Меню

Трансформатор тока электросчетчика замена


ООО ТК «Энергооборудование »
Трансформаторы тока, напряжения и силовые

О необходимости замены трансформаторов тока для повышения точности учета электроэнергии

статьи

О необходимости замены трансформаторов тока для повышения точности учета электроэнергии

В настоящее время доля электроэнергии в себестоимости промышленной продукции неуклонно возрастает. Если в конце восьмидесятых годов доля электроэнергии в себестоимости промышленной продукции составляла несколько процентов, то в настоящее время доля электроэнергии в машиностроении превышает 20%, а в энергоемких производствах достигает 60% и выше.

Существующие системы учета электроэнергии не обеспечивают требуемой в условиях рыночных отношений точности учета, так как они создавались в основном десятки лет назад, когда электроэнергия не являлась товаром и на точность ее учета не обращалось должного внимания.

Большие погрешности измерений электроэнергии и мощности приводят к нерациональному использованию пропускной способности линий электропередач, резервов мощности на электростанциях, затрудняют контроль режимов работы сетей и приводят к финансовым потерям как производителей и поставщиков, так и потребителей электроэнергии. Недостаточная точность измерений обусловлена рядом недостатков существующих систем учета электроэнергии, поскольку измерительные комплексы (ИК) создавались ранее, а также создаются и в настоящее время по типовым проектам, разработанным еще в 70–80-х годах XX века, в которых не предусматривались решения для обеспечения высокой точности ИК.

В измерительные комплексы средств учета электрической энергии (ИК) входят трансформаторы тока (ТТ) и напряжения (ТН), счетчики электрической энергии и цепи связи между ними.

Погрешности существующих ИК нередко превышают 5 – 10 %, что совершенно недопустимо в современных рыночных условиях.

Причиной столь значительных погрешностей ИК является то, что условия работы ИТ, устанавливаемых на электрических станциях и в электрических сетях, характеризуются многочисленными факторами, влияющими на погрешности ИТ.

При выпуске ИТ из производства во время приемосдаточных испытаний, погрешности определяются в нормированных диапазонах первичных токов, напряжений, мощности вторичной нагрузки и cos вторичной нагрузки согласно стандартов на ТТ и ТН, однако в эксплуатации нередко ИТ работают в условиях, для которых погрешности не нормированы.

Основными факторами являются:

для ТТ – первичный ток, мощность вторичной нагрузки, cos вторичной нагрузки, токи короткого замыкания в первичных цепях.

для ТН – мощность нагрузки во вторичных цепях, cos нагрузки во вторич- ных цепях, первичное напряжение.

Общими факторами для ТТ и ТН являются: частота сети, температура окружающего воздуха, коэффициент гармоник сети, вибрационные нагрузки при работе ИТ, транспортная тряска при транспортировании ИТ и срок эксплуатации.

При измерениях, требующих совместного использования ТТ и ТН факторами, влияющими на погрешность ИК, являются коэффициент мощности и характер нагрузки контролируемого присоединения.

Из-за конструктивных особенностей ТТ зависимости погрешностей от первичного тока и мощности вторичной нагрузки носят нелинейный характер и имеют разброс даже для ТТ одного типоисполнения.

Погрешности ТТ определяют по следующим выражениям

где токовая погрешность ТТ, %; угловая погрешность ТТ, мин; Кi – кратность первичного тока I1 по отношению к номинальному первичному то- ку I1H; I2H – номинальный вторичный ток; fН – номинальная частота переменного тока; W1 – количество первичных витков; Lср  средняя длина магнитного пути в магнитопроводе; Z2 – полное сопротивление вторичной цепи, определяют по формуле [1]


где R2 – активное сопротивление вторичной обмотки; Х2 – реактивное сопротивление вторичной обмотки; R2н – активное сопротивление вторичной на- грузки; Х2н – реактивное сопротивление вторичной нагрузки; – угол между вторичным током и вторичным напряжением, определяющий коэффициент мощности вторичной нагрузки ТТ (cos); – угол между вторичной ЭДС Е2 и вторичным током I2 определяют по формуле [1]

Ψ угол потерь, характеризующий соотношение активных и реактивных по- терь в материале магнитопровода, определяют по формуле

где KΨ, KF, , и Ψ0 – коэффициенты, зависящие от индукции в магнитопро- воде ТТ и от используемой марки стали, полученные экспериментально.

Из формул (1) и (2) видно, что погрешности ТТ зависят как от влияния внешних параметров сети, так и от конструктивных особенностей ТТ.

В аккредитованном Госстандартом России испытательном центре ОАО «СЗТТ» в течение ряда лет проводились экспериментальные исследования влияния внешних факторов на погрешности ИТ.

Результаты исследований приведены в работах [3-6].

По результатам аналитических исследований и экспериментов внешние факторы по степени влияния на погрешности ИТ можно разделить на три группы (таблица 1).

Первая группа охватывает факторы, оказывающие значительное влияние на точностные характеристики ТТ и ТН, то есть погрешности ИТ при воздействии этих влияющих факторов изменяются более чем на 80 % от допускаемой погрешности.

