Меню

Токи в полупроводниках дрейфовый ток диффузионный ток

Токи в полупроводнике. Дрейф и диффузия

В полупроводнике возможны два механизма движения зарядов (создания тока): дрейф и диффузия.

Дрейф — это движение носителей заряда под влиянием электрического поля. Если между двумя точками есть разность потенциалов j, то градиент потенциала Е=dj/dx называется напряженностью поля.

Рассмотрим обьем полупроводника, в котором имеются свободные электроны и дырки. Приложим к нему внешнее напряжение U, создающее в нем электрическое поле напряженностью Е (рис.1.5). Электроны движутся от меньшего потенциала к большему, а дырки навстречу. Плотность полного дрейфового тока состоит из электронной и дырочной составляющих:

где: и — электронная и дырочная составляющая ; -Vn, Vp средняя скорость электронов и дырок; qe, qp – заряд электронов и дырок в единице объема полупроводника; n, p – концентрация электронов и дырок в полупроводнике; е, -е – заряд дырки и электрона; n, р – подвижность электронов и дырок (m=V/ E); E- напряжённость электрического поля. Отсюда:

где — удельная электропроводность полупроводника.

Здесь – подвижности электронов и дырок; их значения для германия и кремния приведены в таблице 2.1.

Диффузия — это движение носителей под действием градиента концентрации. Если в полупроводнике в направлении х (рис.1.6), имеется неравномерное распределение концентрации заряда, то под действием теплового движения (которое направлено на выравнивание концентрации) возникнет движение зарядов из области высокой концентрации заряда в область низкой. Градиентом концентрации электронов называют производную по направлению — dn/dx, а градиентом концентрации дырок — dр/dх.

Диффузия всегда происходит из области большей концентрации в область меньшей. Плотность тока диффузии дырок и электронов пропорциональна градиенту концентрации т.е.:

где q -заряд электрона, Dp и Dn — коэффициенты диффузии электронов и дырок. Подвижности и коэффициенты диффузии связаны соотношением Эйнштейна: Dp = jтmn, Dn = jтmp, где jт— температурный потенциал.

Если электроны и дырки движутся в одну сторону, то это токи встречные, поэтому и появляется знак минус в одной из формул 1.1.

В общем случае могут присутствовать все четыре составляющих, тогда плотность полного тока равна векторной сумме:

Основные параметры процесса диффузии.

а) Временем жизни неравновесных (избыточных) носителей заряда τn.

Если, за счёт какого-либо внешнего воздействия, в одной из областей полупроводника создается неравновесная концентрация носителей заряда n, превышающая равновесную концентрацию no, (разность ∆n = п-по называется избыточной концентрацией), то после отключения этого воздействия, за счет диффузии и рекомбинация, избыточный заряд будет убывать по закону n(t)= n+(n-n)e — t / t (рис1.7а). Это приводит к выравниванию концентраций по всему объёму проводника. Время τ, в течение, которого избыточная концентрация ∆n уменьшится в e раз (e =2,72), называется временем жизни неравновесных носителей.

б) Диффузионная длина.

Если в объме полупроводника левее х 0, одновременно рекомбинируя, а следовательно убывая, по закону n(x)=n+∆ne — x / Ln Расстояние, Ln на котором избыточная концентрация ∆n = п-по убывает от своего начального значения в e раз называется диффузионной длиной.

Диффузионная длина и время жизни неравновесных носителей заряда связаны соотношением

где Dn коэффициент диффузии.

В полупроводниковых приборах размеры кристалла конечны, и на его границе (x=W) нерекомбинировавшие носители удаляются. Тогда граничные условия имеют вид n(x=0)=n+∆n, n(x=W)=n), где W— длина кристалла. Ecли W

Источник



1.4. Дрейфовый и диффузионный токи в полупроводниках

Электрический ток может возникнуть в полупроводнике только при направленном движении носителей заряда, которое создается либо под воздействием электрического поля (дрейф), либо вследствие неравномерного распределения носителей заряда по объему кристалла (диффузия).

Если электрическое поле отсутствует, и носители заряда имеют в кристалле равномерную концентрацию, то электроны и дырки совершают непрерывное хаотическое тепловое движение. В результате столкновения носителей заряда друг с другом и с атомами кристаллической решетки скорость и направление их движения все время изменяются, так что тока в кристалле не будет.

