Меню

Ток уравнивания в трехфазной сети

Подключение, разводка, схемы трёхфазного напряжения и равномерное распределение 380 вольт в частном доме

Отправим материал на почту

Подключение, разводка, схемы трёхфазного напряжения и равномерное распределение 380 вольт в частном доме

  • Устройство электрического щита
  • Особенности
  • Перекос фаз
  • Расчёт энергопотребителей
  • Правила распределения
  • Разбивка на группы
  • Пример разводки по одному этажу
  • Заключение

При подключении коттеджа правильное распределение нагрузки по фазам позволяет оптимизировать использование электроэнергии, снизить вероятность перегрузок, поломок электроприборов из-за несоответствующего напряжения и даже уменьшить показания счётчика. Разберёмся с возможными нюансами и рассмотрим несколько наиболее популярных схем на наглядных примерах.

Разводка коттеджа

Устройство электрического щита

Перед тем, как распределить нагрузку по фазе в частном доме, позаботьтесь правильном «содержимом» электрощитка на который напряжение приходит с опоры. В данной ситуации, в нём должны иметься следующие устройства:

  • Автоматический выключатель (автомат).
  • Трёхфазный прибор учёта электроэнергии.
  • Автоматические выключатели или УЗО (устройства защитного отключения), на которые (по-отдельности) приходит каждая фаза. Общий ноль подключается к нулевой шине.
  • Защитный проводник заземления соединяется с общей шиной заземления.

Пример подключения счётчика

Важно! Представленный перечень приведён в порядке подключения кабеля с опоры ВЛЭП (воздушной линии электропередач).

Особенности

Чтобы снизить вероятность перегрузки фазы, нагрузку распределяют на фазы равномерно. Несоблюдение этого условия так же, как и отгорание «нулевой» жилы или её плохой контакт, приведут к разнице в напряжении на фазных жилах в большую или меньшую сторону.

Таким образом, преобразованное однофазное питание (220 В) приведёт к неисправности подключённых к нему электропотребителей. Произойдёт это из-за того, что на одни приборы будет приходить повышенное напряжение (240-270 В), на другие – пониженное (160-200 В).

Важно! При неравномерном распределении нагрузки по фазам, на не чувствительных к перекосам счётчиках, произойдёт повышенный расход электроэнергии.

Перекос фаз

Фактически распределение нагрузки по фазам в частном доме, выполненное с перекосом фаз не несёт серьёзных проблем для техники. Но периодическое отключение автоматического выключателя вам гарантировано.

Перед распределением нагрузки необходимо разобраться в устройстве трёхполюсного автомата. Рассмотрим ситуацию на примере автомата С 25. Он состоит из 3 однофазных автоматов, каждый из которых способен выдерживать 25 А. Таким образом, каждая фаза получает по 5 кВт мощности, откуда и выходит, что присоединение коттеджа мощностью в 15 кВт. Автоматы при этом могут разрывать питание одним выключателем (рычагом).

Пример распределения 380 В

Если вы рассматриваете вопрос, как распределить нагрузку по фазам в случайном (хаотичном) порядке, обратите внимание на следующий пример:

  • Фаза № 1 подключена к освещению коттеджа.
  • Фаза № 2 запитывает электроснабжение на розетки 1-го этажа.
  • Фаза № 3 питает розетки на 2-ом этаже.

В результате произойдёт следующее:

  • На 2-ом этаже несколько спален и санузел. Мощных энергопотребителей здесь нет. В результате Фаза № 3 не будет работать на полную мощность.
  • Аналогичная ситуация произойдёт и с фазой № 1. Современное светодиодное освещение потребляет мало электричества.
  • Последняя фаза № 2 окажется перегруженной, из-за того, что на неё «повешены» основные, мощные потребители: стиральная машина, микроволновка, холодильник и прочая техника, находящаяся в помещениях первого этажа.

Важно! В результате, одновременное включение нескольких элементов бытовой техники перегрузит автомат, что станет результатом его отключения.

Расчёт энергопотребителей

Перед тем, как распределить нагрузку по фазам рекомендуется выполнить предварительный расчёт потребителей. Сделать это легко, составив список потенциальных источников, которые будут «повешены» на ту или иную фазу. Например, перечислите основную бытовую технику и её мощность согласно заявленной производителем:

  • Варочная электроплита 6,5-7,5 кВт.
  • Стиральная машина 1,5-1,8 кВт.
  • Посудомоечная машина 1,5-1,8 кВт.
  • Микроволновая печь 0,9-1,2 кВт.
  • Духовой шкаф 2,0-2,6 кВт.
  • Пылесос 1,9-2,2 кВт.
  • Утюг 1,9-2,2 кВт.

Разбивка потребителей на группы

Важно! По необходимости список может пополняться другими, имеющимися на балансе электроприборами.