Таблица 1 – Классификация факторов, влияющих на метрологические характеристики измерительных ТТ и ТН

Номер группы ТТ ТН
Первая Первичный ток, мощность вторичной нагрузки, cos Мощность нагрузки, cos
Вторая Температура окружающего воздуха, токи КЗ Первичное напряжение, температура окружающего воздуха
Третья Частота сети, воздействие вибраций и транспортирования, срок эксплуатации

Ко второй группе относятся факторы, не оказывающие существенного влияния на точностные характеристики ТТ и ТН, то есть погрешности ИТ при воздействии этих факторов изменяются на 10–80 % от допускаемой погрешности.

К третьей группе относятся факторы, практически не оказывающие влияния на точностные характеристики ИТ. К ним относятся факторы, погрешности при воздействии которых изменяются менее, чем на 10 % от допускаемой погрешности.

Рассмотрим более подробно влияние двух факторов на метрологические характеристики ТТ – мощности вторичной нагрузки и кратности первичного тока.

При увеличении мощности (сопротивления) вторичной нагрузки Z2Н более номинального погрешности ТТ возрастают. При дальнейшем увеличении Z2Н вторичной нагрузки угловая погрешность начинает уменьшаться и при значительном превышении Z2Н (в несколько раз) может приобретать отрицательное значение [6].

Для ТТ согласно стандарта [2] задаются допускаемые пределы токовой и угловой погрешностей в зависимости от первичного тока I1:

Читайте также:  Как задекорировать вокруг розетки

— для классов точности 0,2 и 0,5 в диапазоне 5 – 120 % номинального первичного тока;
— для классов точности 0,2S и 0,5S в диапазоне 1 – 120 % номинально- го первичного тока.

Пределы допускаемых погрешностей согласно стандарта [2] для указанных классов точности приведены в таблице 2.

Таблица 2 – Пределы допускаемых погрешностей трансформаторов тока

Класс точности ТТ Первичный ток I1, % номинального значения Предел допускаемой погрешности
токовой угловой
0,2 5
20
100-120
± 0,75
± 0,35
± 0,2
± 30
± 15
± 10
0,2S 1
5
20
100
120
± 0,75
± 0,35
± 0,2
± 0,2
± 0,2 ± 30
± 15
± 10
± 10
± 10 0,5 5
20
100-120 ± 1,5
± 0,75
± 0,5 ± 90
± 45
± 30 0,5S 1
5
20
100
120 ± 1,5
± 0,75
± 0,5
± 0,5
± 0,5 ± 90
± 45
± 30
± 30
± 30

На Рис. 1 и 2 приведены диапазоны погрешностей согласно стандарта [2].

Из графиков на рис.1 и 2 видно, что ТТ класов точности 0,2S и 0,5S имеют более узкие диапазоны погрешностей в области токов менее 20 % номинального первичного тока, чем ТТ классов 0,2 и 0,5 соответственно.

Согласно стандарта [2] мощность вторичной нагрузки должна находиться в диапазоне от 25 до 100 % номинальной вторичной нагрузки, а коэффициент мощности вторичной нагрузки 0,8 или 1.

Наиболее распространенным случаем нарушения требований стандарта является превышение мощности вторичной нагрузки.

В работе [6] показано, что превышение мощности вторичной нагрузки приводит к значительному ухудшению метрологических характеристик ТТ вплоть до того, что погрешности ТТ класса точности 0,5 могут соответствовать классу точности 10.

На Рис. 3 и 4 приведены графики погрешностей (математическое ожидание) ТТ типа ТПОЛ-10 класса точности 0,5 при различной мощности вторичной нагрузки.

В связи с широким внедрением электронных счетчиков для систем коммерческого учета электроэнергии, имеющие меньшее энергопотребление по сравнению с индукционными, особенную актуальность приобрел вопрос о соответствии погрешностей ТТ классу точности при мощности вторичной нагрузки меньше нижнего предела вторичной нагрузки.

По стандарту на электронные счетчики, мощность, потребляемая параллельной цепью (напряжения) электронных счетчиков активной энергии не должна превышать 10 ВxА, а последовательной (токовой) – 1 ВxА [7].

В действительности мощность счетчиков может быть еще меньше.

Наиболее распространенные типы ТТ класса напряжения 10 кВ рассчитаны на номинальную мощность вторичной нагрузки 10 ВxА.

Мощность токовой цепи электронного счетчика в 1 ВxА намного ниже нижнего предела мощности вторичной нагрузки, которая согласно [2] составляет 3,75 ВxА.

У большинства типов ТТ токовая погрешность отрицательная во всем диапазоне первичного тока, однако у некоторых типов ТТ токовая погреш- ность может принимать положительное значение при токах близких к номинальному и при уменьшении мощности вторичной нагрузки менее нижнего предела токовая погрешность может выйти за верхний предел допускаемой стандартом [2] токовой погрешности.

