Меню

Трансформаторы тока в схемах подстанций

Измерительный трансформатор тока

Трансформатором тока(ТН, TV) – называют электротехническое устройство, изменяющее величину выходного значения электротока в процессе передачи с первичной на вторичную обмотку. В результате пропуска через трансформатор, электрический ток передаётся из одной системы в другую, пропорционально изменяясь, в зависимости от поставленной задачи.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

  1. Особенности конструкции и принцип работы
  2. Виды трансформаторов тока
  3. Расшифровка маркировки
  4. Технические параметры
  5. Схемы подключения трансформаторов тока
  6. Силового оборудования
  7. Вторичные цепи
  8. Популярные виды и стоимость трансформаторов
  9. Возможные неисправности

Особенности конструкции и принцип работы

Принцип работы трансформаторов тока основан на использовании закона электромагнитной индукции.

Прибор состоит из следующих элементов:

Принцип работы трансформатора

  • первичной и вторичной обмоток;
  • замкнутого сердечника (магнитопровода).

Принцип работы трансформатора

Обмотки накручены вокруг сердечника, изолированно от него и друг от друга. Иногда первичная обмотка может заменяться медной или алюминиевой шиной. Трансформация величины электрического тока происходит за счёт разницы количества витков первичной и вторичной обмоток. В большинстве случаев устройство предназначено для снижения показателя тока, поэтому вторичная обмотка выполняется с меньшим количеством витков, нежели первичная.

Электроток подаётся на первичную обмотку при последовательном подключении. В результате на катушке формируется магнитный поток и наводится электродвижущая сила, вызывающая возникновение тока на выходной катушке.

К выходной обмотке подключают потребляющий прибор, в зависимости от целей, для которых используется устройство.

Некоторые устройства выполняются с несколькими выходными катушками, что позволяет путём переключения изменять величину трансформации электрического тока. В целях безопасности, для обеспечения защиты при пробое изоляции, выходной контур заземляется.

Виды трансформаторов тока

Данные электротехнические устройства классифицируются по нескольким характеристикам. В зависимости от назначения токовые трансформаторы могут быть:

  • защитными – снижающими параметры тока для предотвращения выхода из строя потребляющих устройств;
  • измерительными – через которые подключаются средства измерения, в том числе электросчётчики;
  • промежуточными – устанавливаемыми в системы релейной защиты;
  • лабораторными – используемыми для исследовательских целей, обладающими низкой погрешностью измерения, нередко – с несколькими коэффициентами трансформации.

Учитывая характер условий эксплуатации, различают трансформаторы:

    для наружной установки – защищённые от воздействия атмосферных факторов, которые можно использовать на открытом воздухе;

Три трансформатора тока для 3-х фаз(А, B? C)

Три трансформатора тока для 3-х фаз(А, B? C)
внутренние – применяемые внутри помещений;

ТТ для установки внутри помещений

ТТ для установки внутри помещений
встроенные – расположенные внутри электрических приборов и являющиеся их составной частью(3 ТА для каждой фазы показаны стрелкой).

встроенный-та

Встроенные ТТ

В зависимости от исполнения первичных обмоток различают устройства:

  • одновиткового исполнения;
  • многовитковые;
  • шинные.

исполнение первичных обмоток

С учётом способа установки их подразделяют на следующие типы:

  • проходной;
  • опорный.

опорный и проходной та

По числу ступеней изменения тока выделяют трансформаторы:

  • одноступенчатого,
  • двухступенчатого (каскадного) типа.

Устройства, в зависимости от величины напряжения, на которое они рассчитаны делят на предназначенные для работы в условиях более и менее 1000 В.

Для изготовления сердечника применяется специальная трансформаторная сталь. Изоляция выполняется сухой (бакелитовой, фарфоровой), обычной или бумажно-масляной.

