Меню

Токи коммутации область применения

Коммутация электрических цепей

Среди всех понятий электротехники одно из ведущих мест занимает коммутация электрических цепей. Это понятие используется во многих областях и стоит более подробно рассмотреть, что же это такое?

Понятие коммутации

Коммутацией электрических цепей называются разнообразные переключения, производимые во всевозможных электрических соединениях, а также в кабелях, проводах, трансформаторах, машинах, различных приборах и аппаратах, которые, так или иначе генерируют, распределяют и потребляют электроэнергию.

Как правило, коммутацию сопровождают переходные процессы, возникающие в результате того, что токи и напряжение очень быстро перераспределяются в ветвях электрических цепей.

Режимы электрических цепей

Переход цепи из одного режима в другой, является переходным динамическим процессом. В то время, как при стационарном установившемся режиме, токи и напряжения в цепях постоянного тока остаются неизменными по времени, при переменном токе временные функции периодически изменяются. Установленные режимы при любых параметрах полностью зависят исключительно от источника энергии. Поэтому, каждый источник энергии, постоянный или переменный, создают соответствующий ток. Причем, частота переменного тока полностью совпадает с частотой источника электрической энергии.

Коммутация электрических цепей

Возникновение переходных процессов происходит, когда каким-либо образом изменяются режимы в электрических цепях. Это может быть отключение или подключение цепей, изменения нагрузок, возникновение различных аварийных ситуаций. Все эти переключения и называются коммутацией. С физической точки зрения все процессы перехода энергетических состояний соответствуют режиму до коммутации и после коммутации.

Продолжительность переходных процессов

Длительность процессов очень короткая – вплоть до миллиардных долей секунды. В очень редких случаях, эти процессы, при необходимости, могут составлять до нескольких десятков секунд. Переходные процессы постоянно изучаются, поскольку именно с их помощью производится коммутация электрических цепей.

Работа очень многих устройств, особенно в промышленной электронике, базируется на переходных процессах. Например, продукция электрической нагревательной печи полностью зависит от того, как протекает переходный процесс. Чрезмерно быстрый или очень медленный нагрев могут нарушить технологию и привести к выпуску бракованной продукции.

В общих случаях, процессы электроцепей возникают при наличии в них индуктивных и емкостных элементов, способных осуществлять накопление или отдачу энергии магнитных или электрических полей. В момент начала процесса, между всеми элементами цепи и внешними источниками энергии, начинается процесс перераспределения электроэнергии. Частично, энергия безвозвратно преобразуется в другие виды энергии.

Переходные процессы в электрических цепях

Симистор принцип работы при коммутации

Расчет электрических цепей

Буквенные обозначения элементов на электрических схемах

Компенсация реактивной мощности в электрических сетях

Источник



Коммутация электрической цепи

date image2018-02-13
views image1549

facebook icon vkontakte icon twitter icon odnoklasniki icon

ЛЕКЦИЯ 3

2. ОСНОВНЫЕ ЭЛЕКТРОМЕХАНИЧЕСКИЕ ПРОЦЕССЫ

Коммутация электрической цепи

Коммутация электрической цепи – процесс замыкания или размыкания цепи с током.

Коммутация может происходить под воздействием внешних или внутренних для данного устройства источников напряжения или тока.

При анализе и расчёте процессов коммутации необходимо учитывать общий закон коммутации:

— При коммутации индуктивных электрических цепей не могут изменяться скачком ток цепи и магнитный поток ( );

— При коммутации емкостных цепей не могут изменяться скачком напряжение и электрический заряд ( ).