На Рис. 5 и 6 приведены графики погрешностей ТТ типа ТПОЛ 10 класса точности 0,5 при номинальной мощности вторичной нагрузки и без нагрузки.

Из графиков видно, что без подключения вторичной нагрузки токовая погрешность может выходить из верхнего предела допускаемой токовой погрешности для класса точности 0,5.

На рисунках 7 и 8 приведены графики погрешности ТТ типа ТПОЛ 10 класса точности 0,5S при номинальной мощности вторичной нагрузки и без нагрузки.

Из графиков видно, что погрешности ТТ класса точности 0,5S без вторичной нагрузки практически во всем диапазоне близки к нулю.

Следующий фактор – кратность первичного тока.

При уменьшении кратности первичного тока Кi токовая и угловая погрешности возрастают. Возрастание погрешностей нелинейное вследствие нелинейной зависимости коэффициентов KF, KΨ, и от индукции в магнитопроводе.

ТТ, как правило, работают при недогрузке по первичному току. Нередко трансформаторы классов точности 0,5 и 1 работают при первичном токе менее 5 % номинального первичного тока.

Это объясняется следующими причинами:

— коэффициенты трансформации ТТ выбирались завышенными исходя из проектной мощности электроустановок;
— ТТ выбирались исходя из требований стойкости к воздействию к токам короткого замыкания.

Согласно «Правил устройства электроустановок» (ПУЭ) для ТТ, предназначенных для учета электроэнергии при максимальной нагрузке присоединения ток во вторичной обмотке ТТ должен составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке – не ме- нее 5 %.

Данное требование ПУЭ сложно, а нередко и невозможно реализовать на практике, так как во многих узлах учета требуется заменить ТТ для ком- мерческого учета на ТТ с меньшим номинальным током, однако рассчитанный на прежний ток КЗ, что, как правило, технически невозможно.

Нередко требуют, чтобы стойкость к току термической стойкости уве- личилась в десятки раз, причем при сохранении существующих габаритов, или запрашивают трансформаторы с обмоткой для измерений с номиналь- ным первичным током в несколько раз меньше, чем номинальный первичный ток обмотки для защиты.

Однако стойкость к токам термической и динамической стойкости у такого ТТ определяется первичной обмоткой, рассчитанной на меньший ток.

Данное требование по минимальному току во вторичной обмотке не менее 5 % не учитывает тот факт, что для ТТ классов точности 0,5S и 0,2S при 1 % номинального первичного тока нормируются погрешности такие же, как при 5 % для ТТ классов точности 0,5 и 0,2 соответственно.

Поэтому ТТ классов точности 0,2S и 0,5S необходимо применять, когда ток контролируемого присоединения менее 5 % номинального.

На рис. 9 и 10 приведены графики погрешностей ТТ типа ТПОЛ 10 классов точности 0,5 и 0,2S из которых видно, что погрешности ТТ класса точности 0,2S в несколько раз меньше, чем у ТТ класса точности 0,5.

Читайте также:  Как проверить счетчик учета электроэнергии

Следующим моментом в пользу ТТ классов точности 0,5S и 0,2S является то, что они имеют намного меньшие угловые погрешности по сравнению с ТТ с магнитопроводами из электротехнической стали.

Положительная угловая погрешность ТТ при малых первичных токах, как правило, намного больше, чем угловая погрешность ТН, и вызывает уменьшение угла между током и напряжением на вторичной стороне ИТ для случая активно-индуктивной нагрузки контролируемого присоединения.

Положительная угловая погрешность ТТ при малых первичных токах, как правило, намного больше, чем угловая погрешность ТН, и вызывает уменьшение угла между током и напряжением на вторичной стороне ИТ для случая активно-индуктивной нагрузки контролируемого присоединения.

Для случая активно-индуктивной нагрузки уменьшение угла на вторичной стороне ИТ приводит к тому, что активная электроэнергия при ма- лых первичных токах измеряется с положительной погрешностью, а реактивная – с отрицательной и соответственно к завышению cos оо1 контролируемого присоединения [8].

При уменьшении cos 1 контролируемого присоединения влияние уг- ловых погрешностей ИТ становится определяющим фактором, и положи- тельная погрешность трансформаторной схемы подключения счетчика для активной электроэнергии в несколько раз превышает отрицательную по- грешность напряжения ТН и токовую погрешность ТТ .

Таким образом, угловые погрешности ИТ приводят к тому, что погрешность ИК зависит не только от факторов, непосредственно влияющих на метрологические характеристики ИТ, но и от характера нагрузки и коэффициента мощности контролируемого присоединения.

В работе [9] показано влияние остаточного намагничивания после протекания токов КЗ, которое может приводить к значительному увеличению погрешностей ТТ и выходу из класса точности.

ТТ классов точности 0,5S и 0,2S из-за характеристик материала магнитопровода практически не подвержены влиянию токов КЗ.

На ОАО «Свердловский завод трансформаторов тока» серийно выпускаются ТТ классов напряжения от 0,66 до 35 кВ классов точности 0,2S и 0,5S. При использовании специальных сплавов оказалось возможным получить ТТ классов точности 0,2S и 0,5S, не увеличивая габаритные размеры и массу ТТ.

