на угол по часовой стрелке. Следовательно, уравнению (4) соответствует векторная диаграмма, представленная на рис. 7.

3. Катушка индуктивности

Идеальный индуктивный элемент не обладает ни активным сопротивлением, ни емкостью. Пусть протекающий через него ток (см. рис. 8) определяется выражением . Тогда для напряжения на зажимах катушки индуктивности можно записать

Полученный результат показывает, что напряжение на катушке индуктивности опережает по фазе ток на /2. Таким образом, если на входы двухлучевого осциллографа подать сигналы u и i , то на его экране (идеальный индуктивный элемент) будет иметь место картинка, соответствующая рис. 9.

Введенный параметр называют реактивным индуктивным сопротивлением катушки; его размерность – Ом. Как и у емкостного элемента этот параметр является функцией частоты. Однако в данном случае эта зависимость имеет линейный характер, что иллюстрирует рис. 10. Из рис. 10 вытекает, что при катушка индуктивности не оказывает сопротивления протекающему через него току, и при .

Переходя от синусоидальных функций напряжения и тока к соответствующим комплексам:

разделим первый из них на второй:

В полученном соотношении — комплексное

сопротивление катушки индуктивности. Умножение на соответствует повороту вектора на угол против часовой стрелки. Следовательно, уравнению (6) соответствует векторная диаграмма, представленная на рис. 11

4. Последовательное соединение резистивного и индуктивного элементов

Пусть в ветви на рис. 12 . Тогда

Уравнению (7) можно поставить в соответствие соотношение

которому, в свою очередь, соответствует векторная диаграмма на рис. 13. Векторы на рис. 13 образуют фигуру, называемую треугольником напряжений. Аналогично выражение

графически может быть представлено треугольником сопротивлений (см. рис. 14), который подобен треугольнику напряжений.

5. Последовательное соединение резистивного и емкостного элементов

Опуская промежуточные выкладки, с использованием соотношений (2) и (4) для ветви на рис. 15 можно записать

На основании уравнения (7) могут быть построены треугольники напряжений (см. рис. 16) и сопротивлений (см. рис. 17), которые являются подобными.

6. Параллельное соединение резистивного и емкостного элементов

Для цепи на рис. 18 имеют место соотношения:

, где [См] – активная проводимость;

, где [См] – реактивная проводимость конденсатора.

Векторная диаграмма токов для данной цепи, называемая треугольником токов, приведена на рис. 19. Ей соответствует уравнение в комплексной форме

Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 20.

Для комплексного сопротивления цепи на рис. 18 можно записать

Необходимо отметить, что полученный результат аналогичен известному из курса физики выражению для эквивалентного сопротивления двух параллельно соединенных резисторов.

7. Параллельное соединение резистивного и индуктивного элементов

Для цепи на рис. 21 можно записать

, где [См] – активная проводимость;

, где [См] – реактивная проводимость катушки индуктивности.

Векторной диаграмме токов (рис. 22) для данной цепи соответствует уравнение в комплексной форме

Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 23.

Читайте также:  Почему мал ток холостого хода в трансформаторе

Выражение комплексного сопротивления цепи на рис. 21 имеет вид:

1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

1. В чем сущность реактивных сопротивлений?

2. Какой из элементов: резистор, катушку индуктивности или конденсатор – можно использовать в качестве шунта для наблюдения за формой тока?

3. Почему катушки индуктивности и конденсаторы не используются в цепях постоянного тока?

4. В ветви на рис. 12 . Определить комплексное сопротивление ветви, если частота тока .
Ответ: .

5. В ветви на рис. 15 . Определить комплексное сопротивление ветви, если частота тока .
Ответ: .

6. В цепи на рис. 18 . Определить комплексные проводимость и сопротивление цепи для .
Ответ: ; .

7. Протекающий через катушку индуктивности ток изменяется по закону А. Определить комплекс действующего значения напряжения на катушке.
Ответ: .

Источник



Цепь синусоидального тока с индуктивностью

Если в цепь синусоидального тока включить катушку, с активным сопротивлением, которой можно пренебречь, то такую цепь можно рассматривать как цепь, обладающую только индуктивностью (рис.65). Синусоидальный ток, проходя через катушку, наводит в ней ЭДС самоиндукции, величина которой определяется выражением

3.22

Примем начальную фазу тока равной нулю, тогда

3. 23

При cos ЭДС самоиндукции будет иметь максимальное амплитудное значение

3. 24

Учитывая, что косинусоиду можно рассматривать как синусоиду с начальной фазой и принимая во внимание выражение 3. 24, получим

) 3. 25

Так как активное сопротивление равно нулю, то согласно второму закону Кирхгофа сумма напряжений на зажимах цепи ЭДС самоиндукции равно нулю

Отсюда 3. 26

Из выражения 3. 26 видно, что в цепи с индуктивностью напряжение опережает ток на 90°. Приложенное к цепи напряжение вызывает в ней такой ток, который при своем изменении в любой момент времени индуктирует ЭДС, равную по величине и противоположную по знаку приложенному напряжению. На рис. 66 показаны волновая и векторная диаграммы токов и напряжений в цепи с индуктивностью.