Правила распределения

Как очевидно из вышесказанного, ответ на вопрос, как распределить нагрузку по фазам в частном доме, кроется в равномерном делении потребителей на все токопитающие жилы. Популярным способом является подключение отдельной группы розеток в комнатах к отдельному фазному проводу. Причём последующая группировка происходит так, чтобы оптимизировать нагрузку на сеть. По аналогичному принципу подключается и освещение, распределение нагрузки по фазам проводника должно быть равномерным.

Правильное распределение питания

Приведённое выше изображение показывает правильное подключение 380 вольт, 3 фазы. Частный дом, схема электроснабжения которого представлена, «разведён» правильно, с учётом всех требований.

Схема подключения электрощитка

Следующее изображение показывает правильное подключение электрощитка на 380 вольт 3 фазы. Частный дом, схема технологического присоединения которого показана на картинке, подсоединён верно, что снижает вероятность отключения автоматов в результате перегрузки сети.

Разбивка на группы

Перед тем, как распределить нагрузку по фазам в частном доме, займитесь разбивкой отдельных линий вышеупомянутых энергопотребителей. На этом этапе необходимо подготовить отдельную линию электропроводки для розеток в каждую комнату и отдельно для света.

План схема проводки

Верное распределение нагрузки по фазе в частном доме выполняется прокладкой отдельной магистрали к самым мощным энергопотребителям из вышеупомянутого списка. Для наглядного и понятного разбора ситуации, обратите внимание на приведённую чуть выше план-схему.

Чертёж показывает, как распределить нагрузку по фазам в частном доме и разбить потребителей на группы. Вводным кабелем, идущим от счётчика, здесь выступает ВВнг 5*10 (5 жил с сечением 10 мм2). Защита от перегрузок и коротких замыканий возложена на автомат ВА 40 А.

  • К первой группе (фаза L1) подключаются световые приборы. В качестве защиты используется автомат на 10 А. кабель для протяжки линий: ВВГнг 3*1,5 мм2.
  • Второй группой объединены потребители, подключенные к розеткам ванной и санузла. В качестве автоматического выключателя здесь установлено устройство защитного отключения (УЗО 10А-10mA). Марка кабеля, который здесь используется ВВГнг 3*2,5 мм2, не менее. Подключается она также на фазу L1.

Полезно! Допускается использование УЗО с допустимым большим значением силы тока, но не более 30 А.

  • Третья группа потребителей – розетки, установленные в остальных комнатах (гостиная, спальные, рабочий кабинет, кладовая, гардеробная). Линия подключается на фазу L2 с проводом, сечение которого не менее 2,5 мм2. Защита оборудования и людей возлагается на автомат 16 А.
  • К четвёртой группе потребителей относят розетки кухни и коридора. Запитываются через фазу, обозначенную как L3. Подключается по принципу, аналогичному тому, который использовался для третьей группы: трёхжильный кабель в 2,5 «квадрата» и 16-ти амперный автомат.
  • Пятой группой является провод, идущий на электроплиту. Подключается на 3 фазы с нулём и обязательным заземлением. Кабель здесь используется марки ВВГнг 5*6 мм2, защитное устройство: УЗО 32 А-32mA.

Важно! Перед тем, как распределить нагрузку по фазам в частном доме, по вышеуказанной схеме, имейте в виду, что она приведена в качестве примера. Для каждой отдельной ситуации она может отличаться по тем или иным признакам.

Пример разводки по одному этажу

Рассмотрим пример технологической схемы для 1-го этажа коттеджа. Такой вариант ещё одно верное решение того, как распределить нагрузку по фазе в частном доме. Этот вариант связан с тем, что максимальное количество энергопотребителей сконцентрировано именно на этом этаже.

Разводка первого этажа

Для более наглядного понятия того, как распределить нагрузку по фазам в частном доме, приведена следующая план-схема. Такой проект является необходимым при прокладке новой линии, строящегося или ремонтирующегося коттеджа. В дальнейшем изображение значительно облегчит поиск возможной неисправности, внесение изменений или добавление новых точек.

План-схема электропроводки по группам

Заключение

Перечисленные примеры и схемы представлены в качестве ориентировочного ознакомления с вопросом, как распределить нагрузку по фазам в частном доме без вероятности последующих переделок. Кроме того, они облегчат выбор параметров кабеля, УЗО и автоматических выключателей для трёхфазной электросети.

Источник

Трехфазный ток

В домовых распределительных электрических сетях в основном используются одна фаза и нулевой проводник. Этого достаточно для работы бытовых электроприборов, освещения и отопления. Для организации производственного технологического процесса применяют трехфазный ток. Потребители, шинные сборки, распределительные щитки, узлы учёта и вся электрическая схема настроены на работу от сетей трёхфазного тока.