Однако ТТ классов точности 0,5S и 0,2S требуют строгого соблюдения требований стандартов по мощности вторичной нагрузки [10].

В связи с широким внедрением систем коммерческого учета была про- ведена следующая модернизация ТТ класса напряжения 10-35 кВ:

1. Введено пломбирование выводов измерительных обмоток ТТ защитной крышкой, предохраняющей от несанкционированного доступа;

2. Освоено серийное производство ТТ с тремя и четырьмя вторичными обмотками, из которых одна обмотка предназначена для коммерческого учета и имеет класс точности 0,5S или 0,2S; остальные обмотки предназначены для технического учета или релейной защиты;

3. ТТ классов точности 0,5S и 0,2S выпускаются в зависимости от требований заказчика с мощностью измерительных обмоток от 1 до 30 ВxА.

Выводы

1. Для повышения точности измерения электроэнергии наиболее эффективным является замена измерительных ТТ класса точности 0,5 и менее точных на трансформаторы классов точности 0,5S и 0,2S.

2. При замене ТТ с магнитопроводами из электротехнической стали на ТТ классов точности 0,5S и 0,2S с магнитопроводами из нанокристаллических или аморфных сплавов погрешность ИК уменьшается в несколько раз и практически не зависит от влияния первичного тока и токов КЗ в первичной цепи;

Литература

1. Афанасьев В.В. и др. Трансформаторы тока. — Л.: Энергия, Ленинградское отделение, 1989.-344 с., ил.

2. ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.

3. Раскулов Р.Ф., Эткинд Л.Л. Влияние воздействующих факторов на метро- логические характеристики ТТ и ТН с литой эпоксидной изоляцией/ Метро- логия электрических измерений в электроэнергетике.: Доклады науч.-техн. семинаров и конф. 1998-2001 гг. – М.: Изд-во НЦ ЭНАС.– 2001.– С. 317-327.

4. Раскулов Р.Ф., Смирнов А.С. Влияние температуры окружающего воздуха на погрешности измерительных трансформаторов/ Метрология электриче- ских измерений в электроэнергетике.: Доклады третьей науч.-практ. конфе- ренции. – М.: Изд-во НЦ ЭНАС.– 2003.– Доклад 22.–С.1-23.

5. Раскулов Р.Ф., Смирнов А.С. Влияние коэффициента мощности вторичной нагрузки на погрешности измерительных трансформаторов/ Метрология электрических измерений в электроэнергетике.: Доклады третьей науч.- практ. конференции. – М.: Изд-во НЦ ЭНАС.– 2003.– Доклад 23.– С.1–21.

6. Раскулов Р.Ф. Влияние вторичной нагрузки на погрешности трансформато- ров тока// Электрические станции.– 2003.–№7. – С. 43-45.

7. ГОСТ 30206-94 Статические счетчики Ватт-часов активной энергии пере- менного тока (классы точности 0,2S и 0,5S).

8. Раскулов Р.Ф., Влияние угловых погрешностей измерительных трансфор- маторов на точность определения коэффициента мощности нагрузки/ Метро- логия электрических измерений в электроэнергетике.: Доклады четвертой науч.-практ. конференции.– М.: Изд-во НЦ ЭНАС.–2004.–Доклад 25.–С.1–11.

9. Раскулов Р.Ф. Погрешности трансформаторов тока. Влияние токов корот- кого замыкания //Новости электротехники. – 2005.–№2 (32).–С.114-116.

10. Раскулов Р.Ф. О превышении мощности вторичной нагрузки для транс- форматоров тока классов точности 0,2S и 0,5S // Электрические станции.– 2003.–№8.–С. 59-62.


Рис. 1 Диапазон допускаемой токовой погрешности для трансформаторов тока различных классов точности по ГОСТ 7746-2001


Рис. 2 Диапазон допускаемой угловой погрешности для трансформаторов тока различных классов точности по ГОСТ 7746-2001


Рис. 3 Зависимость токовой погрешности ТТ ТПОЛ-10-300/5 от первичного тока при различной мощности вторичной нагрузки

Рис. 4 Зависимость угловой погрешности ТТ ТПОЛ-10-300/5 от первичного тока при различной мощности вторичной нагрузки


Рис. 5 Токовые погрешности ТТ ТПОЛ-10- 300/5 класса точности 0,5


Рис. 6 Угловые погрешности ТТ ТПОЛ-10- 300/5 класса точности 0,5

Рис. 7 Токовые погрешности ТТ ТПОЛ-10- 300/5 класса точности 0,5S


Рис. 8 Угловые погрешности ТТ ТПОЛ-10- 300/5 класса точности 0,5S


Рис. 9 Токовые погрешности ТТ ТПОЛ-10- 300/5 классов точности 0,5 и 0,2S


Рис. 10 Угловые погрешности ТТ ТПОЛ-10- 300/5 классов точности 0,5 и 0,2S


а) б)
Рис. 11 Векторная диаграмма токов и напряжений при активно-индуктивной нагрузке присоединения:
а — погрешности ТТ и ТН положительные; б — погрешность ТТ положительная,
погрешность ТН- отрицательная

Читайте также:  Оплата за газ по счетчику вперед

Автор: Раскулов Р.Ф., главный конструктор отдела измерительных трансформаторов, к.т.н.,
ОАО «Свердловский завод трансформаторов тока».

