Меню

Ток проходящий через тело человека однофазное прикосновение

Охрана труда

В начало разделаОхрана труда и электробезопасность → Основы электробезопасности

Анализ условий поражения в электроустановках. Однофазное прикосновение

Однофазное прикосновение

Прикосновение человека к одной фазе 3х фазной сети с заземленной нейтралью

Рис.2.2 Прикосновение человека к одной фазе 3х фазной сети с заземленной нейтралью

Однофазное (однополюсное) прикосновение (рис. 2.2 и 2.3) происходит во много раз чаще, чем двухфазное прикосновение, но является менее опасным, поскольку напряжение, под которым оказывается человек не превышает фазного напряжения сети и ток через тело человека меньше в 1,73 раза. Кроме того, на этот ток большое влияние оказывает режим нейтрали источника тока, сопротивление изоляции проводов сети относительно земли, сопротивление земли, сопротивление основания (пола), на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

В сети с заземлённой нейтралью (рис. 2.2), цепь тока, проходящего через человека включает в себя, кроме сопротивления тела человека, ещё и сопротивление его обуви, сопротивление пола, а также сопротивление заземления источника тока. Причём все эти сопротивления включены последовательно.

Ток, проходящий через тело человека в этом случае будет определяться по формуле:

(2.3)

где: Uф — фазное напряжение сети, В; Rh — cопротивление тела человека, Ом; Rоб — сопротивление обуви человека, Ом; Rn — сопротивление пола (основания), Ом; R0 — сопротивление заземления нейтрали источника тока, Ом

Наиболее неблагоприятный случай будет, когда человек, прикоснувшийся к фазному проводу, имеет на ногах токопроводящую обувь (сырую или подбитую металлическими гвоздями) и стоит непосредственно на сырой земле или на токопроводящем (металлическом) полу (или на заземленной металлической конструкции). В этом случае Rоб = и Rn=0.

Ток, проходящий через тело человека будет определяться по формуле:

(2.4)

Обычно сопротивление заземления нейтрали (R) во много раз меньше сопротивления тела человека (Rh) и не превышает 10 Ом, им можно пренебречь, и тогда ток через тело человека можно определить по формуле:

Так, в сети с фазным напряжением 220 В при Rh=1000 Ом, ток через человека будет:

Этот ток также смертельно опасен для человека.

В случае. когда человек имеет на ногах непроводящую обувь (например, диэлектрические галоши) и стоит на изолирующем основании (например, на деревянном полу), то принимая Rоб= 45000 Ом и Rn=100000 Ом, получим:

Этот ток не опасен для человека.

В действительных условиях диэлектрическая обувь и изолирующие основания обладают значительно большими сопротивлениями, и ток, проходящий человека, будет ещё меньше.

В сети с изолированной нейтралью ток (рис. 2.3), проходящий через человека в землю, возвращается к источнику тока через изоляцию проводов сети, которая в исправном состоянии обладает большим сопротивлением.

Присоединение человека к одной фазе 3хфазной сети с изолированной нейтралью

Рис.2.3 Присоединение человека к одной фазе 3хфазной сети с изолированной нейтралью

С учётом сопротивления обуви (Rоб) и пола (Rn), на котором стоит человек, включенных последовательно сопротивлению тела человека (Rh), ток, проходящий через человека, определяется по формуле:

(2.5)

где: Rиз — cопротивление изоляции одной фазы сети относительно земли, Ом

При наиболее неблагоприятном случае (Rоб и Rn=0) уравнение упростится и примет вид:

(2.6)

Для случая сети с Uф=220 В при Rиз=90000 Ом и Rh=1000 Ом ток через тело человека будет равен:

Этот ток будет ощутимым, но не смертельным для человека.

На основании вышеизложенного, можно сделать вывод, что в сети с изолированной нейтралью условия безопасности находятся в прямой зависимости от сопротивления изоляции проводов сети относительно земли, (чем лучше изоляция, тем меньше ток, проходящий через тело человека).

Кроме того, в сети с изолированной нейтралью, ток через человека, прикоснувшегося к фазному проводу будет ограничиваться сопротивлением обуви и пола.

При Rоб=45000 Ом и Rn=100000 Ом ток через человека:

Этот ток практически безопасен для человека.

Таким образом, при прочих равных условиях прикосновение человека к одной фазе в сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью.