Трёхфазный ток

Трехфазная система переменного тока

Сети трёхфазной системы рассчитаны на питание от подстанций, подающих напряжение по четырём проводам: три фазы и ноль. Это один из частных случаев многофазных цепей, где функционируют ЭДС, имеющие синусоидальные формы и равную частоту. Они произведены одним и тем же источником, но имеют угол сдвига между фаз в 120 градусов (2π/3).

Ещё электротехник М.О. Доливо-Добровольский, проводя изучение работы асинхронных двигателей, представил четырёхпроводную систему в качестве рабочей для питания такого типа машин и агрегатов. Каждый провод, образующий отдельную цепь внутри этой системы, называют «фазой». Структуру трёх смещённых по фазе переменных токов именуют трёхфазным током.

Четырёхпроводная схема питания

Важно! В подобной структуре фазное напряжение равно 220 В – это то, что покажет прибор при измерении между фазным и нулевым проводниками. Величина линейного напряжения составит 380 В при проведении измерения между двумя фазными тоководами.

Что такое трехфазный ток

Это система, объединяющая три электроцепи с токами, которые разнятся по фазе на 1/3 периода. Причём их собственные ЭДС совпадают по частоте и амплитуде и имеют такой же фазовый сдвиг. У такой структуры фазное и линейное напряжения соответственно равны 220 В и 380 В. Частота периодических колебаний – 50 герц (Гц).

Если подключить к осциллографу токовые синусоидальные сигналы от трёхфазной сети, то можно будет увидеть, что они совершают прохождение своих точек максимума в регулярной фазовой последовательности.

Общая формула мощности переменного тока:

где:

  • P – мощность, (Вт);
  • I – ток, (А);
  • U – напряжение, (В);
  • cosϕ – коэффициент мощности.

Значение cosϕ должно стремиться к единице. Средний коэффициент мощности лежит в интервале 0,7-0,8. Чем он выше, тем больше КПД установки.

В случае 3-х фазных сетей мощность будет зависеть от схемы соединения источника и нагрузки.

График трёхфазного тока

Почему используют трехфазный ток

Зная, что такое трехфазный ток, можно однозначно ответить на вопрос, почему он применяется.

Трехфазные системы переменного тока обладают целым рядом преимуществ, которые позволяют им выделяться среди многофазного построения электрических структур. К плюсам можно отнести следующие особенности:

  • экономичное транспортирование энергии на дальние расстояния без снижения параметров;
  • 3-фазные трансформаторы и кабели обладают меньшей материалоёмкостью, в отличие от однофазных моделей;
  • возможность обеспечить сбалансированность энергосистемы;
  • одновременное присутствие в установках двух напряжений для работы: фазное напряжение (220 В) и линейное (380 В).
Читайте также:  Автомобильное зарядное устройство выходной ток

К сведению. Подключение люминесцентных ламп к разным фазам и установка их в один светильник значительно уменьшат стробоскопический эффект и заметное глазу мерцание.

Неотъемлемой частью оборудования любого производственного предприятия являются асинхронные двигатели. Для их нормальной работы и развития паспортной мощности необходимо 3-х фазное питание. Оно обеспечивает возможность образования вращающегося МП (магнитного поля), которое приводит в движение ротор асинхронной машины. Такие двигатели экономичнее, проще в изготовлении и просты в эксплуатации, по сравнению с однофазными или любыми другими.

На электростанциях любого типа (ГЭС, АЭС, ТЭС), а также альтернативных обеспечено производство электроэнергии переменного типа при помощи генераторов.

Трёхфазная линия электропередач 10 кВ

Как осуществляется работа генератора

Устройство действует, превращая энергию вращения в энергию электричества. Электромашина, используя вращение МП, генерирует электрический ток. В тот момент, когда проволочная обмотка (катушка) крутится в МП, силовые линии магнитного поля пронизывают витки обмотки.

Внимание! В результате этого процесса электроны совершают перемещение в сторону плюсового полюса магнита. При этом ток движется, наоборот, в сторону отрицательного магнитного полюса.

Не важно, что вращается при механическом воздействии, обмотка или магнитное поле, – ток будет течь, пока вращение выполняется.

Генераторы, вырабатывающие трехфазное напряжение, могут иметь:

  • неподвижные магниты и подвижный (вращающийся) якорь;
  • неподвижный статор и магнитные полюса, которые вращаются.

В устройствах первой конструкции возникает потребность отбора большого тока при высоком напряжении. Для этого приходится использовать щётки (скользящие по контактным кольцам контакты).

Второе строение генератора проще и более востребовано. Здесь ротор – подвижный элемент, состоит из магнитных полюсов. Статор – неподвижная часть, собрана из пакета изолированных между собой листов железа и вложенной в пазы обмотки статора.