Расшифровка маркировки

Расшифровка маркировки трансформаторов тока

Расшифровка маркировки трансформаторов тока

Технические параметры

Трансформаторы тока характеризуются следующими индивидуальными параметрами:

Формула по вычислению коэффициента трансформации

  1. Номинальным током – позволяющим аппарату функционировать длительное время, не перегреваясь;
  2. Номинальным напряжением – значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.
  3. Коэффициентом трансформации; Формула по вычислению коэффициента трансформации

Значения

  • U1 и U2 – напряжение в первичной и вторичной обмотки,
  • N1 и N2 – количество витков в первичной и вторичной обмотке,
  • I1 и I2 – ток в первичной и вторичной обмотки(обычно ток во вторичной обмотке равен 1А или 5А).
  • Погрешностью значения электротока – вызывается намагничиванием;
  • Номинальной нагрузкой, определяющей нормальную работу прибора;
  • Номинальной предельной кратностью – максимально допустимое значение отношения первичного значения электротока к номинальному;
  • Предельной кратностью вторичного тока – соотношение наибольшего тока вторичной обмотки к его номинальной величине.
  • Значения которыми могут обладать ТТ

    При выборе устройства необходимо учитывать значение указанных и других характеристик.

    Схемы подключения трансформаторов тока

    Силового оборудования

    Схема подключения для 110 кВ и выше:

    подключение тт на 110 кВ

    Схема подключения для 6-10 кВ в ячейках КРУ:

    подключение тт на 10 кв

    Вторичные цепи

    Схема включение трансформатора тока в полную звезду:

    1

    Схема включение трансформатора тока в неполную звезду(З а счет распределения токов на дополнительном приборе получается отобразить векторную сумму фаз А и С, которая противоположно направлена вектору фазы В при симметричном режиме нагрузки сети):

    4

    Схема включение трансформатора тока в неполную звезду(для контроля линейного тока с помощью реле):

    3

    Схема включение трансформатора тока в полную звезду с подключением обмотки реле к фильтру нулевой последовательности(ФТНП):

    2

    Популярные виды и стоимость трансформаторов

    Бытового потребителя больше интересуют токовые трансформаторы, используемые для подключения электросчётчиков. В продаже предлагаются приборы типов:

    • ТТИ;
    • ТТН;
    • ТОП;
    • ТОЛ и другие.

    Цена зависит от разновидности, конструкции, характеристик и напряжений на котором будет использоваться ТН:

    • 0,66 кВ от 300 – 5000,
    • 6-10 кВ 10000 – 45000,
    • 35 кВ – около 50 000р,
    • 110 кВ и выше – нужно уточнять у производителя.

    Возможные неисправности

    Указанные устройства чаще всего выходят из строя в результате повреждения изоляции, вызванного перегревом, непредусмотренным механическим воздействием или ошибкой при сборке.

    Чтобы проверить состояние прибора, измеряют сопротивление межвитковой изоляции. Если она меньше установленного значения, оборудование нуждается в замене или ремонте.

    Также для диагностики используются специальные приборы – тепловизоры, позволяющие проверить состояние всей действующей схемы. Наиболее сложные диагностические процедуры производятся в лабораторных условиях. Своевременная диагностика позволяет исключить аварийные ситуации и обеспечить нормальную работу устройств.

    Источник

    

    Измерительные трансформаторы тока — назначение, устройство, виды конструкций

    Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.

    Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.

    Читайте также:  Сварка переменным током плюсы

    Назначение и устройство ИТТ

    Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.

    Как устроен измерительный трансформатор тока

    Конструкция измерительного трансформатора тока

    Обозначения:

    1. Первичная обмотка с определенным количеством витков (W1).
    2. Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
    3. Вторичная обмотка (W2 — число витков).

    Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I1. К катушке 2 подключается приборы, позволяющие установить значение тока I2, релейная защита, система автоматики и т.д.

    Основная область применения ТТ — учет расхода электроэнергии и организация систем защиты для различных электроустановок.

    В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.

    Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.

    Перечень основных параметров

    Технические характеристики трансформатора тока описываются следующими параметрами:

    • Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
    • Номинальным током первичной катушки (I1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
    • Током на вторичной катушке (I2), его значение может быть 1,0 А (для ИТТ с I1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I2 равным 2,0 А или 2,50 А.
    • Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: IНОМ1/IНОМ2, то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.

    Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.