Под действием приложенного к кристаллу напряжения в нем возникает электрическое поле. Движение носителей заряда упорядочивается: электроны перемещаются по направлению к положительному электроду, дырки – к отрицательному. При этом не прекращается и тепловое движение носителей заряда, вследствие которого происходят столкновения их с атомами полупроводника и примеси.

Направленное движение носителей заряда под действием сил электрического поля называют дрейфом, а вызванный этим движением ток – дрейфовым током. При этом характер тока может быть электронным, если он вызван движением электронов, или дырочным, если он создается направленным перемещением дырок.

Средняя скорость носителей заряда в электрическом поле прямо пропорциональна напряженности электрического поля:

Коэффициент пропорциональности m называют подвижностью электронов (mn), или дырок (mp). Свободные электроны движутся в пространстве между узлами кристаллической решетки, а дырки – по ковалентным связям, поэтому средняя скорость, а следовательно, и подвижность электронов больше, чем дырок. У кремния подвижность носителей заряда меньше, чем у германия.

Читайте также:  Устройство компенсатора постоянного тока

В собственных полупроводниках концентрации электронов и дырок одинаковы, но вследствие их разной подвижности электронная составляющая тока больше дырочной. В примесных полупроводниках концентрации электронов и дырок существенно отличаются, характер тока определяется основными носителями заряда: в полупроводниках р-типа – дырками, а в полупроводниках n-типа – электронами.

Направленное движение носителей заряда из слоя с более высокой их концентрацией в слой, где концентрация ниже, называют диффузией, а ток, вызванный этим явлением, – диффузионным током. Этот ток, как и дрейфовый, может быть электронным или дырочным.

Степень неравномерности распределения носителей заряда характеризуется градиентом концентрации; его определяют как отношение изменения концентрации к изменению расстояния, на котором оно происходит. Чем больше градиент концентрации, т.е. чем резче она изменяется, тем больше диффузионный ток.

Электроны, перемещаясь из слоя с высокой концентрацией в слой с более низкой концентрацией, по мере продвижения рекомбинируют с дырками, и наоборот, диффундирующие в слой с пониженной концентрацией дырки рекомбинируют с электронами. При этом избыточная концентрация носителей заряда уменьшается.

Источник

Дрейфовый и диффузионный токи в полупроводниках.

Электрический ток может возникнуть в полупроводнике только при направленном движении носителей заряда, которое создается либо под воздействием электрического поля (дрейф), либо вследствие неравномерного распределения носителей заряда по объему кристалла (диффузия).

Если электрическое поле отсутствует и носители заряда имеют в кристалле равномерную концентрацию, то электроны и дырки совершают непрерывное хаотическое тепловое движение. В результате столкновения носителей заряда друг с другом и с атомами кристаллической решетки скорость и направление их движения все время изменяются, так что тока в кристалле не будет.

Под действием приложенного к кристаллу напряжения в нем возникает электрическое поле; движение носителей заряда упорядочивается: электроны перемещаются по направлению к положительному электроду, дырки – к отрицательному. При этом не прекращается и тепловое движение носителей заряда, вследствие которого происходят столкновения их с атомами полупроводника и примеси.

Направленное движение носителей заряда под действием сил электрического поля называют дрейфом, а вызванный этим движением ток – дрейфовым током. При этом характер тока может быть электронным, если он вызван движением электронов, или дырочным, если он создается направленным перемещением дырок.

В собственных полупроводниках концентрации электронов и дырок одинаковы, но вследствие их разной подвижности электронная составляющая тока больше дырочной. В примесных полупроводниках концентрации электронов и дырок существенно отличаются, характер тока определяется основными носителями заряда: в полупроводниках р-типа – дырками, а в полупроводниках n-типа – электронами.

При неравномерной концентрации носителей заряда вероятность их столкновения друг с другом больше в тех слоях полупроводника, где их концентрация выше. Совершая хаотическое тепловое движение, носители заряда отклоняются в сторону, где меньше число столкновений, т. е. движутся в направлении уменьшения их концентрации.

Направленное движение носителей заряда из слоя с более высокой их концентрацией в слой, где концентрация ниже, называют диффузией, а ток, вызванный этим явлением, – диффузионным током. Этот ток, как и дрейфовый, может быть электронным или дырочным.

