Меню

Трансформатор тока это в физике

Трансформаторы

Генераторы, которые стоят на электростанциях, вырабатывают очень мощное ЭДС. На практике такое напряжения редко когда бывает нужно. Поэтому такое напряжение необходимо преобразовывать.

Для преобразования напряжения используются устройства, называются трансформаторами. Трансформаторы могут как и повысить напряжение, так и понизить его. Существуют также стабилизирующие трансформаторы, которые не повышают и не понижают напряжение.

Рассмотрим устройство трансформатора на следующем рисунке.

условное обозначение трансформатора:

Устройство и работа трансформатора

Трансформатор состоит из двух катушек с проволочными обмотками. Эти катушки надевают на стальной сердечник. Сердечник не является монолитным, а собирается из тонких пластин.

Одна из обмоток называется первичной. К этой обмотке подсоединяют переменное напряжение, которое идет от генератора, и которое нужно преобразовать. Другая обмотка называется вторичной. К ней подсоединяют нагрузку. Нагрузка это все приборы и устройства, которые потребляют энергию.

На следующем рисунке представлено условное обозначение трансформатора.

Работа трансформатора основана на явлении электромагнитной индукции. Когда через первичную обмотку проходит переменный ток, в сердечнике возникает переменный магнитный поток. А так как сердечник общий, магнитный поток индуцирует ток и в другой катушке.

В первичной обмотке трансформатора имеется N1 витков, её полная ЭДС индукции равняется e1 = N1e, где е – мгновенное значение ЭДС индукции во всех витках. е одинаково для всех витков обоих катушек.

Во вторичной обмотке имеется N2 витков. В ней индуцируется ЭДС e2 = N2 e.

Сопротивлением обмоток пренебрегаем. Следовательно, значения ЭДС индукции и напряжения будут приблизительно равны по модулю: |u1|≈|e1|.

При разомкнутой цепи вторичной обмотки в ней не идет ток, следовательно: |u2|=|e2|.

Мгновенные значения ЭДС e1, e2 колеблются в одной фазе. Их отношение можно заменить отношением значений действующих ЭДС: E1 и E2. А отношение мгновенных значений напряжения заменим действующими значениями напряжения. Получим:

К – коэффициент трансформации. При K>0 трансформатор повышает напряжение, при K

Это магнитный поток будет уменьшать изменение магнитного потока сердечника. Для нагруженного трансформатора будет справедлива следующая формула: U1/U2≈ I2/I1.

То есть при повышении напряжения в несколько раз, мы во столько же раз уменьшим силу тока.

Источник



Трансформатор тока это в физике

Трансформаторы — это просто!

«Физика — 11 класс»

Назначение трансформаторов

Трансформатором называется электротехнические устройства с помощью которого осуществляется преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности.

Впервые подобные устройства были использованы в 1878 г. русским ученым П.Н.Яблочковым для питания изобретенных им электрических свечей — нового в то время источника света.
Позднее эти устройства получили название трансфораторов.
Трансформатор Яблочкова состоял из двух цилиндрических катушек, надетых на стальной стержень, собранный из отдельных проволок.

Устройство трансформатора

Трансформатор состоит из замкнутого стального сердечника, собранного из пластин, на который надеты две (иногда и более) катушки с проволочными обмотками.
Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Другая обмотка, к которой присоединяют нагрузку, т. е. приборы и устройства, потребляющие электроэнергию, называется вторичной.
Условное обозначение трансформатора на электрических схемах

Трансформатор на холостом ходу

Действие трансформатора основано на явлении электромагнитной индукции, открытым Майклом Фарадеем в 1831 году.
Явление электромагнитной индукции: при изменении тока в цепи первой катушки во второй катушке, расположенной рядом, возникает электрический ток.

При питании катушки от источника постоянного тока ток во второй катушке существует только в моменты изменения тока в первой катушке, а на практике — при замыкании и размыкании цепи первой катушки.
Для длительного существования тока необходио непрерывно изменять ток в первой катушке. А это возможно, если соединить ее с источником переменного напряжения. При синусоидальном характере тока в первой катушке ток во второй катушке будет также синусоидальным.

При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, которым возбуждается ЭДС индукции в витках каждой обмотки.
Сердечник из трансформаторной стали концентрирует магнитное поле так, что магнитный поток существует практически только внутри сердечника и одинаков во всех его сечениях.

Мгновенное значение ЭДС индукции е во всех витках первичной или вторичной обмотки одинаково.
Согласно закону Фарадея оно определяется формулой

е = -Ф’

где
Ф’ — производная потока магнитной индукции по времени.