    Технические характеристики измерительного трансформатора тока ТТ-В

    Перечень основных параметров измерительного трансформатора тока ТТ-В

    Виды конструкций измерительных трансформаторов

    В зависимости от исполнения, данные устройства делятся на следующие виды:

    Катушечный ИТТ

    1. Катушечные, пример такого ТТ представлен ниже. Катушечный ИТТ

    Обозначения:

    Пример установки встроенного ТТ

    • A – Клеммная колодка вторичной обмотки.
    • В – Защитный корпус.
    • С – Контакты первичной обмотки.
    • D – Обмотка (петлевая или восьмерочная) .
    1. Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:
    • Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4. Рисунок 4. Пример установки встроенного ТТ

    Обозначения:

    • А – встроенный ТТ.
    • В – изолятор силового ввода трансформатора подстанции.
    • С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
    1. Шинными, это наиболее распространенная конструкция. Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ. Шинные ТТ производства Schneider ElectricШинные ТТ производства Schneider Electric
    1. Разъемными. Особенность данной конструкции заключается в том, что магнитопровод ТТ может разделяться на две части, которые стягиваются между собой специальными шпильками.Разъемный ТТ

    Такой вариант конструкции существенно упрощает монтаж/демонтаж.

    Расшифровка маркировки

    Обозначение отечественных моделей интерпретируется следующим образом:

    • Первая литера в названии модели указывает на вид трансформатора, в нашем случае это будет буква «Т», указывая на принадлежность к ТТ.
    • Вторая литера указывает на особенность конструктивного исполнения, например, буква «Ш», говорит о том, что данное устройство шинное. Если указана литера «О», то это опорный ТТ.
    • Третьей литерой шифруется исполнение изоляции.
    • Цифрами указывается класс напряжения (в кВ).
    • Литера, для обозначения климатического исполнения согласно ГОСТ 15150 69
    • КТ, с указанием номинального тока первичной и вторичной обмотки.

    Приведем пример расшифровки маркировки трансформатора тока.

    Шильдик на ТТ с указанием его марки

    Шильдик на ТТ с указанием его марки

    Как видим, на рисунке изображена маркировка ТЛШ 10УЗ 5000/5А, это указывает на то, что перед нами трансформатор тока (первая литера Т) с литой изоляцией (Л) и шинной конструкцией (Ш). Данное устройство может использоваться в сети с напряжением до 10 кВ. Что касается исполнения, то литера «У», говорит о том, что аппарат создан для эксплуатации в умеренной климатической зоне. КТ 1000/5 А, указывает на величину номинального тока на первой и второй обмотке.

    Схемы подключения

    Обмотки трехфазных ТТ могут быть подключены «треугольником» или «звездой» (см. рис. 8). Первый вариант применяется в тех случаях, когда необходимо получить большую силу тока в цепи второй обмотки или требуется сдвинуть по фазе ток во вторичной катушке, относительно первичной. Второй способ подключения применяется, если необходимо отслеживать силу тока в каждой фазе.

    Подключение трехобмоточного ТТ «звездой» и «треугольником»

    Рисунок 8. Схема подключения трехобмоточного ТТ «звездой» и «треугольником»

    При наличии изолированной нейтрали, может использоваться схема для измерения разности токов между двумя фазами (см. А на рис. 9) или подключение «неполной звездой» (B).

    Пример как подключить ТТ на разность двух фаз (А) и неполной звездой (В)

    Рисунок 9. Схема подключения ТТ на разность двух фаз (А) и неполной звездой (В)

    Когда необходимо запитать защиту от КЗ на землю, применяется схема, позволяющая суммировать токи всех фаз (см. А на рис 10.). Если к выходу такой цепи подключить реле тока, то оно не будет реагировать на КЗ между фазами, но обязательно сработает, если происходит пробой на землю.

    Подключения: А – для суммы токов всех фаз, В и С - последовательное и параллельное включение двухобмоточных ТТ

    Рис 10. Подключения: А – для суммы токов всех фаз, В и С — последовательное и параллельное включение двухобмоточных ТТ

    Читайте также:  Как появился генератор переменного тока

    В завершении приведем еще два примера соединения вторичных обмоток ТТ для снятия показаний с одной фазы:

    Вторичные катушки включаются последовательно (В на рис. 10), благодаря этому возникает возможность измерения суммарной мощности.

    Вторичные обмотки соединяются параллельно, что дает возможность понизить КТ, поскольку происходит суммирование тока в этих катушках, в то время как в линии этот показатель остается без изменений.

    Выбор

    При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.

    Помимо этого IНОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.

    Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:

    • Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
    • Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
    • Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.

    Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ ( п.1.5.1.). Пример расчета показан на картинке ниже.

    Пример расчета ТТ

    Пример расчета трансформатора тока

    Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.