Под глубиной коммутации понимают отношение сопротивления Rотк коммутирующего органа в отключенном состоянии к сопротивлению Rвкл во включенном состоянии

Контактные электрические аппараты, у которых сопротивление межконтактного промежутка в отключенном состоянии измеряется мегомами, а сопротивление замкнутых контактов – микроомами, обеспечивают глубину коммутации

Для бесконтактных аппаратов, которые по глубине коммутации уступают контактным аппаратам, обычно

2.1.1 Отключение электрической цепи контактными аппаратами

Отключение цепи контактным аппаратом характеризуется воз­никновением плазмы, которая проходит разные стадии газового разряда в процессе преобразования межконтактного промежутка из проводника электрического тока в изолятор.

При токах выше 0,5-1 А возникает стадия дугового разряда (область 1)(рисунок 2.1.); при снижении тока возникает стадия тлеющего разряда у катода (область 2); следующая стадия (область 3)– таунсендовский разряд, и наконец, область 4 – стадия изоляции, в которой носители электричества – электроны и ионы – не образуются за счет ионизации, а могут поступать только из окружающей среды.

Первый участок кривой – дуговой разряд (область 1) –характе­ризуется малым падением напряжения у электродов и большой плотностью тока. С ростом тока напряжение на дуговом промежутке сначала резко падает, а затем изменяется незначительно.

Второй участок (область 2) кривой, представляющий собой область тлеющего разряда, характеризуется высоким падением напряжения у катода (250 – 300 В) и малыми токами. С ростом тока возрастет падение напряжения на разрядном промежутке.

Таунсендовский разряд (область 3) характеризуется чрезвычайно малыми значениями тока при высоких напряжениях.

Рисунок 2.1 — Вольтамперная характеристика стадий

электрического разряда в газах

Электрическая дуга сопровождается высокой температурой и связана с этой температурой. Поэтому дуга – явление не только электрическое, но и тепловое.

В обычных условиях воздух является хорошим изолятором. Так, для пробоя воздушного промежутка в 1 см требуется приложить напряжение не менее 30 кВ. Для того чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц: отрицатель­ных – в основном свободных электронов, и положительных – ионов. Процесс отделения от нейтральной частицы одного или нескольких электронов с обра­зованием свободных электронов и ионов называется ионизацией.

Ионизация газа может происходить под действием света, рентгеновских лучей, высокой температуры, под влиянием электрического поля и ряда дру­гих факторов. Для дуговых процессов в электрических аппаратах наибольшее значение имеют: из процессов, происходящих у электродов, – термоэлектрон­ная и автоэлектронная эмиссии, а из процессов, происходящих в дуговом промежутке, – термическая ионизация и ионизация толчком.

2.1.2. Электрическая дуга

В коммутационных электрических аппаратах, предна­значенных для замыкания и размыкания цепи с током, при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги. Тлеющий разряд возникает тогда, когда отключаемый ток ниже 0,1 А, а напряжение на контактах достигает величины 250 – 300 В. Такой разряд встречается либо на контактах ма­ломощных реле, либо как переходная фаза к разряду в виде электрической дуги.

Основные свойства дугового разряда:

— дуговой разряд имеет место только при токах большой величины; минимальный ток дуги для металлов со­ставляет примерно 0,5 А;

— температура центральной части дуги очень вели­ка и в аппаратах может достигать 6000 – 18000 К;

— плотность тока на катоде чрезвычайно велика и достигает 10 2 – 10 3 А/мм 2 ;

— падение напряжения у катода составляет всего 10 – 20 В и практически не зависит от тока.

В дуговом разряде можно различить три характер­ные области: околокатодную, область столба дуги (ствол дуги) и околоанодную (рисунок 2.2.).

В каждой из этих областей процессы ионизации и деионизации протекают по-разному в зависимо­сти от условий, которые там существуют. Поскольку ре­зультирующий ток, проходящий через эти три области, одинаков, в каждой из них происходят процессы, обес­печивающие возникновение необходимого количества за­рядов.

Рисунок 2.2 — Распределение напряжения и напряжённости электрического поля в стационарной дуге постоянного тока

Термоэлектронная эмиссия.Термоэлектронной эмиссией называется явление испускания электронов из накаленной поверхности.