В первичной обмотке, имеющей N1 витков, полная ЭДС индукции

Во вторичной обмотке полная ЭДС индукции

где
N2 — число витков этой обмотки.

Отсюда следует, что

Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь.
В этом случае модуль напряжения на зажимах первичной обмотки примерно равен модулю суммарной ЭДС индукции:

При разомкнутой вторичной обмотке трансформатора ток в ней не идет, и имеет место соотношение

Мгновенные значения ЭДС e1 и e2 изменяются синфазно, т.е. одновременно достигают максимума и одновременно проходят через ноль.
Поэтому их отношение можно заменить отношением действующих значений ЭДС и напряжений

Отношение напряжений на обмотках при работе трансформатора на холостом ходу (без нагрузки) называется коэффициентом трансформацииК.
Трансформаторы используются как для повышения напряжения, так и для понижения, т.е. могут быть повышающими и понижающими.
Если К>1, то трансформатор является понижающим,
если К

Читайте также:  Мультиметр для измерения силы тока в амперах

Работа нагруженного трансформатора

Если к концам вторичной обмотки присоединить цепь, потребляющую электроэнергию, т.е. нагрузить трансформатор, то сила тока во вторичной обмотке уже не будет равна нулю.
Появившийся ток создаст в сердечнике свой переменный магнитный поток, который будет уменьшать изменения магнитного потока в сердечнике.

Уменьшение амплитуды колебаний результирующего магнитного потока не произойдет, так как

Поэтому при замыкании цепи вторичной обмотки автоматически увеличится сила тока в первичной обмотке.
Его амплитуда возрастет таким образом, что восстановится прежнее значение амплитуды колебаний результирующего магнитного потока.

Увеличение силы тока в цепи первичной обмотки происходит в соответствии с законом сохранения энергии: отдача электроэнергии в цепь, присоединенную к вторичной обмотке трансформатора, сопровождается потреблением от сети такой же энергии первичной обмоткой.

При подключении нагрузки ко вторичной цепи КПД трансформатора близок к 100%.
Мощность в первичной цепи при нагрузке трансформатора, близкой к номинальной, примерно равна мощности во вторичной цепи:

При повышении с помощью трансформатора напряжения в несколько раз, сила тока во столько же раз уменьшается (и наоборот).

Трансформатор преобразует переменный электрический ток таким образом, что произведение силы тока на напряжение примерно одинаково в первичной и вторичной обмотках

Чтобы уменььшить нагревание сердечника, его собирают из отдельных стальных пластин, которые изолируются друг от друга бумагой, лаком или окисью металла сердечника.
В трансформаторах малой мощности применяют круглые тороидальные сердечники из стальных колец или стальной ленты.
Для повышения КПД в трансформаторах обмотки высокого и низкого напряжения располагают на одних и тех же стержнях.
В радиотехнике обмотки часто наматываются на средний стерженьь.

При работе трансформатора обмотки нагреваются, для их охлаждения мощные трансформаторы помещают даже в баки с жидким маслом (масляные трансформаторы).

Трансформаторы широко используют в радиоаппаратуре, а также для передачи электроэнергии на большие расстояния в линиях электропередач, для этого строятся трансформаторные подстанции.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Производство, передача и использование электрической энергии. Физика, учебник для 11 класса — Класс!ная физика

Источник

Принцип действия ТТ и их назначение

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

  • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
  • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

принцип работы трансформатора тока

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Читайте также:  Передача тока через землю

Режимы работы трансформаторов тока

У ТТ существуют два основных режима работы – установившийся и переходный.

В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют отличия в работе ТТ и ТН.

  • Первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи и вообще, чем оно ближе к нулю, тем точнее аппарат. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
  • ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
  • Не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

Сохраните в закладки или поделитесь с друзьями

Источник

Что такое трансформатор

Трансформатор – статическое устройство, имеющее две или более обмотки связанные индуктивно на магнитопроводе, предназначенное для преобразования одной величины напряжение и тока в другое посредством электромагнитной индукции, без изменения частоты.

  1. Немного истории
  2. Конструкция и принцип работы
  3. Режимы работы
  4. Классификации
  5. Силовой
  6. Измерительные
  7. Импульсный
  8. Автотрансформатор
  9. Разделительный
  10. Согласующий
  11. Пик-трансформатор
  12. Сдвоенный дроссель
  13. Сварочный
  14. Расшифровка основных параметров
  15. Цена трансформаторов
  16. Видео: Как проверить исправность трансформатора

Немного истории

Благодаря английскому физику Майклу Фарадею в 1831 году человечество познакомилось с электромагнитной индукцией. Великому учёному не суждено было стать изобретателем трансформатора, поскольку в его опытах фигурировал постоянный ток. Прообразом устройства можно считать необычную индукционную катушку француза Г. Румкорфа, которая была представлена учёному миру в 1848-м.