    Обслуживание

    Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:

    • Обращать внимание на различные виды неисправностей, заметим, что большинство из них можно обнаружить при визуальном осмотре.
    • Производить контроль нагрузки в первичных цепях и не допускать перегрузку выше установленной нормы.
    • Необходимо отслеживать состояние контактов первичной цепи (если таковые имеются), на них должны отсутствовать внешние признаки повреждений.
    • Не менее важен контроль состояния внешней изоляции, почти в половине случаев ее стойкость нарушается из-за скопления грязи или влаги, которые закорачивают контакты на землю.
    • У масляных ТТ осуществляют проверку уровня масла, его чистоту, наличие подтеков и т.д. Обслуживание таких установок практически не сильно отличается от других силовых установок, например, емкостных трансформаторов НДЕ, разница заключается в небольших технических деталях.
    • Поверка ТТ должна проводиться согласно действующих нормативов (ГОСТ 8.217 2003).
    • При обнаружении неисправности производится замена прибора. Поврежденный ТТ отправляют в ремонт, который производится специализированными службами.

    Источник

    Обозначения в эл. схемах

    Нормальные схемы электрических соединений объектов электроэнергетики

    Правила выполнения нормальных схем электрических соединений объектов электроэнергетики, определены двумя стандартами. Это Стандарт Организации ОАО «ФСК ЕЭС» СТО 56947007-25.040.70.101-2011 Раздел 2 и ГОСТ Р 56303-2014.

    Несмотря на то, что на данный момент оба стандарта действующие и определяют требования к выполнению одних и тех же типов схем, требования в них, несколько отличаются (вероятно разработчики стандартов не дружат . ).

    В данном материале, при составлении примеров графических обозначений элементов схем электрических соединений объектов электроэнергетики, за основу взят ГОСТ Р 56303-2014, так как по дате введения в действие он новее.
    Если вид графических обозначений, приведенных в примерах стандарта СТО 56947007-25.040.70.101-2011, отличается от аналогичных, приведенных в ГОСТ Р 56303-2014, добавлены соответствующие примечания.

    Цветовое исполнение классов напряжения.

    Класс напряжения ГОСТ Р 56303-2014 СТО 56947007-25.040.70.101-2011
    Наименование цвета Спектр (RGB) Наименование цвета Спектр (RGB)
    1150 кВ сиреневый 205:138:255 сиреневый 205:138:255
    800 кВ темно синий 0:0:168 темно синий 0:0:200
    750 кВ темно синий 0:0:168 темно синий 0:0:200
    500 кВ красный 213:0:0 красный 165:15:10
    400 кВ оранжевый 255:100:30 оранжевый 240:150:30
    330 кВ зеленый 0:170:0 зеленый 0:140:0
    220 кВ желто-зеленый 181:181:0 желто-зеленый 200:200:0
    150 кВ хаки 170:150:0 хаки 170:150:0
    110 кВ голубой 0:153:255 голубой 0:180:200
    60 кВ лиловый 255:51:204
    35 кВ коричневый 102:51:0 коричневый 130:100:50
    20 кВ ярко-фиолетовый 160:32:240 коричневый 130:100:50
    15 кВ ярко-фиолетовый 160:32:240
    10 кВ фиолетовый 102:0:204 фиолетовый 100:0:100
    6 кВ темно-зеленый 0:102:0 светло-коричневый 200:150:100
    3 кВ темно-зеленый 0:102:0
    ниже 3 кВ серый 127:127:127
    до 1 кВ серый 190:190:190

    Условные графические обозначения элементов нормальных схем электрических соединений объектов электроэнергетики.

    В примерах, использованы условные графические обозначения из библиотеки трафаретов Visio Нормальная схема ПС.

    Шаг модульной сетки 2,5 мм.

    Толщина линий условных обозначений и линий электрической связи 0,4 мм (По стандарту от 0,2 до 1,0 мм. Рекомендуемая — от 0,3 до 0,4 мм.)

    Графическое обозначение трансформаторов.

    Каждая обмотка автотрансформатора и трансформатора должна выполняться цветом , соответствующим классу напряжения , на который она выполнена .

    Возможность регулирования на оборудовании и символы способов соединения обмоток трансформатора , необходимо отображать стрелкой черного цвета .

    Графическое обозначение коммутационных аппаратов.

    Выкатная тележка разъединителя.

    Положение рабочее, ремонтное и контрольное.

    3-х позиционный КА.

    Положение включено, отключено и заземлено.

    Ремонтное и контрольное положения выкатной тележки.

    Аналогично для п. 7-10.