Источник

Лицензии

Замена трансформаторов тока

Необходимость замены трансформаторов тока возникает при проведении поверочных мероприятий, которые – в зависимости от типа прибора, мощности и нагрузки – проводятся один раз 4-8 лет. Учитывая, что поверочные работы с трансформатором тока очень сложны, оптимально приобретать новые – с самым свежим сроком поверки.

Компания «10 киловольт» производит замену трансформаторов тока, устанавливает электросчетчики, проводит монтажные и проектировочные работы. Для консультаций и вопросов просим обращаться по указанным выше телефонам.

Прайс-лист на установку (замену) и перепрограммирование электросчетчиков
Наименование работы Ед. изм. Цена (руб.)
1 Замена (монтаж и демонтаж) электросчётчика однофазного (однотарифного, многотарифного) шт. 2000
2 Замена (монтаж и демонтаж) электросчётчика трехфазного (прямого включения или косвенного) шт. 3500
3 Установка, замена трансформаторов тока в цепях учета и защиты (до 1000 В) шт. 3200
4 Программирование тарифного расписания или переход на зимнее/летнее время шт. 1000
5 Меркурий 200.02 (однофазный, многотарифный) шт. 1800
6 Меркурий 230 ART-01CN (прямого включения) шт. 4700

Замена трансформаторов тока и электросчетчиков

Периодичность проверки прибора учета указывается в его инструкции по эксплуатации. При соблюдении нормативных процедур, при проверке трансформаторов тока выполняются следующие мероприятия:

  • Измерительные работы по регламентированным метрологическим параметрам;
  • Визуальный осмотр корпуса, контактных групп, узлов и деталей;
  • Измерение степени размагничивания;
  • Измерение сопротивления изоляции;
  • Контроль соответствия вводов и выводов клемм.

Установка трансформаторов тока с электросчетчиом Меркурий 230

Для каждого из тестов установлены свои нормативные показатели. Если какой-либо из показателей при поверке трансформатора тока выходит за пределы нормативных значений – все устройство признается негодным к эксплуатации. Это значит, что требуется замена трансформаторов тока на новые.

Сложность поверочных работ

Для проведения метрологических испытаний необходимо пользоваться услугами компаний, которые предусматривают в своем штате наличие квалифицированных метрологов и аккредитованные измерительные лаборатории. Данная необходимость серьезно усложняет процедуру поверки и делает ее дорогостоящей – оборудование стоит денег, а работникам необходимо платить зарплату.

Как правило, трансформаторы тока эксплуатируются при высокой интенсивности, кроме того – достаточно много установлено оборудования старого образца. В результате поверочных испытаний может возникнуть ситуации, что один их параметров не укладывается в норму. А это означает, что трансформатор тока подлежит замене.

Нетрудно подсчитать, что логичнее обойтись без процедуры поверки: замена трансформаторов тока на новые и стоимость работ по монтажу окажутся меньше, если проводить весь комплекс мероприятий.

Какой трансформатор тока покупать

Всегда выгоднее покупать трансформатор тока, срок поверочных работ которого будет больше. Трансформаторы со сроком 8 лет стоят дороже, но не настолько, чтобы на этом экономить.

Компания «10 киловольт» предлагает свои услуги: мы гарантируем, что работа по замене трансформатора тока будет выполнена качественно, аккуратно и грамотно.

Мы подберем тип устройства согласно параметрам вашей энергосети, осуществим покупку и доставку оборудования на объект, обеспечим квалифицированный монтаж и тестирование новых трансформаторов тока. Компания предоставляет клиенту все документы, которые требуются по законодательству.

Обязательно обратите внимание на дату окончания срока эксплуатации трансформатора тока и электросчетчика.

Источник



Как заменить электросчетчик не отключая потребителей электроэнергии

Электрические счетчики подлежат периодической поверке. Согласно «Правил пользования электрической и тепловой энергией», межповерочный интервал должен составлять не более четырёх лет для приборов, используемых в системе АСКУЭ (об этой системе мы погорим позже) и не менее восьми лет для локальных приборов учёта электроэнергии. Следовательно, согласно этих нормативов, электросчётчики нужно периодически демонтировать и вместо них устанавливать поверенные.

Казалось бы, ничего сложного в этом нет. Но представьте, что нужно заменить электросчётчик на фидере, отключение которого проблематично в силу ряда причин. Например, из-за непрерывности технологического процесса.

Можно ли сделать так, что бы произвести замену, не отключая потребителей и при этом в строгом соответствии с «Правилами техники безопасности»?