Максимальное значение приложенного напряжения соответствует моменту, когда

т.е.

3. 27

Разделив левую и правую части выражения 3. 27 на получим

откуда получим формулу

3. 28

Закона Ома для действующих значений тока и напряжения в цепи с индуктивностью.

Величина, стоящая в знаменателе, имеет характер в размерность сопротивления и называется индуктивным сопротивлением или реактивным сопротивлением индуктивности

3. 29

Индуктивное сопротивление прямо пропорционально частоте переменного тока и индуктивности цепи и характеризует влияние ЭДС самоиндукции на величину тока.

Для цепи с индуктивностью закон Ома справедлив только для амплитудных и действующих значений тока и напряжения. Для мгновенных значений в этом случаем закон Ома неприменим, так как

Мгновенное значение мощности в цепи с индуктивностью равно произведению мгновенных значений напряжения тока

3. 30

Следовательно, мгновенное значение мощности в цепи с индуктивностью измеряется по синусоидальному закону с двойной частотой. На рис. 67 представлен график изменения мощности за период. Из графика видно, что в течение первой четверти периода ток в цепи нарастает. При этом возрастает энергия магнитного поля, т.е. энергия поступает от генератора в катушку. Во вторую четверть периода ток в цепи уменьшается, уменьшается по величие и магнитное поле катушки.

При этом энергия магнитного поля превращается в электрическую и возвращается обратно в генератор. Аналогичные процессы происходят в течение второго полупериода.

Таким образом, энергия, полученная цепью за каждую половину периода равна нулю, следовательно, равна нулю и средняя мощность цепи

В цепи с индуктивностью происходит периодический обмен энергией между генератором и магнитным полем катушки без необратимого преобразования электрической энергии. Колебания энергии характеризуются реактивной мощностью, которая равна амплитудному значению мгновенной мощности

Реактивная мощность измеряется в вольтметрах реактивных(Вар).

Пример 16. Катушка с индуктивностью L=43,8 мГн включена в цепь синусоидального тока с напряжением U=220 В. Определить ток в цепи и реактивную мощность. Частота переменного тока f=400 Гц.

Источник

Индуктивность в цепи синусоидального тока

Индуктивность в цепи синусоидального тока Индуктивность в цепи синусоидального тока Индуктивность в цепи синусоидального тока

Индуктивность в цепи синусоидального тока

Индуктивность синусоидальной цепи тока. Практически все обмотки (катушки) имеют удельную индуктивность и активное сопротивление. R.

  • In схема катушки может быть представлена в виде

Выберите 1 индуктивность L из схемы (без активного резистора) — рис. 97 A. Если ток / = Im sin otf протекает L, то катушка индуцируется. д. с самоиндуцированной Эл. e. L–L — = — Л. (5.17)) Размеры[ХЈ = [со] [л] = сек-1 * ом * с =Ом.

Читайте также:  Средний ток за время заряда конденсатора

Следовательно, индуктивность равна Xl =(oL. It это то же самое, что и обмен resistance. It прямо пропорционально к frequency. In кроме того, важно подчеркнуть, что напряжение индуктивности на 90°опережает фазу(см. уравнение 5.16). .97, b-вектор напряжения (J на 90°больше, чем вектор тока. Комплекс^ ^ d. S;

  • Мы нашли выражение, что самоиндуцированный El находится в фазе, противоположной фазе одевания. Графики мгновенных значений (. и p показаны в N. рисунок 97, # мгновенная мощность Р = Уи = ум, потому что(в! м грех ш / = sin2ш/.

Два когда и или (I) проходит через ноль, он проходит через нулевое значение. и и (положительный, p также положительный в течение первых 4 минут периода 1, область, окруженная кривой p и горизонтальной осью,

Во 2-й четверти периода, когда ток в цепи уменьшается от максимума до нуля, энергия магнитного поля возвращается к источнику питания, и мгновенная мощность составляет negative. In в 3-й четверти периода энергия снова берется из источника, а в 4-й четверти-энергия.

Помощь студентам в учёбе
Помощь студентам в учёбе
Помощь студентам в учёбе

Помощь студентам в учёбе

Изучу , оценю , оплатите , через 2-3 дня всё будет на «4» или «5» !