В 1876 году русский электротехник П. Н. Яблочков запатентовал трансформатор переменного тока с разомкнутым сердечником. Современному виду устройство обязано англичанам братьям Гопкинсон, а также румынами К. Циперановскому и О. Блати. С их помощью конструкция приобрела замкнутый магнитопровод и сохранила схему до наших дней.

виды-магнитопроводов

Виды магнитопроводов

Конструкция и принцип работы

Обязательными элементами практически любого устройства преобразования напряжения являются изолированные обмотки, формированные из проволоки или ленты. Они располагаются на магнитопроводе, представленном сердечником из ферромагнитного материала. Связь между катушками осуществляется при помощи магнитного потока. В случае работы с высокочастотными токами (100 и более кГц) сердечник отсутствует.

Принцип работы трансформатора

Принцип работы трансформатора

В принципе работы трансформатора сочетаются основные постулаты электромагнетизма и электромагнитной индукции. Его можно рассмотреть на примере простейшего прибора с двумя катушками и стальным сердечником. Подача переменного напряжения на первичную обмотку приводит к возникновение магнитного потока в магнитопроводе, после чего во вторичной и первичной обмотке возникает ЭДС индукции, если подключить нагрузку ко вторичной обмотке то потечёт ток. Частота напряжения на выходе остаётся неизменной, а его величина зависит от соотношения витков катушек.

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

  • U1 и U2 – напряжение в первичной и вторичной обмотки,
  • N1 и N2 – количество витков в первичной и вторичной обмотке,
  • I1 и I2 – ток в первичной и вторичной обмотки.

Конструкция силового трансформатора:

Конструкция трансформатора

Режимы работы

Характеристики трансформаторов определяются условиями работы, где ключевая роль отводится сопротивлению нагрузки. За основу берутся следующие режимы:

режимы работы

  1. Холостого хода. Выводы вторичной цепи находятся в разомкнутом состоянии, сопротивление нагрузки приравнивается бесконечности. Измерения тока намагничивания, протекающего в первичной обмотке, даёт возможность подсчитать КПД трансформатора. При помощи этого режима вычисляется коэффициент трансформации, а также потери в сердечнике;
  2. Под нагрузкой (рабочий). Вторичная цепь нагружается определённым сопротивлением. Параметры протекающего по ней тока напрямую связаны с соотношением витков катушек.
  3. Короткого замыкания. Концы вторичной обмотки закорочены, сопротивление нагрузки равно нулю. Режим информирует о потерях, которые вызываются нагревом обмоток, что на профессиональном языке значится «потерями в меди».

Режим короткого замыкания

Режим короткого замыкания

Информация о поведении трансформатора в различных режимах получаются опытным путём с использованием схем замещения.

Классификации

Трансформаторы классифицируются по ряду параметров, таким как:

  • Назначение. Применяются: для изменения напряжения, измерения тока, защиты электрических цепей, как лабораторные и промежуточные устройства.
  • Способ установки. В зависимости от размещения и мобильности трансформатор может быть: стационарным, переносным, внутренним, внешним, опорным, шинным.
  • Число ступеней. Устройства подразделяются на одноступенчатые и каскадные.
  • Номинальное напряжение. Бывают низко- и высоковольтными.
  • Изоляция обмоток. Наиболее часто используется бумажно-масляная, сухая, компаундная.

Помимо этого, преобразовательные устройства разнятся типами, каждому из которых присуща своя система классификации.

Силовой

Наибольшее распространение получил силовой трансформатор. Приборы с непосредственным преобразованием переменного напряжения, рассчитанные на большую мощность, востребованы различными областями электроэнергетики. Они применяются на линиях электропередач с напряжениями 35–1150 кВ, в городских электросетях, работающих с напряжением 6 и 10 кВ, в обеспечении конечных потребителей напряжением 220/380В. С помощью устройств осуществляется питание всевозможных электроустановок и приборов в диапазоне от долей до сотен тысяч вольт.

силовой

Силовой трансформатор

Измерительные

Трансформаторы тока (ТА) понижают ток до необходимых показателей. Схема их работы отличается последовательным включением первичной обмотки и нагрузки. В то же время вторичная обмотка, находящаяся в состоянии, близком к короткому замыканию, используется для подключения измерительных приборов, исполнительных и индикаторных устройств. С помощью ТА осуществляется гальваническая развязка, что позволяет при измерениях отказаться от шунтов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

С помощью трансформаторов напряжения (ТН), тоже самое что и ТА только по напряжению. Помимо преобразования входных параметров, электроаппаратура и её отдельные элементы получают защиту от высокого вольтажа.