При расхождении контактов резко возрастают переходное сопротивление контакта и плотность тока в последней площадке контактирования. Эта площадка нагревается до температуры плавления и образования контактного перешейка из расплавленного металла, который при дальнейшем расхождении контактов рвется. Здесь происходит испарение металла контактов. На отрицательном электроде образуется так назы­ваемое катодное пятно (раскаленная площадка), которое служит основа­нием дуги и очагом излучения элект­ронов в первый момент расхождения контактов. Плотность тока термо­электронной эмиссии зависит от тем­пературы и материала электрода. Она невелика и может быть достаточной для возникновения электрической ду­ги, но она недостаточна для ее го­рения.

Читайте также:  Электрические схемы по теме электрический ток

Автоэлектронная эмиссия.Это –явление испускания электронов из ка­тода под воздействием сильного электрического поля.

Место разрыва электрической цепи может быть представлено как конден­сатор переменной емкости. Емкость в начальный момент равна бесконеч­ности, затем убывает по мере расхождения контактов. Через сопротивление цепи этот конденсатор заряжается, и напряжение на нем растет постепенно от нуля до напряжения сети. Одновременно увеличивается расстояние между контактами. Напряженность поля между контактами во время нарастания напряжения проходит через значения, превышающие 100 МВ/см. Такие значения напряженности электрического поля достаточны для вырывания электронов из холодного катода.

Ток автоэлектронной эмиссии также весьма мал и может служить только началом развития дугового разряда.

Таким образом, возникновение дугового разряда на расходящихся контак­тах объясняется наличием термоэлектронной и автоэлектронной эмиссий. Преобладание того или иного фактора зависит от значения отключаемого тока, материала и чистоты поверхности контактов, скорости их расхождения и от ряда других факторов.

Ионизация толчком.Если свободный электрон будет обладать достаточной скоростью, то при столкновении с нейтральной частицей (атом, а иногда и молекула) он может выбить из неё электрон. В результате получатся новый свободный электрон и положительный ион. Вновь полученный электрон может, в свою очередь, ионизировать следующую частицу. Такая ионизация носит название ионизации толчком.

Для того чтобы электрон мог ионизировать частицу газа, он должен двигаться с некоторой определенной скоростью. Скорость электрона зависит от разности потенциалов на длине его свободного пробега. Поэтому обычно указывается не скорость движения электрона, а то минимальное значение разности потенциалов, какое необходимо иметь на длине свободного пути, чтобы электрон к концу пути приобрел необходимую скорость. Эта разность потенциалов носит название потенциала ионизации.

Потенциал ионизации для газов составляет 13 – 16 В (азот, кислород, водород) и до 24,5 В (гелий), для паров металла он примерно в два раза ниже (7,7 В для паров меди).

Термическая ионизация.Это – процесс ионизации под воздействием высокой температуры. Поддержание дуги после ее возникновения, т.е. обеспечение возникшего дугового разряда достаточным числом свободных зарядов, объяс­няется основным и практически единственным видом ионизации – термической ионизацией.

Температура столба дуги с среднем равна 6000 – 10000 К, но может достигать и более высоких значений – до 18000 К. При такой температуре сильно возрастает как число быстро движущихся частиц газа, так и скорость их движения. При столкновении быстро движущихся атомов или молекул большая часть их разрушается, образуя заряженные частицы, т.е. происходит иони­зация газа. Основной характеристикой термической ионизации является сте­пень ионизации, представляющая собой отношение числа ионизированных атомов в дуговом промежутке к общему числу атомов в этом промежутке. Одновременно с процессами ионизации в дуге происходят обратные процессы, т. е. воссоединение заряженных частиц и образование нейтральных частиц. Эти процессы носят название деионизации.

Деионизация происходит главным образом за счет рекомбинации и диф­фузии.