Откройте сайт на смартфоне, нажмите на кнопку «написать в чат» и чат в whatsapp запустится автоматически.

Помощь студентам в учёбе

Помощь студентам в учёбеf9219603113@gmail.com


Помощь студентам в учёбе

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.9219603113.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Цепь с катушкой индуктивности в цепи синусоидального тока

Если напряжение подключить к сопротивлению R, то через него протекает ток

Анализ выражения (6.7) показывает, что напряжение на сопротивлении и ток, протекающий через него, совпадают по фазе.
Формула (6.7) в комплексной форме записи имеет вид

где и — комплексные амплитуды тока и напряжения.
Комплексному уравнению (6.8) соответствует векторная диаграмма (рис. 6.4).

Из анализа диаграммы следует, что векторы напряжения и тока совпадают по направлению.

Сопротивление участка цепи постоянному току называется омическим, а сопротивление того же участка переменному току — активным сопротивлением.

Рис.6.4
Активное сопротивление больше омического из-за явления поверхностного эффекта. Поверхностный эффект заключается в том, что ток вытесняется из центральных частей к периферии сечения проводника.

6.5. Индуктивная катушка в цепи синусоидального тока

Сначала рассмотрим идеальную индуктивную катушку, активное сопротивление которой равно нулю. Пусть по идеальной катушке с индуктивностью L протекает синусоидальный ток . Этот ток создает в индуктивной катушке переменное магнитное поле, изменение которого вызывает в катушке ЭДС самоиндукции

Эта ЭДС уравновешивается напряжением, подключенным к катушке: u = eL = 0.

Таким образом, ток в индуктивности отстает по фазе от напряжения на 90 o из-за явления самоиндукции.
Уравнение вида (6.10) для реальной катушки, имеющей активное сопротивление R, имеет следующий вид:

Анализ выражения (6.11) показывает, что ЭДС самоиндукции оказывает препятствие (сопротивление) протеканию переменного тока, из-за чего ток в реальной индуктивной катушке отстает по фазе от напряжения на некоторый угол φ (0 o o ), величина которого зависит от соотношения R и L. Выражение (6.11) в комплексной форме записи имеет вид:

где ZL — полное комплексное сопротивление индуктивной катушки ;
ZL — модуль комплексного сопротивления;
— начальная фаза комплексного сопротивления;
— индуктивное сопротивление (фиктивная величина, характеризующая реакцию электрической цепи на переменное магнитное поле).
Полное сопротивление индуктивной катушки или модуль комплексного сопротивления

Комплексному уравнению (6.12) соответствует векторная диаграмма (рис.6.5).

Из анализа диаграммы видно, что вектор напряжения на индуктивности опережает вектор тока на 90 o .
В цепи переменного тока напряжения на участках цепи складываются не арифметически, а геометрически.
Если мы поделим стороны треугольника напряжений на величину тока Im, то перейдем к подобному треугольнику сопротивлений (рис. 6.6).

Из треугольника сопротивлений получим несколько формул:
; ;
Рис. 6.6

6.6. Емкость в цепи синусоидального тока

Если к конденсатору емкостью C подключить синусоидальное напряжение, то в цепи протекает синусоидальный ток

Из анализа выражений 6.13 следует, что ток опережает напряжение по фазе на 90 o .

Выражение (6.13) в комплексной форме записи имеет вид:

где — емкостное сопротивление, фиктивная расчетная величина, имеющая размерность сопротивления.

Если комплексное сопротивление индуктивности положительно
, то комплексное сопротивление емкости отрицательно

На рис. 6.7 изображена векторная диаграмма цепи с емкостью.
Вектор тока опережает вектор напряжения на 90 o .

6.7. Последовательно соединенные реальная индуктивная
катушка и конденсатор в цепи синусоидального тока

Катушка с активным сопротивлением R и индуктивностью L и конденсатор емкостью С включены последовательно (рис.6.8). В схеме протекает синусоидальный ток

Читайте также:  Как снизить ток намагничивания силового трансформатора

Определим напряжение на входе схемы.
В соответствии со вторым законом Кирхгофа,

Подставим эти формулы в уравнение (6.15). Получим:

Из выражения (6.16) видно: напряжение в активном сопротивлении совпадает по фазе с током, напряжение на индуктивности опережает по фазе ток на 90 o , напряжение по емкости отстает по фазе от тока на 90 o .
Запишем уравнение (6.16) в комплексной форме:

Поделим левую и правую части уравнения (6.17) на √2.
Получим уравнение для комплексов действующих значений токов и напряжений

где — комплексное сопротивление цепи;
— модуль комплексного сопротивления, или полное сопротивление цепи;
— начальная фаза комплексного сопротивления.