Информация. У ротора тело собрано из сплошного железа и имеет магнитные полюса в виде наконечников. Наконечники набираются из отдельных листов. Их форма подобрана с учётом того, чтобы генерируемый ток по форме был близок к синусоиде.

Полюсные сердечники имеют катушки возбуждения. На катушки подаётся постоянный ток. Подача осуществляется через графитовые щётки на кольца контакта, находящиеся на валу.

На схемах 3-х фазный генератор рисуют в виде трёх обмоток, угол между которыми равен 1200.

Существует несколько способов возбуждения генераторов, а именно:

  • независимый – с помощью аккумулятора;
  • от возбудителя – при помощи дополнительного генератора, закреплённого на одном валу;
  • благодаря самовозбуждению – собственным выпрямленным током.

Сюда же относится магнитное возбуждение, подаваемое от магнитов постоянной природы.

 Трёхфазный генератор переменного тока

Схемы трехфазных цепей

Обмотки генератора или трансформатора в трёхфазных цепях можно соединить между собой по двум схемам:

  • звезда;
  • треугольник.

Соединения выполняются на клеммнике (борно) агрегата или трансформатора, куда выводятся концы обмоток.

 Соединение перемычками обмоток

Присоединение нагрузки к генератору (трансформатору) можно произвести по следующим схемам:

  • присоединение «звезда – звезда» с использованием нулевого проводника;
  • подключение «звезда – звезда» без использования нулевого провода;
  • подсоединение «звезда – треугольник»;
  • схема «треугольник – треугольник»;
  • соединение «треугольник – звезда».

Внимание! Такое разнообразие схем вызвано тем, что собственные обмотки генератора и собственные обмотки нагрузки могут быть соединены по-разному. При различных типах сопряжения получаются разные соответствия между фазными и линейными значениями.

Соединение может быть выполнено на заводе при сборке генератора, к месту подсоединения питающего кабеля уже выведены вторые концы обмоток. Информация о схеме соединения обмоток наносится на прикреплённую к статору машины табличку.

На электрических двигателях, трансформаторах или иных потребителях также производят необходимые манипуляции по переключению выводов обмоток. На картинке, приведённой ниже, красным маркером отмечены концы обмоток, соединённые перемычкой. Синим маркером – фазы питания.

Соединения на борно двигателя

Соединение звездой

Буквенное обозначение начала обмоток – «А», «В», «С», концов – «X», «Y», «Z». Нулевая точка маркируется как «О». У каждой обмотки есть два конца. При соединении «звезда» все три одноименных вывода обмоток (начала) соединяются между собой в одну точку «О». К свободным концам подключается нагрузка.

 Схема соединения обмоток «звездой»

Соединение треугольником

При выполнении этого присоединения на борно ставятся перемычки, включающие обмотки в следующей последовательности:

  • конец «А» – с началом «В»;
  • конец «В» – с началом «С»;
  • конец «С» – с началом «А».

Графическое изображение катушек становится похожим на треугольник, отсюда пошло название.

Когда хотят использовать подключаемый асинхронный двигатель с максимальным коэффициентом полезного действия, то его обмотки соединяют в треугольник. В этом случае фазные напряжения совпадают (Uл = Uф), линейный ток будет вычисляться по формуле:

Подключая в качестве нагрузки двигатель, необходимо учесть ряд нюансов:

  • достигается увеличение мощности в 1,5 раза;
  • повышается значение пускового тока, по сравнению с рабочим в 7 раз из-за тяжёлого запуска;
  • резкое увеличение нагрузки на валу электромашины будет вызывать резкое увеличение тока.

Из-за всего этого есть риск возникновения перегрева машины, что не происходит при соединении обмоток нагрузки по схеме «звезда». Там двигатель не расположен к перегреванию, и его пуск осуществляется плавно.

Включение обмоток по схеме «треугольник»

При двух видах включения обмоток различают и дают определение двум видам токов: линейному и фазному. Запомнить различия просто:

  • ток, протекающий через проводник, который соединяет источник с приёмником, называется линейным;
  • ток, движущийся по обмоткам источника или нагрузки, называется фазным.

Стоит обратить внимание на формулы мощности при различных схемах соединения источника с нагрузкой.

Мощность тока при схеме «звезда» определяется по формуле:

P = 3*Uф*Iф*cosϕ = √3*Uл*Iл*cosϕ,

где:

  • Uф – фазное напряжение;
  • Uл – линейное напряжение;
  • Iф – фазный ток;
  • Iл – линейный ток;
  • cosϕ – сдвиг фаз.

Мощность тока при схеме «треугольник» вычисляется по формуле:

P = 3* Uф* Iф*cosϕ = √3*Uл*Iл*cosϕ.

К сведению. Обращать внимание на линейный и фазный токи необходимо тогда, когда генератор (источник) нагружается несимметрично при подключении нагрузки.