Рекомбинация.Процесс, при котором различно заряженные частицы, при­ходя во взаимное соприкосновение, образуют нейтральные частицы, называется рекомбинацией.

В электрической дуге отрицательными частицами являются в основном электроны. Непосредственное соединение электронов с положительным ионом ввиду большой разности скоростей маловероятно. Обычно рекомбинация происходит при помощи нейтральной частицы, которую электрон заряжает. При соударении этой отрицательно заряженной частицы с положительным ионом образуется одна или две нейтральные частицы.

Диффузия.Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги.

Диффузия обусловлена как электрическими, так и тепловыми факторами. Плотность зарядов в столбе дуги возрастает от периферии к центру. Ввиду этого создается электрическое поле, заставляющее ионы двигаться от центра к периферии и покидать область дуги. В этом же направлении действует и разность температур столба дуги и окружающего пространства. В стабилизированной и свободно горящей дуге диффузия играет ничтожно малую роль.

Падение напряжения на стационарной дуге распределяется неравномерно вдоль дуги. Картина изменения падения напряжения UД и напряжённости электрического поля (продольного градиента напряжения) ЕД = dU/dx вдоль дуги приведена на рисунке (см. рис 2.2). Под градиентом напряжения ЕД по­нимается падение напряжения на единицу длины дуги. Как видно из рисунка, ход харак­теристик UД и ЕД в приэлектродных областях резко отличается от хода характе­ристик на остальной части дуги. У электродов, в прикатодной и прианодной об­ластях, на промежутке дли­ны порядка 10 – 4 см имеет место резкое падение напря­жения, называемое катод­ным Uк и анодным Uа. Значение этого падения на­пряжения зависит от мате­риала электродов и окружа­ющего газа. Суммарное зна­чение прианодного и прикатодного падений напряжений составляет 15 – 30 В, градиент напряжения достигает 10 5 – 10 6 В/см.

В остальной части дуги, называемой столбом дуги, падение напряжения UД практически прямо пропорционально длине дуги. Градиент здесь приблизительно постоянен вдоль ствола. Он зависит от многих факторов и может изменяться в широких пределах, достигая 100 – 200 В/см.

Околоэлектродное падение напряжения UЭ не зависит от длины дуги, падение напряжения в столбе дуги пропорционально длине дуги. Таким образом, падение напряжения на дуговом промежутке

где: ЕД – напряжённость электрического поля в столбе дуги;

lД – длина дуги;

В заключение следует ещё раз отметить, что в стадии дугового разряда преобладает термическая ионизация – разбиение атомов на электроны и положительные ионы за счёт энергии теплового поля. При тлеющем – возникает ударная ионизация у катода за счет соударения с электронами, разгоняемыми электри­ческим полем, а при таунсендовском разряде ударная ионизация пре­обладает на всём промежутке газового разряда.

Источник

Токи коммутации область применения

§ 109. Коммутация тока

Коммутацией тока называется процесс, происходящий в секции обмотки во время ее замыкания накоротко щеткой на коллекторе. Этот процесс неизбежен при переключении секций из одной параллельной ветви в другую.
При вращении якоря машины коллекторные пластины поочередно приходят в соприкосновение со щетками, так что в определенные промежутки времени секция или несколько секций замыкаются щеткой. Поскольку переходное сопротивление между щеткой и коллекторной пластиной сравнительно мало, то замыкание секций щеткой близко к их короткому замыканию.
На рис. 151 показана секция простой параллельной обмотки. В этой секции протекает ток одной параллельной ветви, равный

где Iя — ток нагрузки;
2а — число параллельных ветвей обмотки.