    Выкатная тележка выключателя по СТО 56947007-25.040.70.101-2011.

    Положение выключателя включено, ремонтное и контрольное положение тележки.

    Графическое обозначение устройств компенсации, фильтров.

    Услоное обозначение должно выполняться цветом, соответствующим классу напряжения устройства, а символ регулирования, черным.

    На примере, реактор токоограничивающий регулируемый.

    Графическое обозначение разрядников, ОПН.

    Наименование Обозначение
    1. Разрядник. 07
    2. Разрядник трубчатый. 00
    3. Разрядник шаровой. 01
    4. Разрядник роговой. Разрядник роговой
    5. Искровой промежуток. Искровой промежуток
    6. Разрядник вентильный и магнитовентильный. Разрядник вентильный и магнитовентильный
    7. Разрядник вентильный. Разрядник вентильный
    8. ОПН — ограничитель напряжения нелинейный. ОПН

    Графическое обозначение генераторов, электродвигателей.

    Графическое обозначение предохранителей.

    Выкатная тележка разъединителя-предохранителя: ремонтное и контрольное положения.

    Аналогично для п. 5-7.

    Графическое обозначение линий электрической связи, шин, заземления.

    ЛЭП — линия электропередач.

    Отображается утолщенными линиями (двухкратное или большее увеличение толщины по отношинию к линиям, которыми выполнены УГО и ошиновка).

    Линию электрической связи с одним ответвлением допускается изображать без точки.

    Ответвления линии электрической связи.

    Точка соединения, должна выполняться цветом, соответствующим классу напряжения линий электрической связи.

    Линию электрической связи с одним ответвлением допускается изображать без точки.

    Выполняться цветом, соответствующим классу напряжения, а точки подключения отводов, белым.

    Как начертить нормальную схему электрических соединений объекта электроэнергетики (электрической подстанции, распределительного устройства)

    Источник

    Схемы соединений трансформаторов тока, виды схем, параллельное и последовательное

    Назначение трансформаторов тока

    Счётчики для однофазных и трёхфазных сетей рассчитаны на номинальные токи до 100 А. Использование приборов с большими токами затруднено по причине необходимости использования проводов слишком большого сечения. Таким образом, для измерения характеристик в линиях с большими токами необходимо использовать специальные устройства, понижающие ток до приемлемого значения. Для этой цели используются трансформаторы тока (ТТ).

    Первичная обмотка трансформатора тока включается последовательно в линейный провод, по которому проходит высокий ток, а ко вторичной обмотке подключается измерительный прибор. Для удобства выводы маркируются обозначениями. Для начала и, соответственно, конца первичной обмотки применяются обозначения Л1 и Л2. Для вторичной обмотки — И1 и И2. При подключении необходимо строго соблюдать полярность первичной и вторичной обмоток ТТ.

    Схемы соединений трансформаторов тока, виды схем, параллельное и последовательное

    Чаще всего величина вторичного тока равна 5 А, иногда применяются ТТ со вторичным током 1 А. Для измерения же напряжения в высоковольтных сетях используется подключение через трансформатор напряжения, который понижает напряжение до 100 или 57.7 вольт.

    Орлов Анатолий Владимирович

    Трансформаторы тока подключаются в трёхфазных цепях по схеме неполной звезды (сети с изолированной нейтралью). При наличии нулевого провода подключение осуществляется с помощью полной звезды. В дифференциальных защитах силовых трансформаторов ТТ подключаются по схеме «Треугольник».

    Это позволяет скомпенсировать сдвиг фаз вторичных токов, что уменьшит ток небаланса. В трёхфазных сетях без нулевого провода обычно трансформаторы тока подключаются только на две ведущие линии, поскольку измерив ток в двух фазах, можно легко рассчитать величину тока в третьей фазе.

    Соединение трансформаторов тока и обмоток реле в полную звезду

    Если сеть имеет глухозаземлённую нейтраль (как правило, сети 110 кВ и выше), то обязательно подключение ТТ ко всем трём фазам. Соединение обмоток реле и трансформаторов тока в полную звезду. Эта схема соединения трансформаторов представлена в виде векторных диаграмм, которые иллюстрируют работу трансформатора на рис. 2.4.1 и на схемах 2.4.2, 2.4.3, 2.4.4.

    Если трансформатор работает в нормальном режиме, или если он симметричный, то будет проходить ток небаланса или небольшой ток, который появляется из–за разных погрешностей трансформаторов тока.