Соединения в трёхфазной цепи

Фазное и линейное напряжение в трехфазных цепях

Следующий параметр, который требует внимательного рассмотрения, – это напряжение. Так же, как и токи, напряжение в этом случае бывает фазное и линейное. Чтобы было понятнее их отличие, лучше всего рассмотреть графическое изображение векторов напряжений (фаз). Уже известно, что они расположены друг к другу под углом 1200. Таков угол между обмотками трёхфазного генератора.

асположение векторов напряжений на диаграмме

Сохраняя угол наклона вектора Ub, откладывают его (изменив знак) от точки, где заканчивается вектор Ua. Тогда из полученной векторной диаграммы видно, что вектор линейного напряжения Uл равен расстоянию между точкой начала вектора напряжения Ua и точкой конца вектора напряжения Ub. Заметно, что вектор линейного напряжения превышает фазное. Насколько большая эта разница, можно определить, пользуясь формулой:

Так как sin600= √3/2, то формула принимает вид:

Значит, Uл = 1,73*Uф

При практических измерениях параметров напряжения фазное напряжение измеряют, касаясь щупами тестера фазного и нулевого проводников. Линейное значение должно измеряться прикосновением щупами к двум фазным проводникам.

Подключение нагрузки к источнику в трёхфазной цепи может осуществляться, как по трём проводам, без нулевого проводника, так и с его использованием. Всё зависит от того, какого типа нейтраль у сети. В сетях с глухозаземлённой нейтралью нулевой проводник служит для избегания перекоса по фазам. К тому же его используют в цепях защиты от пробоя изоляции на корпус оборудования. Он даёт возможность для срабатывания защитного отключения или перегорания вставки предохранителя.

Сети с изолированной нейтралью прекрасно работают по трём фазным проводам. Соединения такого типа исключают одновременное использование и фазного, и линейного напряжения. При такой схеме существует риск получить удар током при пробое изоляции.

Отличия от однофазного тока

Как правило, в многоквартирные дома подводится трехфазный переменный ток. Это обусловлено подключением большого числа однофазных нагрузок. В этом случае есть возможность равномерно нагрузить каждую фазу цепи трансформаторной подстанции. Это позволит не допустить перекоса межфазного и фазного напряжений.

Основные различия, по сравнению с однофазным током, лежат в следующей плоскости:

  • линейное напряжение не рассчитано на питание однофазных потребителей;
  • величина мощности нагрузки зависит от сечения питающего кабеля;
  • возможность включения в сеть трёхфазных потребителей;
  • допустимость переключения однофазного потребителя на другую фазу.

В связи с этим использование трёхфазного тока более эффективно на производстве.

Распределение электроэнергии

Важно! Стоимость оборудования, кабельной продукции, электроэнергии, приборов учёта при подведении к объекту напряжения, равного 380 В, значительно выше, чем однофазной сети.

Какой вариант тока выбрать, трёхфазный или однофазный, решать владельцу жилья. Особенно это касается больших частных домов, где современное электрооборудование требует наличия всех трёх фаз. Затраты на подведение 3-х фазного тока и установку узла учёта с лихвой окупятся возможностями использования трёхфазных потребителей в приусадебном хозяйстве.

Видео

Источник



Расчет трехфазной цепи для жилого дома

Вам необходимо сделать трехфазное питание для дома? О том, как это сделать, читайте описание ниже.

Прежде всего, нужно провести расчет трехфазной цепи.

Порядок распределения нагрузки по фазам

1. Симметрично распределить нагрузку на три фазы. Мощность на каждой фазе будет равна мощности трехфазной нагрузки, кратная трем.

2. Рассчитать нагрузку на каждую фазу.

3. В результате, нужно добиться того, чтобы на каждой фазе, в момент полной загрузки сети, была примерно одинаковая мощность.

4. Определить ток на самой загруженной фазе. После этого необходимо проверить, чтобы при максимальной мощности ток был меньше тока срабатывания входного трехфазного автомата.

Расчет нагрузки по фазам

Допустим, у вас имеется трехфазный двигатель мощностью 1500 Вт. Соответственно, на каждую фазу приходится по 500 Вт активной мощности. Предположим, что cos фи=0,8. Полная мощность равна: 500/0,8. Получается, что 625 Вт нужно распределить на каждую фазу.

Кроме двигателя к фазам, вероятно, подключены и другие потребители. Например, кроме 500 Вт подключается освещение на 200 Вт и конвектор на 300 Вт. Все мощности суммируются по горизонтали. Реактивная мощность остается без изменений (если не используются нагрузки с реактивной составляющей).

По теореме Пифагора можно определить реактивную мощность.

Читайте также:  Резонанс напряжений наблюдается в цепи переменного тока состоящей

Но на практике это довольно сложные расчеты. Поэтому, это рассчитывается приближенно: 625 Вт + 500 Вт = 1150 Вт. Эта сумма получается больше точных расчетов по формуле, но страшного ничего нет. Расчет произведен с небольшим запасом.