При вращении якоря его обмотка и коллектор перемещаются относительно неподвижной щетки справа налево. В некоторый момент, соответствующий началу коммутации, щетка соприкасается с коллекторной пластиной 1, соединенной с двумя проводами обмотки, в каждом из которых протекает ток одной параллельной ветви iя.
Таким образом, через коллекторную пластину и щетку протекает ток, равный сумме токов двух параллельных ветвей 2iя. В рассматриваемой секции ток равен току одной параллельной ветви и в данный момент направлен против часовой стрелки.
В дальнейшем при вращении якоря щетка будет соприкасаться с коллекторными пластинами 1 и 2, замыкая рассматриваемую секцию (рис. 151, б). В определенный момент щетка полностью перейдет на коллекторную пластину 2 и ток в секции изменит направление на обратное (рис. 151, в), т. е. секция переключится из одной параллельной ветви в другую. Время переключения секции, называемое периодом коммутации, мало и за это время в секции происходит изменение тока от +iя до —iя. При изменении тока в секции возникает э. д. с. самоиндукции, которая может достигать сравнительно больших значений.
Кроме того, поскольку процесс коммутации происходит одновременно в нескольких секциях под всеми щетками, то в каждой секции индуктируются еще и э. д. с. взаимоиндукции.
Э. д. с. самоиндукции и взаимоиндукции, называемые реактивными э. д. с., препятствуя изменениям тока, вызывают неравномерное распределение плотности тока под щеткой, что является причиной образования искрения, которое особенно интенсивно в момент размыкания щеткой секции обмотки.
Чрезмерная плотность тока при наличии разности потенциалов между щеткой и коллектором влечет возникновение дугового разряда, который ионизирует тончайшие слои воздуха, находящиеся между щеткой и коллектором, и способствует развитию дуги. Дуга может перейти даже к щетке другой полярности, образовав круговой огонь на коллекторе, что ведет к сильному повреждению последнего.
Искрение щеток может быть также вызвано и другими причинами, как-то: неровностью поверхности коллектора, биением щеток, загрязненностью поверхности коллектора, наличием влаги на ней и т. д.
Даже незначительное искрение щеток нежелательно, так как увеличивается износ щеток и коллектора и повышается нагрев последнего (из-за увеличения переходного сопротивления между щеткой и коллектором).
Наиболее эффективным способом улучшения коммутации является компенсация реактивных э. д. с. Для этого в зоне коммутации, в которой находятся активные проводники коммутируемых секций, необходимо создать такое внешнее магнитное поле, при котором индуктируемая в секциях коммутирующая э. д. с. еv будет равна и противоположна реактивной э. д. с. еr т. е. еv = — еr. Для создания такого внешнего магнитного поля устраивают дополнительные полюсы Nк и Sк, устанавливаемые между главными полюсами.
На рис. 152 показана схема генератора, якорь которого вращается каким-либо двигателем в направлении, показанном стрелкой. В обмотке якоря индуктируется э. д. с. и при нагрузке протекает ток. Направление э. д. с. и тока в проводниках обмотки показано на схеме, на которой выделены проводники 1 и 2 коммутируемой секции. Реактивная э. д. с. еr препятствуя изменениям тока в коммутируемой секции, будет направлена в проводниках 1 и 2 встречно изменениям тока, как показано на схеме. Для компенсации реактивной э. д. с. в проводниках 1 и 2 нужно создать коммутирующую э. д. с. ev = — еr для чего и установлены дополнительные полюсы Nк и Sк.

Читайте также:  Рассчитайте циркуляцию вектора h вдоль силовой линии прямого тока

Таким образом, полярность дополнительного полюса в генераторе должна соответствовать полярности следующего за ним в направлении вращения якоря главного полюса. В двигателе полярность дополнительного полюса должна соответствовать полярности предыдущего по направлению вращения якоря главного полюса.
Обмотка возбуждения дополнительных полюсов соединяется последовательно с обмоткой якоря для того, чтобы реактивная э. д. с. была компенсирована при любой нагрузке машины. Для этой же цели магнитная цепь дополнительных полюсов ненасыщена, что достигается выполнением сравнительно больших воздушных промежутков между сердечником якоря и дополнительным полюсом. Так как реактивная э. д. с. пропорциональна току в якоре, то она компенсируется при любой нагрузке машины при условии, когда коммутирующая э. д. с. также пропорциональна току нагрузки. Поэтому магнитное поле в зоне коммутации должно изменяться пропорционально току якоря.