Ответ – безусловно можно! Для этого в схему учётов электроэнергии вводят такой элемент, как клемные испытательные коробки.

Клемная испытательная коробка представляет собой основание с крышкой из негорючего изоляционного материала (например, карболита) на котором размещены болтовые зажимы и контактные площадки. Внешний вид такой коробки показан на рисунке:

Разберёмся более подробно с внутренним устройством клемной испытательной коробки. В ней имеются зажимы цепей напряжения и зажимы цепей тока. То есть испытательная коробка включена в разрыв данных цепей.

При замене электросчётчика мы должны выполнить два требования – во-первых закоротить вторичные обмотки трансформаторов тока, а во-вторых – снять напряжение с прибора учёта для безопасного выполнения работ. Первую задачу решаем вворачивание специального штекера в соответствующие токовые зажимы (смотрите рисунок).

Замыкающий штекер представляет собой обычный винт с изолированной ручкой (держателем) для удобного и безопасного вворачивания. С помощью отвёрток с изолированными ручками подминаем вверх контактные пластины 35-36-37.

Выполнив данные действия, мы замкнули токовую цепь учёта электроэнергии не через токовую катушку электросчётчика, а через штекер и общую пластину – т.е цепь тока полностью отделяется от электросчётчика.

После этого с помощью двух отвёрток с изолированными ручками отключаем каждую фазу (контактные пластины 32-33-34). Всё – можно спокойно демонтировать электросчётчик и устанавливать новый. После установки поверенного электросчётчика выполняем указанные действия в обратной последовательности – и вот мы заменили электросчётчик без снятия напряжения.

Монтажная схема включения учёта электроэнергии с применением клеммной испытательной коробки показана на рисунке.

Так же как электросчётчики и трансформаторы тока, клеммные испытательные коробки в обязательном порядке подлежат пломбировке энергоснабжающей организацией.

Источник

Трансформатор тока электросчетчика замена

Трансформаторы тока для работы с электросчетчиками

Современные потребности в электроэнергии настолько высоки, что приборы учета могут не выдерживать силу тока, необходимую для подключенного объекта. Разделение точек потребления на отдельные линии не всегда возможно, да и учитывать потребление энергии разными приборами для одного объекта нецелесообразно: расчет оплаты может быть неточным. Чтобы устранить этот дисбаланс, применяются трансформаторы тока для электросчетчиков.

Устройства работают по обычному принципу трансформатора: закону электромагнитной индукции.

  • первичная обмотка подключается в рабочую цепь последовательно с основной нагрузкой, не оказывая влияние на параметры питания;
  • при протекании электротока, вокруг первичной обмотки наводится магнитный поток, величина которого пропорциональна силе тока в рабочей цепи;
  • посредством магнитопровода, во вторичной обмотке возникает ЭДС (электродвижущая сила);
  • под воздействием ЭДС в обмотке возникает электроток, который можно измерить на приборе учета со стандартными параметрами подключения.

Схема типового подключения счетчика с трансформаторами тока изображена на иллюстрации (данный рисунок не является инструкцией по монтажу, может использоваться лишь как учебное пособие).

  1. На контакты «Л1», «Л2» первичной обмотки подключается рабочая силовая линия (ток «I1» протекает через обмотку). Проводник должен выдерживать рабочие параметры линии, и не оказывать большого сопротивления, чтобы не снижать рабочие параметры электроснабжения объекта.
  2. Вторичная обмотка изготавливается с учетом рабочих параметров силовой линии с коэффициентом, достаточным для обеспечения работы счетчика.
  3. Приборы учета и средства контроля (защиты) подключаются к контактам «И1», «И2».
  4. Сила тока вторичной обмотки «I2» собственно является объектом измерения, учета и сигнальным параметром для срабатывания устройств защиты.
  5. Для защиты вторичной обмотки от перенапряжения применяется перемычка «К», шунтирующая цепь при отключении приборов учета (иных измерителей).

Важное отличие измерительного трансформатора тока от обычного силового

Независимо от сопротивления потребителя (это может быть подключение к электросчетчику, защитному устройству, и прочему) сила тока остается неизменной и зависит только от нагрузки на первичную обмотку.

При размыкании вторичной обмотки трансформатора тока во время работы силовой линии, напряжение на контактах достигнет огромного значения (по закону Ома стремится к бесконечности). В результате могут выйти из строя полупроводниковые приборы измерения. Кроме того, есть риск повреждения изоляции обмотки трансформатора, и поражения персонала электротоком. Поэтому, при отключении счетчика от трансформаторов тока, вторичная обмотка обязательно замыкается накоротко с помощью перемычки «К» (на иллюстрации).

Важно: Для обеспечения безопасности операторов и защиты оборудования, один из контактов вторичной обмотки заземляется («N» на иллюстрации).

Таким подсоединением уравнивается потенциал вторичной обмотки и земли. Работа с приборами учета и контроля становится безопасной для персонала.

Конструктивное исполнение прибора оптимизировано для соединения со счетчиками, поэтому случайное использование трансформатора тока в иных целях исключено.