На практике для приблизительных расчетов достаточно сложить все полные мощности и по ним определить мощность автомата для требуемой нагрузки.

Разводка однофазного щитка

Например, к щиту подключаются — плита (варочная панель) 7,2 кВт; духовой шкаф 4,3 кВт; кухня 5,5 кВт; комната 3,5 кВт; ванная 3,5 кВт; двигатель 3-фазный 1,5 кВт; розетка 3-фазная.

Рассмотрим такую ситуацию: у вас была однофазная сеть и теперь дали разрешение на проведение трехфазной. В этом случае нужно все потребители распределить по фазам.

Самый мощный прибор это варочная панель (плита) 7,2 кВт, которую нужно посадить на первую фазу. На вторую подключить духовой шкаф и комнату. В итоге получается 7,8 кВт. А на третью фазу подключить кухню и ванную комнату. Общая мощность получится 9 кВт. Прибавим еще мощность двигателя, разделив ее на каждую фазу одинаково. В итоге получилось: на первой фазе 7,8 кВт; на второй фазе 9,4 кВт; на третьей — 9,6 кВт. Приблизительно распределили нагрузку по фазам по возможности равномерно. Посмотрим, какой в результате получился щиток.

  • Итак, трехфазный щиток состоит из входного автомата и трехфазного счетчика. Далее, на первую фазу подключен автомат 40 Ампер, через который питается плита мощностью 7,2 кВт. Если просуммировать с двигателем, будет 7,8 кВт.
  • Ко второй фазе через автомат 25 Ампер подключен духовой шкаф и микроволновая печь. Через второй автомат 16 Ампер подсоединена комната проектной мощностью 3,5 кВт. Общая мощность получилась 8,4 кВт.
  • К третьей фазе подключен ДИФ автомат и обычный автомат. Через обычный автомат на 25 Ампер подключена кухня проектной мощностью 5,5 кВт. Через ДИФ автомат подключена ванная комната проектной мощностью 3,5 кВт. Общая мощность на третью фазу получается 9,6 кВт.

Распределение полной мощности двигателя на три фазы по 0,6 кВт:

  • первая фаза: 7,2+0,6=7,8 кВт;
  • вторая фаза: 4,3+3,5+0,6=8,4 кВт;
  • третья фаза: 5,5+3,5+0,6=9,6 кВт.

По всем трем фазам максимальная мощность составляет 9,6 кВт. Если проектная мощность 8,8 кВт и входной автомат на 40 Ампер, а у нас проектная мощность на одной из трех фаз 9,6 кВт, то такой автомат не выдержит нагрузку. Если третью фазу загрузить на полную мощность, то этот автомат отключится. Поэтому, входной автомат нужно ставить на 50 Ампер.

Из этого примера видно, что при небольшом количестве потребителей можно полноценно загрузить трехфазную цепь. Иногда возникает необходимость подключить кондиционеры, электрический теплый пол и другие потребители высокой мощности.

Прежде чем покупать электрическое оборудование, надо рассчитать потребляемую мощность. Потянет ли входной автомат и разрешенный лимит по току на электроснабжение дома?

После подсчета всех нагрузок по фазам можно определить, какой мощности нужен входной автомат. Узнать в энергосбыте, какой резерв по току вам дадут. Возможно, разрешение дадут только на 25 Ампер. Придется покупать приборы из расчета на эти 25 Ампер. На фазу дается только 5,5 кВт.

В этом случае, что делать с электроплитой на 7,2 кВт? Современные электроплиты и варочные панели имеют подключение к двухфазной цепи, а иногда и к трехфазной. Кроме земляного и нулевого вывода имеется L1 и L2 (иногда L1, L2, L3). В первом случае для подключения двухфазной цепи, а во втором – подключение трехфазной цепи. Такие мощные нагрузки предусмотрены специально, чтобы можно было их распределить.

Когда делаете проект и запрашиваете проектную мощность, пытайтесь получить разрешение на мощность с запасом.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Источник

Явление перекоса фаз в трехфазной сети

Трехфазная сеть в классическом варианте состоит из четырех проводников — трех фазных и одного нулевого или нейтрального провода. В процессе эксплуатации возникает перекос фаз в трехфазной сети или асимметрия напряжений между ними.

Причины

Трехфазная сеть состоит из двух частей — высоковольтной и низковольтной. Между ними устанавливается обычно подстанция с понижающим трансформатором. В высоковольтной части фазы загружены равномерно, перекос возникает в низковольтной части и связан с особенностями распределения нагрузки между фазными шинами.

Существует два различных вида перекоса фаз:

  • модули векторов напряжения различны по величине, угол между ними одинаковый (120°);
  • значительно реже возникает на практике, когда кроме различных модулей напряжений, углы между ними также различны.