Источник

Особенности коммутации сетей постоянного тока

В конце XIX-начале XX века между специалистами-электротехниками развернулась самая настоящая «война токов». Основная конкуренция проходила между двумя направлениями систем генерации, электроснабжения и электропотребления: постоянным током (англ. DirectCurrent – DC) и переменным (англ. AlternatingCurrent – AC). В итоге предпочтение было отдано трёхфазным цепям переменного тока. Подсчитав объёмы капитальных затрат на создание систем электроснабжения, промышленники выбрали, казалось бы, самый оптимальный вариант. Но удастся ли переменному току удержать лидерство в современных условиях? Сегодня в ряде областей наблюдается развитие технологий и продвижение проектов на постоянном токе.

Области применения постоянного тока
Линии электропередачи низкого напряжения

В рамках финской программы «Интеллектуальные сети и рынок энергии» в Технологическом университете Лаппеенранты разработан проект системы электроснабжения и связи LVDC (англ. Low voltage direct current). Он предназначается для загородных посёлков с малым числом потребителей и линиями электроснабжения большой протяжённости.

Проект предусматривает замену дорогих традиционных трёхфазных распределительных сетей переменного напряжения 20/0,4 кВ на кабельные подземные линии LVDC (±0,75 кВ). Прокладка кабеля на глубине более 1,5 м минимизирует зоны отчуждения и не создаёт ограничений для ведения сельскохозяйственных работ. Такое решение существенно уменьшает стоимость сети и её зависимость от погодных катаклизмов. Каждое здание и сооружение будет подключаться к сети постоянного тока через преобразователи, согласующие напряжение LVDC с напряжением, необходимым потребителю.

Энергоснабжение локальных объектов, микро- и минисети постоянного напряжения

Сегодня для обеспечения повышения энергоэффективности всё чаще предлагаются проекты микросетей постоянного напряжения внутри здания (или нескольких зданий) и на локальной территории. На входе таких сетей установлен высокоэффективный преобразователь, превращающий переменное напряжение распределительных линий в постоянное.

Современные локальные сети постоянного напряжения имеют ряд преимуществ, среди которых необходимо отметить следующие:

  • общее преобразование из переменного напряжения в постоянное для всех нагрузок уменьшает потери на 10-20%;
  • эффективное интегрирование возобновляемых источников электроэнергии, являющихся также источниками постоянного напряжения (солнечные батареи, небольшие ветряные турбины, топливные элементы и др.);
  • простое согласование перечисленных источников постоянного напряжения, не требующих взаимной синхронизации;
  • эффективное управление графиками нагрузки (включая накопление электрической энергии в периоды избыточной генерации и выдачу в периоды дефицита);
  • повышенная электробезопасность сетей постоянного тока.

Транспорт

Не так давно была разработана энергосистема постоянного тока для крупного морского судна гражданского назначения – многоцелевого танкера для обслуживания нефтяных платформ, построенного в Норвегии. Традиционно в судах с электротягой происходит многократное преобразование переменного тока в постоянный для питания винто-рулевых колонок и гребных винтов, на которые приходится более 80% всего электропотребления. Это приводит к большим потерям энергии, снижению общего КПД, а также негативному влиянию на окружающую среду. Компания АББ, лидер в производстве силового оборудования и технологий для электроэнергетики и автоматизации, разработала проект, в котором электроэнергия распределяется через единую цепь постоянного тока. «С помощью нашего решения суда смогут максимально эффективно использовать свои возможности по энергосбережению с применением дополнительных источников постоянного тока, таких как солнечные батареи, топливные ячейки или аккумуляторы, подключенные напрямую к судовой сети постоянного тока», — рассказывает Вели-Матти Рейникала, руководитель подразделения «Автоматизация процессов» компании АББ.