Электроны, перемещаясь из слоя с высокой концентрацией в слой с более низкой концентрацией, по мере продвижения рекомбинируют с дырками, и наоборот, диффундирующие в слой с пониженной концентрацией дырки рекомбинируют с электронами. При этом избыточная концентрация носителей заряда уменьшается.

2.4. Полупроводниковые резисторы

Как следует из вышесказанного, полупроводники представляют собой особый класс веществ, обладающий целым рядом уникальных электрофизических свойств. На основе полупроводниковых материалов были разработаны многочисленные электронные приборы, являющиеся элементной базой современных радиоэлектронных и информационных систем. Наиболее простыми полупроводниковыми приборами, принцип действия которых основан на уникальных электрофизических свойствах полупроводников, являются нелинейные полупроводниковые резисторы.

Полупроводниковыми резисторами называют приборы, принцип действия которых основан на свойствах полупроводников изменять свое сопротивление под действием температуры, электромагнитного излучения, приложенного напряжения и других факторов. Рассмотрим три наиболее распространенных типа полупроводниковых резисторов.

Терморезисторпредставляет собой полупроводниковый нелинейный резистор, сопротивление которого значительно изменяется при изменении температуры. Терморезистор выполняют в виде бусинки, диска, цилиндрического стержня, плоской шайбы. В некоторых конструкциях предусмотрено помещение терморезистора в металлический или стеклянный герметизированный баллон. Внешний вид терморезисторов представлен на рис. 2.4.1.

Терморезисторы, обладающие отрицательным температурным коэффициентом сопротивления, называют термисторами. Они нашли широкое применение в радиоэлектронном оборудовании самого различного назначения.

В полупроводниковых терморезисторах зависимость сопротивления от температуры достаточно точно описывается выражением, которое является аппроксимацией

Где R (T) номинальное значение сопротивления при температуре Т0.=293K

Т- температура в К,

В- коэффициент постоянный для данного типа резисторов

Примерная зависимость сопротивления терморезистора от температуры представлена на рис. 2.4.2.

Читайте также:  Ток утечки автомобилей toyota

Рисунок 2.4.1. Внешний вид терморезисторов.

Рисунок 2.4.2. График зависимости сопротивления терморезистора от температуры.

К важнейшим параметрам термисторов относятся: холодное сопротивление — сопротивление термистора при температуре окружающей среды 20 °С; температурный коэффициент сопротивления TKС, выражающий в процентах изменение сопротивления термистора при изменении температуры на 1°С; максимальная рабочая температура — температура, при которой характеристики термистора остаются стабильными в течение установленного срока службы; наибольшая рассеиваемая мощность – мощность, при которой термистор при протекании тока разогревается до максимальной рабочей температуры; теплоемкость Н – количество теплоты, необходимой для повышения температуры термистора на 1°С;

коэффициент рассеяния b – мощность, рассеиваемая термистором при разности температур термистора и окружающей среды в 1 °С; постоянная времени τ – время, в течение которого температура термистора становится равной 63 °С при перенесении его из среды с температурой 20 °С в среду с температурой 100 °С. Постоянная времени определяется как отношение теплоемкости к коэффициенту рассеяния: τ=Н/b.

В устройствах промышленной электроники термисторы применяются достаточно широко для измерения и регулирования температуры, термокомпенсации различных элементов электрических схем, работающих в широком диапазоне температур, стабилизации напряжения в цепях переменного и постоянного токов, а также в качестве регулируемых бесконтактных резисторов в цепях автоматики.

В ряде специальных устройств находят применение так называемые полупроводниковые болометры, состоящие из двух термисторов. Один из термисторов (активный) непосредственно подвергается воздействию контролируемого фактора (температуры излучения), а другой (компенсационный) служит для компенсации влияния температуры окружающей среды.

Позисторами называют полупроводниковые термисторы с положительным температурным коэффициентом сопротивления. В качестве полупроводника в них используют титанат бария со специальными примесями, сопротивление которого увеличивается при повышении температуры.

Как и для термисторов с отрицательным ТКC, для позисторов основными характеристиками являются вольтамперная и температурная. Параметры позисторов аналогичны параметрам термисторов с отрицательным TKC.