На диаграмме напряжений представлены параметры идеально работающей трехфазной цепи и их изменение при возникновении перекоса.

Схема

Падение/увеличение фазного напряжения согласно закона Ома возникает при увеличении/уменьшении сопротивления (нагрузки). Поэтому одной из причин возникновения перекоса будет разное по количеству и мощности число электрических приборов «сидящих» на каждой отдельной фазе.

В идеально работающих трехфазных цепях ток через нейтральный провод равен нулю. В случае возникновения перекоса на нем появляются токи, которые компенсируют асимметрию напряжений. Вот почему обрыв («отгорание») нулевого провода служит еще одной из причин появления перекоса.

Изображение с результатом «отгорания» нейтрального провода.

результат «отгорания» нейтрального провода

Короткое замыкание одной из фаз на землю, которая приводит к работе сети в режиме перекоса, редко встречается среди причин возникновения неравенства напряжений по фазам. В некоторых случаях допускается такая аварийная эксплуатация при необходимости обеспечения электроэнергией пользователей.

Признаки нестабильной работы электрических приборов, вызванные перекосом фаз

Независимо от причин перекоса необходимо знать и выявлять его признаки. В квартире или частном доме с электрическими приборами могут происходить следующие действия от несимметричности напряжения и не только:

  • осветительные приборы типа ламп дневного света или других типов работающих по энергосберегающей технологии начнут мерцать;
  • лампочки накаливания будут ярко гореть или наоборот тускнеть;
  • бытовые приборы (утюг, телевизор и другие) перестанут включаться;
  • выключатель стал на ощупь теплым;
  • в розетке появились искры, послышались треск и щелчки;
  • в щитке появились щелчки, срабатывают защитные автоматы.

При обнаружении вышеперечисленных признаков следует отключить все приборы из сети, лишь затем приступать к поиску причин. При отсутствии познаний в области электротехники лучше обратитесь к специалисту.

Негативные последствия перекоса

Работа трехфазной сети с перекосом фаз приводит к следующим отрицательным действиям.

  • Перекос вызывает рост уравнивающих токов, тем самым увеличивается расход электроэнергии на потребление оборудованием.
  • Отклонение фазного напряжения, превышающее номинальное значение при отсутствии автоматических выключателей может вывести бытовое или промышленное электрооборудование из строя.Отклонение фазного напряжения
  • Отклонение напряжения в меньшую сторону от нормального создаст для оборудования следующие проблемы: увеличится нагрузка на электромоторы, их мощность падает, для запуска необходимы еще более высокие пусковые токи, электроника будет работать со сбоями, некоторые устройства просто не будут включаться.
  • Эксплуатационный срок работы оборудования в режиме перекоса фаз будет меньшим. Ресурсные показатели не будут соответствовать паспортным данным.
  • Перекос фаз, вызванный обрывом нейтрального провода может резко повысить опасность получения электрического удара. Шина заземляющего устройства на трансформаторной подстанции теряет связь с местным контуром заземления, тем самым оставляя пользователя без защиты.схема

Нормы на перекос фаз

На практике не существует работающих трехфазных сетей, в которых отсутствует перекос фаз. Это связано с особенностями электрического оборудования, принцип работы которых с точки зрения экономической целесообразности исключает симметричное исполнение (сварочные аппараты, индукционные печи, потребители бытовой сферы). Кроме этого, например, в многоквартирных домах появляется вероятностный фактор, связанный с отсутствием какой — либо системы в подключении электрической бытовой техники. Наличие нескольких импульсных источников питания, например для компьютеров, делает их поведение непредсказуемым в трехфазной сети.

Помимо равномерного распределения нагрузки по фазам проектировщикам следует учитывать вышеперечисленные факторы для поставки пользователям определенного качества электроэнергии. В некоторых случаях трудноразрешимую задачу позволяют решить регламенты на допустимый перекос фаз, обозначенные в следующих нормативных документах: ПУЭ (Правила Устройства Энергоустановок), ГОСТ 31098 – 97 определяющим нормы качества электроэнергии и сводом правил СП31-110.

Параметры, превышение которых недопустимо:

  • максимальное отклонение фазных токов:
    • для измеренных во вводном распределительном устройстве (ВРУ) — 15 %,
    • для измеренных в распределительном щите (РЩ) — 30 %.
  • допустимые значения коэффициентов несимметричности напряжений:
    • по обратной последовательности — 2 %,
    • по нулевой последовательности — 4 %.

Вышеуказанные нормативы должны соблюдаться на всех возможных режимах работы трехфазных электрических сетей. Исключения составляют режимы, вызванные Форс — Мажорными обстоятельствами.