Читайте также:  Что вызывает электрический ток в металлах

В сравнении с системами на переменном токе спроектированная энергосистема имеет следующие преимущества:

  • расход топлива на 20% ниже;
  • за счёт отсутствия силовых низкочастотных трансформаторов суммарный вес и объём электрооборудования уменьшен на 30%;
  • высвобождается место для размещения оборудования, груза и экипажа, то есть улучшена компоновочная схема танкера.

Управляемый электропривод

Постоянное напряжение широко применяется для обеспечения эффективного регулирования скорости электродвигателей.
С каждым годом управляемый электропривод всё больше проникает в те сферы, в которых раньше считалось достаточным применение обычного неуправляемого привода. Специалисты уверены, что сочетание инвертор плюс асинхронный (или вентильный) электродвигатель в ближайшем будущем будет всё больше теснить традиционные типы приводов. А для такого инверторного привода питание постоянным напряжением является естественным и наиболее эффективным.

Бытовая электротехника и электроника

Практически вся современная бытовая техника питается переменным напряжением. Однако почти в каждом современном электроприборе происходит преобразование переменного входного напряжения в постоянное. И именно последнее используется электронными схемами.

Очевидно, что у постоянного тока множество преимуществ перед переменным. Но всё же у такого способа питания оборудования есть целый ряд особенностей, которые необходимо учитывать при разработке топологии электрических цепей и при выборе защитных и коммутационных устройств.

Особенности цепей постоянного тока

1. Направление тока

Электрический ток, называемый «постоянным», имеет неизменные во времени значение и направление. Если рассматривать постоянный ток как прохождение элементарных электрических зарядов через определённую точку, то значение заряда (Q), протекающего через эту точку (а вернее, через поперечное сечение проводника) за единицу времени, будет неизменным.

В системах постоянного тока относительное направление тока имеет особую важность, поэтому необходимо присоединение нагрузки со строгим соблюдением полярности. Ошибки неотвратимо приводят к тяжёлым аварийным процессам. Например, если аккумуляторная батарея будет подключена к источнику с неправильной полярностью, произойдет её перегрев с дальнейшим закипанием электролита и последующим возможным разрушением ее корпуса, которое обычно носит взрывной характер. При питании обратной полярностью серьёзные повреждения могут так же возникнуть и во многих электронных цепях.

К полярности чувствительно не только электротехническое оборудование, но и аппараты защиты и коммутации, устанавливающиеся в распределительных щитах. Обычно для того, чтобы избежать ошибок при монтаже электросети, производители наносят на переднюю панель аппаратов специальную маркировку. «Надо понимать, что работа монтажника достаточно однообразна: в день они собирают десятки однотипных схем. Так что от неточностей, связанных с невнимательностью, не застрахованы даже профессионалы. Случается, что коммутационные аппараты подключают неправильно. В итоге подача напряжения на распределительный щит может закончиться возгоранием», — рассказывает Илья Лёшин, начальник измерительной лаборатории компании «Центроэлектромонтаж».

Описанная специалистом проблема была актуальна для постоянного тока в течение многих десятилетий. Но в последнее время на рынке появились устройства, не чувствительные к полярности приложенного напряжения благодаря особым конструкторским решениям. «Использование подобных аппаратов избавляет от множества проблем, – комментирует Алексей Кокорин, менеджер по группе изделий компании АББ, лидера в производстве силового оборудования и технологий для электроэнергетики и автоматизации. — Так, например, за счёт симметричной конструкции полюса выключатели-разъединители серии OTDC производства АББ не чувствительны к полярности приложенного напряжения. Их можно монтировать внутри щита как вертикально, так и горизонтально, подвод питания осуществляется сверху либо снизу».