Можно сказать, что трансформатор тока для счетчика работает по принципу вала отбора мощности на двигателе. Только его использование не несет потери для основной линии электроснабжения.

Читайте также:  Программирование счетчика меркурий 236

Для чего нужны трансформаторы тока

Для счетчиков энергии и других измерительных приборов, подключение к высоковольтной линии чревато усложнением конструкции (соответственно, стоимость прибора может вырасти в разы). Аналогичная ситуация с иными контрольными приспособлениями и устройствами обеспечения безопасности. Необходимо обеспечить развязку между высоковольтной линией и параметрами, приемлемыми для работы. Исходя из этого, назначение трансформатора тока следующее:

  1. Произведя расчет пропорций рабочих параметров на вторичной обмотке, инженеры получают коэффициент измерений. Вторичка подключается к любым измерительным приборам: амперметрам, ваттметрам, счетчикам электроэнергии, и прочему. Переменный ток малого значения удобен в работе, не представляет опасности для персонала, измеряется обычными приборами без дорогостоящих систем защиты. Учитывая компактность, трансформаторы легко монтируются в типовой распределительный щиток.
  2. Еще одна функция трансформатора тока — обеспечение работы систем управления и защиты. Для вывода информации о состоянии электрических цепей достаточно небольшого уровня сигнала. Гигантские значения напряжения на силовых линиях не позволяют подключить к ним управляющие цепи. Поэтому компоненты релейной защиты и управления соединяются с вторичными обмотками трансформаторов, и работают на линиях в десятки тысяч вольт, как будто это бытовой вводной щиток в квартире. Разумеется, безопасность также на высоте.

Мы рассмотрим основную задачу прибора: подключение счетчика через трансформаторы тока. Поскольку однофазные системы работают без высоких потенциалов напряжения, трансформаторы тока чаще всего обеспечивают работу трехфазного счетчика.

Начнем с классификации

Как и любой электроприбор, подобрать трансформатор можно по параметрам и установочным характеристикам:

  • Назначение: измерительный, управляющие и лабораторные. Нас интересует, как подключить измерительный вариант.
  • Номинальное напряжение первичной обмотки, один из основных параметров: до 1000 В или свыше 1000 В.
  • Конструкция первичной обмотки. Одновитковые, многовитковые, стержневые, шинные, катушечные. От конструкции первички зависит способ монтажа.
  • Способ установки: трансформаторы могут встраиваться в электроустановку, накладываться на силовые шины, монтироваться в распределительные шкафы или трансформаторные подстанции. Кроме того, существуют переносные приборы для организации контроля или временного учета электроэнергии.
  • Тип монтажа: в зависимости от выбранного способа установки и подключения, монтаж может быть проходным или опорным. На иллюстрации проходной тип монтажа.
  • Количество ступеней трансформации. При работе с высоким напряжением, может потребоваться каскадное снижение выходных параметров. При этом можно выбирать, куда подключать измерительные (управляющие) приборы: на один или несколько каскадов трансформации.
  • Тип изоляции между обмотками и сердечником. Как и в обычных трансформаторах: сухая (керамика, бакелит, некоторые виды пластмасс) или мокрая (классическая бумажно-маслянная). Современные компактные трансформаторы заливаются компаундом. Параметр учитывается при выборе температурного режима эксплуатации: высокий нагрев или наружная установка при минусовых температурах.

Важно: При подключении 3 фазного счетчика через трансформаторы тока, параметры всех приборов должны быть идентичными.

Разобравшись, как выбрать трансформатор тока по способу установки, научимся производить расчет

С учетом параметров электрических счетчиков, и значения напряжения на линии, выбираем коэффициент трансформации. Он должен обеспечивать максимальную точность измерения трехфазного счетчика, при соблюдении мер безопасности.

Читайте также:  Счетчики поверка более 4 лет

Согласно требованиям ПУЭ (правил устройства электроустановок), необходимо оставлять запас коэффициента трансформации на превышение допустимой нагрузки. При максимальной нагрузке на линии, ток во вторичной обмотке не должен быть ниже 40 % от номинального тока счетчика. Соответственно при минимальной нагрузке этот показатель составит 5 %.

Существует целая подборка справочной литературы по этому вопросу, наиболее популярной является типовая таблица:

Зная расчетные параметры силовой линии и возможного потребления тока, можно рассчитать коэффициент трансформации.

Перед вводом в эксплуатацию, обычно производится испытательный монтаж на тестовую колодку. Моделируются рабочие условия эксплуатации объекта, при соблюдении мер безопасности испытываются аварийные режимы.

Важно: Подобные испытания следует проводить только под надзором инженеров по безопасности энергоснабжающей компании.

После проведения тестовых измерений на дублирующих счетчиках, проводится окончательный расчет коэффициента преобразования. Затем составляется акт переноса показаний на счетчики с учетом параметров трансформатора.