Варисторпредставляет собой полупроводниковый резистор, сопротивление которого зависит от приложенного напряжения. Внешний вид варисторов представлен на рис. 2.4.3. Примерный вид вольтамперной характеристики варистора приведен на рисунке 2.4.4. Симметричность характеристики позволяет использовать варистор в цепях как постоянного, так и переменного тока. К основным параметрам варисторов относятся: статическое сопротивление при постоянных значениях напряжения и тока Rст=U/I; динамическое сопротивление переменному току Rд=ΔU/ΔI; коэффициент нелинейности – отношение статического сопротивления к динамическому в данной точке характеристики р=Rст/Rд; наибольшая амплитуда импульсного напряжения и допустимая рассеиваемая мощность

Рисунок 2.4.3. Варисторы.

Рисyнок 2.4.4. Вольтамперная характеристика варистора

Исходя из двух последних параметров, выбирают рабочее эксплуатационное напряжение варистора.

В схемах промышленной электроники варисторы применяют для регулирования электрических величин, стабилизации токов и напряжений и для защиты приборов и элементов схем от перенапряжений.

1. Какие вещества называют полупроводниками?

2. Как зависит электропроводность полупроводников от температуры?

3. Объясните следующие термины: валентная зона, зона проводимости, запрещенная зона?

4. Приведите формулу зависимости сопротивления терморезистора от температуры?

5. Какие полупроводники называют полупроводниками р-типа?

6. Какие полупроводники называют полупроводниками п-типа?

7. Приведите выражение для удельной электропроводности полупроводников.

Источник

Дрейфовый и диффузный токи в полупроводнике

date image2015-05-26
views image11018

facebook icon vkontakte icon twitter icon odnoklasniki icon

Ток в полупроводнике появляется как следствие направленного перемещения носителей заряда. Различают два возможных случая появления тока в полупроводнике.

Ток, обусловленный внешним электрическим полем, получил название дрейфового тока.

Ток, возникающий в результате диффузии носителей из области, где их концентрация повышена, в направлении области с более низкой концентрацией, называется диффузным бездрейфовым током.

Механизм возникновения диффузного тока можно объяснить так. Пусть по каким-либо причинам концентрация электронов в различных точках полупроводника неодинакова. Очевидно, что вероятность столкновения электронов друг с другом больше там, где концентрация их выше. Поэтому электрон, совершая хаотическое тепловое движение, в соответствии с общими законами теплового движения будет стремиться перейти в область меньших столкновений. В результате носители заряда, совершающие тепловое движение, будут смещаться из области с большей концентрацией в область с меньшей концентрацией их, что приведет к возникновению диффузного тока.

2.6 Формирование контакта полупроводник — полупроводник. Электронно-дырочный переход

Все электрические контакты можно разделить на три основные группы: омические, нелинейные и инжектирующие. В зависимости от назначения контакта к нему предъявляются различные требова­ния. Так, омический контакт должен обладать очень малым пере­ходным сопротивлением, не искажать форму передаваемого сигнала, не создавать шумов, иметь линейную вольтамперную характеристику. Подобные контакты необ­ходимы для соединения элементов схемы друг с другом, с источника­ми питания и т. д.

Нелинейные контакты исполь­зуются для преобразования электрических сигналов (выпрямление, детектирование, генерирование и т. п.). Они имеют резко нелинейную вольтамперную характери­стику, форма которой определяется конкретным назначением со­ответствующего прибора. Инжектирующие контакты обладают спо­собностью направлять носители зарядов только в одну сторону. Этот тип контактов широко используется в полупроводниковых приборах, например, в биполярных транзисторах (гл. 6).

Читайте также:  Ограничитель мощности постоянного тока

Наибольшее распространение в полупроводниковой технике и микроэлектронике получили контакты типа полупроводник — полупроводник, а физические явления, происходящие в зоне этих контактов, лежат в основе работы большинства полупроводниковых приборов.

Электрический переход между двумя областями полупроводника, одна из которых имеет электропроводность n-типа, а другая p-ти­па, называют электронно-дырочным, или p-n переходом (рис. 3.1).