Как определить перекос фаз

Самым простым и поэтому наиболее применяемым является контроль по максимальному отклонению фазных токов. С помощью токовых клещей измеряется сила тока при максимально полной нагрузке на каждом проводнике отдельной фазы в ВРУ или РЩ. Размеры клещей достаточно компактны, чтобы подлезть к любому проводнику, находящемуся в стесненных условиях среди других проводников.

определение перекоса фаз

После того как определите и зафиксируете показания следует выполнить легкий сравнительный расчет на отклонения фазных токов. Показания должны соответствовать нормам.

Устранение перекоса фаз

Если результаты замеров выявят наличие несимметричности напряжений фаз, следует принять меры чтобы устранить перекос. Защита от перекоса фаз в трехфазной сети выполняется следующими способами.

  • На этапе проектирования следует равномерно распределить нагрузку по фазам. Приборы, имеющие однофазное питание не должны сосредотачиваться на одном проводнике, оставляя незагруженными другие. Кроме количественного распределения по фазам следует учитывать мощностные характеристики электрических устройств.
  • В ранее введенных в эксплуатацию трехфазных сетях, где каждая фаза не рассчитывалась на перегрузку при возможности следует поменять схему потребления энергии. В условиях кризисной ситуации необходимо поменять мощность потребителя.
  • Недостаточно эффективный способ обеспечить необходимое напряжение на каждой фазе трехфазной цепи это применение стабилизаторов напряжения.стабилизатор напряженияТрехфазные стабилизаторы напряжения конструктивно включают в себя однофазные, которые реагируют на изменение параметров конкретно на своей фазе. Поднятие, опускание напряжения вызывает ответную реакцию на других. Это может в некоторых случаях вызвать вторичный перекос с уже другими параметрами. Невозможность 100 % гарантии защиты от последствий перекоса фаз основной недостаток стабилизаторов напряжения.
  • Использование в трехфазной системе питания симметрирующего трансформатора позволяет выравнивать напряжение не только на отдельной конкретной фазе, а обеспечивать симметричность напряжений на всех трех согласно требуемых норм.трехфазная система питанияКроме этого прибор сглаживает напряжение переходного процесса при подключении в сеть мощных асинхронных двигателей, дросселей, трансформаторов и другого подобного оборудования.Устройство способно устранить фазный перекос в большом диапазоне значений напряжения.
  • Стабилизатор напряжения, симметрирующий трансформатор это дорогие устройства, не всегда есть возможность их применить. Существует достаточно простой и эффективный способ не допустить критического перекоса фаз — применение специального реле.
Читайте также:  Простейшая схема стабилизатора тока

Реле напряжения рнпп-311м

Если параметры трехфазной сети выходят за пределы установленного диапазона реле отключит источник питания. Когда параметры восстановятся до приемлемых значений, реле самостоятельно возобновит подачу питания.

Ответственное отношение к равномерному распределению нагрузки по фазам не гарантирует избежать перекос. От обрыва нулевого провода никто не застрахован, соединительный контакт может от перегрева «отгореть» в любой момент. Поэтому к рекомендациям по оборудованию трехфазной сети приборами защиты от перекоса следует прислушаться. Единовременные затраты сохранят работоспособность более дорогому электрическому оборудованию, работающему от трехфазной сети.

Где купить

Максимально быстро приобрести устройства стабилизации можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:

Видно по теме

Источник

Перекос фаз в трехфазной сети — чем опасен и когда возникает?

Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью. При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни. Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Диаграмма напряжений в идеальных трехфазных сетях

Диаграмма напряжений в идеальных трехфазных сетях

Как видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В). К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения. В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.

Пример диаграммы напряжений при возникновении перекоса

Пример диаграммы напряжений при возникновении перекоса

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения ГОСТ 13109-97

Нормы несимметрии напряжения ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Причины перекоса фаз в трехфазной сети

Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.

Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью. Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже. В данном случае RН это сопротивления нагрузок, одинаковые по значению.

Перекос фаз, вызванный обрывом нейтрали

Перекос фаз, вызванный обрывом нейтрали

В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.

К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.

Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:

  1. Неравномерная нагрузка на линии трехфазной сети.
  2. При обрыве нейтрали.
  3. При КЗ одного из фазных проводов на землю.

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь. Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ. Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах. Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью. Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Опасность и последствия

Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях. К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии. В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.

При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.

Перечислим, какие последствия можно ожидать, когда появляется перекос:

  1. Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
  • Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
  • Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
  1. Увеличивается потребление электричества оборудованием.
  2. Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
  3. Снижается ресурс техники.

Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.

Защита от перекоса фаз в трехфазной сети

Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения — установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.

Реле контроля фаз (А) и пример схемы его подключения (В)

Реле контроля фаз (А) и пример схемы его подключения (В)

Данный трехфазный автомат может обладать следующими функциями:

  1. Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
  2. Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
  3. Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
  4. Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.

Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.

Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ) напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

Источник