Если параметры работы устраивают потребителя и поставщика электроэнергии, производится окончательный монтаж трансформаторов и трехфазного счетчика. Типовая электросхема на иллюстрации:

Пример реального расчета коэффициента трансформации

Мы знаем, что для обеспечения завышенного коэффициента трансформации, необходимо обеспечить следующее условие:

  • при загрузке силовой (основной) линии на 25 %, во вторичной обмотке сила тока не превысит 10 % от расчетной.

Условия задачи: расчетный ток в режиме нормальной загрузки оборудования составляет 240 А. Устанавливаем параметры аварийного режима: коэффициент 1.2. Значит, сила тока при перегрузке равна 288 А. Номинальная сила тока счетчика составляет 5 А.

Важно: Перегрузкой считается сила тока, при которой еще не срабатывает защитное устройство отключения электропитания.

По рекомендациям энергетиков, или в соответствии со справочными таблицами, выбираем трансформатор тока с коэффициентом трансформации 300/5.

  • Проводим расчет тока первичной обмотки при нагрузке 25 % от номинала. I1=240×25/100. Полученный результат: 60 А.
  • Проводим расчет тока вторичной обмотки при нагрузке 25 % от номинала. I2=60/(300/5). Полученный результат: 1 А.

Вторичный ток превышает 10 % от номинальной силы тока счетчика: 1 А > 0.5 А. При таких расчетах видно, что трансформатор тока для подключения конкретного счетчика подобран верно.

Класс точности и погрешность

Для обеспечения правильности учета показаний потребления электроэнергии, регламентирующими нормативами установлены следующие классы точности для токовых трансформаторов:

  • счетчики коммерческого учета: 0.2;
  • счетчики технического учета: 0.5.

Условия считаются выполненными, если реальная нагрузка на вторичную обмотку трансформатора не превышает номинально установленную нагрузку для данного класса точности.

Кроме того, параметры прибора должны обеспечивать токовую и угловую погрешность. Для нормальной работы устройств защиты и точного снятия показаний, токовая погрешность не должна превышать 10 %, а угловая 7°.

Читайте также:  Как задекорировать вокруг розетки

Результат построения векторной диаграммы токов на иллюстрации:

Iµ=I1+I2, остальные параметры и обозначения взяты из школьного курса физики. Проведя тестовые измерения, можно убедиться в соответствии (не соответствии) собранной схемы требованиям ГОСТ и ПУЭ.

Видео по теме

Источник



Как заменить электросчетчик не отключая потребителей электроэнергии

Электрические счетчики подлежат периодической поверке. Согласно «Правил пользования электрической и тепловой энергией», межповерочный интервал должен составлять не более четырёх лет для приборов, используемых в системе АСКУЭ (об этой системе мы погорим позже) и не менее восьми лет для локальных приборов учёта электроэнергии. Следовательно, согласно этих нормативов, электросчётчики нужно периодически демонтировать и вместо них устанавливать поверенные.

Казалось бы, ничего сложного в этом нет. Но представьте, что нужно заменить электросчётчик на фидере, отключение которого проблематично в силу ряда причин. Например, из-за непрерывности технологического процесса.

Можно ли сделать так, что бы произвести замену, не отключая потребителей и при этом в строгом соответствии с «Правилами техники безопасности»?

Ответ – безусловно можно! Для этого в схему учётов электроэнергии вводят такой элемент, как клемные испытательные коробки.

Клемная испытательная коробка представляет собой основание с крышкой из негорючего изоляционного материала (например, карболита) на котором размещены болтовые зажимы и контактные площадки. Внешний вид такой коробки показан на рисунке:

Разберёмся более подробно с внутренним устройством клемной испытательной коробки. В ней имеются зажимы цепей напряжения и зажимы цепей тока. То есть испытательная коробка включена в разрыв данных цепей.

При замене электросчётчика мы должны выполнить два требования – во-первых закоротить вторичные обмотки трансформаторов тока, а во-вторых – снять напряжение с прибора учёта для безопасного выполнения работ. Первую задачу решаем вворачивание специального штекера в соответствующие токовые зажимы (смотрите рисунок).

Замыкающий штекер представляет собой обычный винт с изолированной ручкой (держателем) для удобного и безопасного вворачивания. С помощью отвёрток с изолированными ручками подминаем вверх контактные пластины 35-36-37.

Выполнив данные действия, мы замкнули токовую цепь учёта электроэнергии не через токовую катушку электросчётчика, а через штекер и общую пластину – т.е цепь тока полностью отделяется от электросчётчика.

После этого с помощью двух отвёрток с изолированными ручками отключаем каждую фазу (контактные пластины 32-33-34). Всё – можно спокойно демонтировать электросчётчик и устанавливать новый. После установки поверенного электросчётчика выполняем указанные действия в обратной последовательности – и вот мы заменили электросчётчик без снятия напряжения.

Монтажная схема включения учёта электроэнергии с применением клеммной испытательной коробки показана на рисунке.

Так же как электросчётчики и трансформаторы тока, клеммные испытательные коробки в обязательном порядке подлежат пломбировке энергоснабжающей организацией.

Источник