2. Электрическая дуга

Одной из проблем, связанных с использованием аппаратов и переменного, и постоянного тока, является электрическая дуга. Она возникает между размыкающимися контактами из-за ионизации воздушного пространства между ними.

В выключателе переменного тока гашение дуги происходит при переходе значения переменного тока через ноль. После исчезновения разряда, во избежание его повторного появления, необходимо восстановить электрическую прочность воздушного дугового промежутка. Сделать это можно либо за счёт «принудительной» рекомбинации ионов и электронов, либо с помощью вывода из контактного промежутка заряженных частиц.

В цепях постоянного тока процесс происходит несколько иначе. В общем случае параметры дуги зависят от характеристик цепи, значения тока, а также параметров самой среды: температуры, давления, состава воздуха и т.п. Существует набор условий, при которых электрическая дуга при размыкании контактов в цепи постоянного тока может устойчиво гореть длительное время. Таким образом, для её гашения необходимо так изменить параметры процесса, чтобы не существовало точки устойчивого горения.

В аппаратах низкого напряжения применяется два решения: открытый разрыв и щелевые дугогасительные камеры. В первом случае дуга растягивается, допустим, с помощью электродинамических сил, одновременно охлаждаясь воздухом (способ применяется для токов до 5 кА и напряжений до 500 В). Во втором – дуга при помощи магнитного поля растягивается и попадает в узкую камеру, где охлаждается (применяется для токов до 90 кА).

«Часто эффективность работы дугогасительных механизмов, в которых задействованы магнитные или электродинамические силы, зависит от величины самого тока. При высоких значениях они справляются со своей задачей, но в некоторых случаях магнитных сил недостаточно, чтобы растянуть дугу до требуемой длины. Поэтому иногда аппараты дополняются, к примеру, постоянными магнитами, позволяющими расширить рабочий диапазон токов», — поясняет Алексей Кокорин (АББ). Схема, описанная специалистом, используется в аппаратах серии OTDC, где установлена дугогасительная решётка новой конструкции с удлинёнными пластинами специальной формы. В процессе гашения дуга изгибается в пространстве и растягивается. В то же время для увеличения падения напряжения на ней применяется принцип деионной решётки. Чтобы такой дугогасительный механизм эффективно работал как при низком, так и при высоком напряжении, в него были интегрированы дополнительные постоянные магниты. Их силы поля достаточно, чтобы перемещать дугу к решётке, даже если значения тока малы.

3. Размер защитных аппаратов должен быть минимальным

Цепи постоянного тока чаще всего применяются именно там, где важна компактность оборудования. «Габариты важны практически во всех отраслях, поскольку любое оборудование занимает дефицитные площади. Кроме того, есть сферы, где важен каждый кубический сантиметр: например, транспорт. При разработке оборудования наша компания уделяет его размерам особое внимание. Например, выключатели нагрузки серии OTDC работают с током 100-250 А при напряжении до 1000 В, имея при этом всего два полюса. Обычно для таких цепей применяются четырёхполюсные автоматические выключатели, имеющие почти в три раза большие габариты. Так как аппараты не чувствительны к полярности, дополнительную экономию места можно обеспечить за счёт удобного варианта размещения модулей в монтажном блоке (вертикально или горизонтально) как на шине, так и без нее, или благодаря более эргономичной подводке питания», — говорит Алексей Кокорин (АББ).

Хотя ещё полвека назад считалось, что постоянный ток окончательно сдал свои позиции, сегодня в рамках разговоров о повышении энергоэффективности систем электроснабжения всё чаще на повестке дня появляются проекты по строительству сетей DC. Переход промышленности на потребление постоянного тока потребует в первую очередь обновления оборудования и перестройки сложившейся культуры использования энергии. А правильный подбор коммутационной и защитной аппаратуры для цепей постоянного тока – первый шаг к использованию всех преимуществ подобных сетей.

Источник