При построении векторных диаграмм цепи рассмотрим три случая.

  1. XL > XC, цепь носит индуктивный характер. Векторы напряжений на индуктивности и емкости направлены в противоположные стороны, частично компенсируют друг друга. Вектор напряжения на входе схемы опережает вектор тока (рис.6.9).
  2. Индуктивное сопротивление меньше емкостного. Вектор напряжения на входе схемы отстает от вектора тока. Цепь носит емкостный характер (рис.6.10).
  3. Индуктивное и емкостное сопротивления одинаковы. Напряжения на индуктивности и емкости полностью компенсируют друг друга. Ток в цепи совпадает по фазе с входным напряжением. В электрической цепи наступает режим резонансного напряжения (рис.6.11).

Ток в резонансном режиме достигает максимума, так как полное сопротивление (z) цепи имеет минимальное значение.

Условие возникновения резонанса: , отсюда резонансная частота равна

Из формулы следует, что режима резонанса можно добиться следующими способами:

  1. изменением частоты;
  2. изменением индуктивности;
  3. изменением емкости.

В резонансном режиме входное напряжение равно падению напряжения в активном сопротивлении. На индуктивности и емкости схемы могут возникнуть напряжения, во много раз превышающие напряжение на входе цепи. Это объясняется тем, что каждое напряжение равно произведению тока I (а он наибольший), на соответствующее индуктивное или емкостное сопротивление (а они могут быть большими).

Рис. 6.9 Рис. 6.10 Рис. 6.11

6.8. Параллельно соединенные индуктивность, емкость
и активное сопротивление в цепи синусоидального тока

К схеме на рис. 6.12 подключено синусоидальное напряжение . Схема состоит из параллельно включенных индуктивности, емкости и активного сопротивления.
Определим ток на входе схемы.

В соответствии с первым законом Кирхгофа:
, (6.19)
где
— активная проводимость.

Подставим эти формулы в уравнение (6.19). Получим:

где — индуктивная проводимость;
— емкостная проводимость.

Из уравнения (6.20) видно, что ток в ветви с индуктивностью отстает по фазе от напряжения на 90 o , ток в ветви с активным сопротивлением совпадает по фазе с напряжением, ток в ветви с емкостью опережает по фазе напряжение на 90 o .
Запишем уравнение (6.20) в комплексной форме.

где — комплексная проводимость;
— полная проводимость;
— начальная фаза комплексной проводимости.

Построим векторные диаграммы, соответствующие комплексному уравнению (6.21).

Рис. 6.13 Рис. 6.14 Рис. 6.15

В схеме на рис. 6.12 может возникнуть режим резонанса токов. Резонанс токов возникает тогда, когда индуктивная и емкостная проводимости одинаковы. При этом индуктивный и емкостный токи, направленные в противоположные стороны, полностью компенсируют друг друга. Ток в неразветвленной части схемы совпадает по фазе с напряжением.
Из условия возникновения резонанса тока получим формулу для резонансной частоты тока

В режиме резонанса тока полная проводимость цепи — минимальна, а полное сопротивление — максимально. Ток в неразветвленной части схемы в резонансном режиме имеет минимальное значение. В идеализированном случае R = 0,

Ток в неразветвленной части цепи I = 0. Такая схема называется фильтр — пробкой.

6.9. Резонансный режим в цепи, состоящей
из параллельно включенных реальной индуктивной
катушки и конденсатора

Комплексная проводимость индуктивной ветви

где — активная проводимость индуктивной катушки;
— полное сопротивление индуктивной катушки;
— индуктивная проводимость катушки;
— емкостная проводимость второй ветви.

В режиме резонансов токов справедливо уравнение:

Из этого уравнения получим формулу для резонанса частоты

На рисунке 6.16 изображена векторная диаграмма цепи в резонансном режиме.

Вектор тока I2 опережает вектор напряжения на 90 o . Вектор тока I1 отстает от вектора напряжения на угол φ,

Разложим вектор тока I1 на две взаимно перпендикулярные составляющих, одна из них, совпадающая с вектором напряжения, называется активной составляющей тока Iа1, другая — реактивной составляющей тока Iр1.

В режиме резонанса тока реактивная составляющая тока Iр1 и емкостный ток I2 , направленные в противоположные стороны, полностью компенсируют друг друга, активная составляющая тока Iа1 совпадает по фазе с напряжением (рис. 6.17). Ток I в неразветвленной части схемы совпадает по фазе с напряжением.

Источник

Adblock
detector