трансформатор напряжения

Высоковольтный ТН(слева) и низковольтный ТН(справа)

Импульсный

При необходимости преобразования сигналов импульсного характера применяются импульсные трансформаторы (ИТ). Изменяя амплитуду и полярность импульсов, устройства сохраняют их длительность и практически не затрагивают форму.

Автотрансформатор

В автотрансформаторах обмотки составляют одну цепь и взаимодействуют посредством электромагнитной и электрической связи. В отличие от других типов преобразователей, устройства могут содержать всего 3 вывода, позволяющих оперировать с различными напряжениями. Приборы выделяются высоким коэффициентом полезного действия, что особо сказывается при незначительном перепаде входного и выходного напряжения.

Однофазный(слева) и трёхфазный(справа)

Однофазный(слева) и трёхфазный(справа)

Не имея гальванической развязки, представители данного типа повышают риск высоковольтного удара по нагрузке. Обязательным условием работы устройств являются надёжное заземление и низкий коэффициент трансформации. Недостаток компенсируется меньшим расходом материалов при изготовлении, компактностью и весом, стоимостью.

Разделительный

Для разделительных трансформаторов взаимодействие между обмотками исключено. Устройства повышают безопасность электрооборудования при повреждённой изоляции.

Разделительный

Разделительный трансформатор

Согласующий

Согласующие трансформаторы применяются для выравнивания сопротивлений между каскадами схем электроники. Сохраняя форму сигнала, они играют роль гальванической развязки.

Пик-трансформатор

С помощью пик-трансформатора синусоидальное напряжение преобразуется в импульсное. При этом импульсы меняют полярность с каждым полупериодом.

Сдвоенный дроссель

Особенностью сдвоенного дросселя является идентичность обмоток. Взаимная индукция катушек делает его более эффективным, по отношению стандартным дросселям. Устройства используются как входные фильтры в блоках питания, в звуко- и цифровой технике.

Сдвоенный дроссель

Сдвоенный дроссель

Сварочный

Помимо вышеперечисленных, существует понятие сварочные трансформаторы. Специализированные приборы для сварочных работ понижают напряжение бытовой сети при одновременном повышении тока, измеряемого тысячами ампер. Регулировка последнего осуществляется разделением обмоток на сектора, что отражается на индуктивном сопротивлении.

Сварочный

Сварочный трансформатор

Расшифровка основных параметров

Разнообразие в конструкции и широкий диапазон параметров трансформаторов привели к необходимости их маркировки по специальному стандарту. Не имея под рукой технического описания, характеристики устройства можно выяснить по нанесённой на его поверхности информации, выраженной буквенно-цифровым кодом.

Маркировка силовых трансформаторов содержит 4 блока.

блоки расшифровка

Скачать и посмотреть ГОСТ 15150 можно здесь(откроется в новой вкладе в PDF формате): Смотреть файл

Расшифруем первые три блока:

расшифровка

Расшифровка маркировки: 1,2,3 блока

  1. Первая буква «А» прикреплена за автотрансформаторами. При её отсутствии буквы «Т» и «О» соответствуют трёхфазным и однофазным трансформаторам.
  2. Наличие далее буквы «Р» информирует об устройствах с расщеплённой обмоткой.
  3. Третья буква означает охлаждение, масляной естественной системе охлаждения присвоена литера «М». Естественному воздушному охлаждению выделена буква «С», масляное с принудительным обдувом обозначается «Д», с принудительной циркуляцией масла – «Ц». Сочетание «ДЦ» указывает на наличие принудительной циркуляции масла с одновременным воздушным обдувом.
  4. Литерой «Т» помечаются трёхобмоточные преобразователи.
  5. Последний знак характеризует особенности трансформатора:
  • «Н» – РПН(регулировка напряжения под нагрузкой);
  • пробел – переключение без возбуждения;
  • «Г» – грозозащищенный.

Цена трансформаторов

Цена трансформатора варьируется в широких пределах и зависит от множества факторов. Здесь учитывается тип и назначение, мощность и другие электрические параметры. На стоимости устройств отражается сложность производства и используемые материалы. Немаловажное значение играет защита и другие особенности.

Трансформатор известного производителя не может быть дешёвым. Однако покупатель может быть уверен, что приобретённое им устройство полностью соответствует указанным характеристикам, не выйдет из строя при первом включении и гарантированно отработает заложенный ресурс.

Высоковольтные трансформаторы можно оценивать по их мощности, то есть если мощность трансформатора 63 МВт(63000 кВА), то он стоит около 63 млн рублей, но это примерна оценка.

Видео: Как проверить исправность трансформатора

Источник