Электронно-дырочный переход нельзя создать простым сопри­косновением пластин n- и p-типа, так как при этом неизбежен проме­жуточный слой воздуха, окислов или поверхностных загрязнений. Эти переходы получают вплавлением или диффузией соответству­ющих примесей в пластинки монокристалла полупроводника, а так­же путем выращивания p-n перехода из расплава полупроводника с регулируемым количеством примесей. В зависимости от способа изготовления p-n переходы бывают сплавными, диффузионными и др. Рассмотрим явления, возникающие при электрическом контакте между полупроводниками n- и p-типа с одинаковой концентрацией донорных и акцепторных примесей (рис. 3.2, а). Допустим, что на границе раздела (сечение х) тип примесей резко изменяется (рис. 3.2, б) 1 .

Существование электронно-дырочного перехода обусловлено раз­личием в концентрации подвижных носителей заряда электронной и дырочной областей. В электронной части полупроводника кон­центрация электронов в соответствии с (2.15), а концентра­ция дырок в соответствии с (2.18).

2.7 Свойства p-n перехода при наличии внешнего напряжения

При нарушении равновесия электронно-дырочного перехода внешним электрическим полем через него начинает протекать ток. Характер токопрохождения и величина тока оказываются различными в зависимости от полярности приложенного напряжения.

Рассмотрим случай, когда внешнее напряжение противоположно по знаку контактной разности потенциалов (рис. 3.5, а). В этом случае источник включается так, что поле, создаваемое внешним напряжением в p–n переходе, направлено навстречу собственному полю p–n перехода. Такое включение называют прямым. Оно приводит к снижению высоты потенциального барьера. Основные носители заряда получают возможность приблизиться к контакту, скомпенсировав заряд примесей. Поэтому ширина p–n перехода уменьшится.

Из рис. 3.5, б видно, что для этого случая уровень Ферми в n-области поднимется, а в p-области опускается. Часть основных носителей, имеющих наибольшее значение энергии, сможет преодолеть сравнительно узкий и невысокий потенциальный барьер и перейти границу, разделяющую полупроводники n- и p-типа. Это приводит к нарушению равновесия между дрейфовым и диффузионными токами. Диффузионная составляющая тока становиться больше дрейфовой, и результирующий прямой ток через переход оказывается отличным от нуля.

По мере увеличения внешнего прямого напряжения прямой ток через переход может возрасти до весьма больших значений, так как он обусловлен главным образом движением основных носителей, концентрация которых в обеих областях велика.

Нетрудно заметить, что преодолевшие потенциальный барьер носители заряда попадают в область полупроводника, для которой они являются неосновными.

Процесс введения носителей заряда через электронно-дырочный переход при понижении высоты потенциального барьера в область полупроводника, где эти носители заряда являются неосновными, называется инжекцией (от английского слова inject – впрыскивать).

Инжектированные носители диффундируют вглубь соответствующей области полупроводника, рекомбинируя с основными носителями этой области. Так, по мере проникновения дырок из p-области в n-область они рекомбинируют с электронами, в результате чего диффузный дырочный ток Ipдиф n-области постепенно спадает до нуля. Однако это вовсе не означает, что ток в цепи не прекращается. Под действием внешнего электрического поля поступающие от источника в n-область электроны продвигаются к переходу, создавая электронный ток In. По мере приближения к переходу этот ток вследствие рекомбинации с дырками падает до нуля. Суммарный ток в n-области I = Ip + In во всех точках полупроводника n-типа остается неизменным. Одновременно с инжекцией дырок в n-область происходит инжекция электронов в p-область. Протекающие при этом процессы аналогичны.

Рассмотрим теперь свойства p–n перехода, к которому подключено обратное внешнее напряжение (рис. 3.7, а)

При этом электрическое поле, создаваемое источником, совпадает с полем p–n перехода. Потенциальный барьер между p- и n-областями возрастает. Он теперь становится равным φк + U. Количество основных носителей, способных преодолеть действие результирующего поля, уменьшается. Соответственно уменьшается и ток диффузии основных носителей заряда. Под действием электрического поля, создаваемого внешним источником, основные носители будут оттягиваться от приконтактных слоев вглубь полупроводника. В результате ширина p–n перехода увеличивается (рис. 3.7, б).

При обратном включении преобладающую роль играет дрейфовый ток, который имеет небольшую величину, так как он создается движением неосновных носителей. Этот ток получил название обратного тока:

Величина обратного тока практически не зависит от внешнего обратного напряжения. Это можно объяснить тем, что в единицу времени количество генерируемых пар электрон – дырка при неизменной температуре остается неизменным.

Источник