    Представленная выше схема применяется против всех видов КЗ (междуфазных и однофазных) во время включения защиты.
    Трехфазное КЗ
    Соединение трансформаторов тока и обмоток реле в полную звезду Двухфазное КЗ
    Соединение трансформаторов тока и обмоток реле в полную звезду
    Однофазное КЗ
    Соединение трансформаторов тока и обмоток реле в полную звезду Отношение Iр/Iф (ток в реле)/ (ток в фазе) называется коэффициентом схемы, его можно определить для всех схем соединения. Для данной схемы коэффициент схемы kсх будет равен 1.
    Соединение трансформаторов тока и обмоток реле в неполную звезду

    На рис. 2.4.5 предоставлена схема соединения обмоток реле и трансформаторов тока в неполную звезду, а на рис. 2.4.6, 2.4.7. ее векторные диаграммы, которые иллюстрируют работу этой схемы.

    Трехфазное КЗ — когда токи могут идти в обратном проводе по обоим реле.
    Двухфазное КЗ — когда токи, могут протекать в одном или в двух реле в соответствии с повреждением тех или иных фаз.

    Соединение трансформаторов тока и обмоток реле в неполную звезду

    КЗ фазы В одной фазы может происходить тогда, когда токи не появляются в этой схеме защиты.

    Соединение трансформаторов тока и обмоток реле в неполную звезду Схему неполной звезды можно применять только в сетях с нулевыми изолированными точками при kсх=1 с целью защиты от КЗ междуфазных, и может реагировать только на некоторые случаи КЗ однофазного.

    На рис. 2.4.8. можно изучить схему соединения в звезду и треугольник обмоток реле и трансформаторов соответственно.

    Во время симметричных нагрузок в реле и в период возникновения трехфазного КЗ может проходить линейный ток, сдвинутый на 30* по фазе относительно тока фазы и в разы больше его.

    Особенности схемы этого соединения:

    1. при разных всевозможных видах КЗ проходят токи в реле, при этом защита которая построена по такой схеме, будет реагировать на все виды КЗ;
    2. ток в реле относится к фазному току в зависимости от вида КЗ;
    3. ток нулевой последовательности, который не имеет путь через обмотки реле для замыкания, не может выйти за границы треугольника трансформаторов тока.

    Соединение трансформаторов тока в треугольник, а обмоток реле в звезду

    Выше приведенная схема применяется чаще всего для дистанционной или во время дифференциальной защиты трансформаторов.

    Схема восьмерки или включение реле на разность токов двух фаз.

    На рис. 2.4.9 представлена сама схема соединения, а на рис. 2.4.10, 2.4.11.векторные диаграммы, которые иллюстрируют работу этой схемы.

    Соединение трансформаторов тока и обмоток реле в неполную звезду

     Включение реле на разность токов 2 – фаз (схема восьмерки)

    Симметричная нагрузка при трехфазном КЗ.

    Двухфазное КЗ  Включение реле на разность токов 2 – фаз (схема восьмерки) Двухфазно КЗ АВ или ВС
     Включение реле на разность токов 2 – фаз (схема восьмерки) При разных видах КЗ, ток в реле и его чувствительность будут разными. Ток в реле будет равен нулю во время однофазного КЗ фазы В. Эту схему можно применять, тогда, когда не требуется действий трансформатора для защиты от разных междуфазных КЗ с соединением обмоток Y/* – 11 группа, и когда эта защита обеспечивает необходимую чувствительность.

    Соединение трансформаторов тока в фильтр токов нулевой последовательности

    Соединение трансформаторов тока в фильтр токов нулевой последовательности

    На рис. 2.4.12. можно изучить схему соединения трансформаторов тока в фильтр токов нулевой последовательности. Только во время однофазных или двуфазных КЗ на землю появляется ток в реле. Эту схему можно применять во время защиты от КЗ на землю. КЗ IN=0 при двухфазных и трехфазных нагрузках. Но часто ток небаланса Iнб появляется из–за погрешности трансформаторов тока в реле.

    Последовательное соединение трансформаторов тока

     Последовательное соединение трансформаторов тока

    На рис. 2.4.13. представлена схема последовательного соединения трансформаторов тока. Подключенная к трансформаторам тока, нагрузка, распределяется поровну. Напряжение, которое приходится на любой трансформатор тока и на вторичный ток остается неизменным.

    Источник