Если человек прикасаться к нетоковедущим частям (к корпусу) электроустановки, то ток через него зависит и от сопротивления изоляции между корпусом и токоведущими частями. В большей степени эта зависимость проявляется при прикосновении к корпусу однофазного электроприемника в сети с глухозаземленной нейтралью. Схема замещения для этого случая приведена на рис. 2.4, где Rн – сопротивление нагрузки, Rиз – сопротивление изоляции между корпусом и токоведущими частями электроприемника.

Схема земещения сети с глухозаземленной нейтралью при прикосновении человека к корпусу электроустановки

Рис.2.4 Схема земещения сети с глухозаземленной нейтралью при прикосновении человека к корпусу электроустановки

Из схемы видно, что Rиз представляет собой дополнительное сопротивление в цепи тела человека, поэтому ток через человека будет определяться выражением:

(2.7)

Сопротивление изоляции в этом случае (при малом R) должно удовлетворять условию:

где: Ihq — пороговый неощутимый ток

В этом случае человек не будет ощущать воздействие электрического тока при обслуживании электроустановки.

Таким образом, на безопасность электроустановок значительное влияние оказывают сопротивления изоляции токоведущих частей относительно земли и корпусов электроустановок. Эти сопротивления нормируются. В ряде случаев нормируются не сопротивления изоляции, а токи, определяемые ими (токи утечки).

Источник



Однофазное (однополюсное) прикосновение

date image2015-05-13
views image4844

facebook icon vkontakte icon twitter icon odnoklasniki icon

При однофазном прикосновении в сети с глухозаземленной нейтралью (рис 315, а) через тело человека проходит меньший ток, поскольку напряжение, под которой оказался человек, не превышает фазного, что в / 3 раз меньше, чем линейное напряжение сети. Кроме того, общее сопротивление электрической цепи может состоять не только из сопротивления тела человека и сопротивления заземления нейтрали, но и сопротивления пола (основы), как стоит человек, и сопротивления его обуви. В общем случае определяется по формуле:

Читайте также:  В замкнутой цепи содержащей источник тока с эдс 12 в сила тока 2 а напряжение

Рассмотрим случай, когда человек прикасается к одной из фаз трехфазной сети напряжением 380В ( и деревянном полу, имеющий сопротивление и? П = 60 000 Ом в сухом обуви на резиновой подошве (Я = 50 000 Ом), тогда ток, который может пройти через тело человека, будет равна

Ток такой силы абсолютно безопасен для жизни человека, поскольку он меньше пороговый неотъемлемой пуская ток (см. табл 35)

Рис 315Схема однофазного прикосновения при нормальном режиме работы электросети: а — в трехфазной сети с глухозаземленной нейтралью б — в трехфазной сети с изолированной нейтралью

Если же человек стоит на земле или токопроводящей полу (Я = 0) в промокшей обуви (Лв = 0), то / составляет

Такое значение силы тока является смертельно опасным для человека

При однофазном прикосновении в трехфазной сети с изолированной нейтралью (см. рис 314, б) ток пройдет через тело человека, будет меньше, чем при аналогичном прикосновении в сети с глухозаземленной нейтр ралли Это связано с тем, что в общий сопротивления электрической цепи еще добавляется сопротивление изоляции (гв, гв, е) и емкости (с, с, с) фаз В такой сети напряжением до 1000 В, когда значение сопротивления изоляции все х трех фаз уровне (г = гь = е = г), а емкостным сопротивлением можно пренебречь (са = сь = с = 0), ток, проходящий через человека, равнарівнює

Рис 316Схема однофазного прикосновения к исправной фазы неисправной электросети, в которой одна фаза замыкается на землю

Необходимо заметить, что вышеприведенные рассуждения касаются нормальной работы электросети При аварийных режимах сети (замыкании фазы на корпус или на землю) условия меняются Например, если одна из фаз замыкается на землю (рис 316), то ток, который пройдет через тело человека в случае ее прикосновения к исправной фазы, можно выразить следующей зависимостью:

Как правило, сопротивление короткого замыкания Лк достаточно мал и может

Таким образом, проанализировав условия поражения человека током можно сделать следующие выводы:

— наименее опасно однофазное прикосновение к проводу (фазы) исправной сети с изолированной нейтралью;

— при замыкании одной из фаз на землю (неисправна сеть) опасность однофазного прикосновения к исправной фазы в такой сети больше, чем в исправной сети при любом режиме нейтрали;

— при однофазном прикосновении в сети с глухозаземленной нейтралью последствия поражения существенно зависят от сопротивления основания (пола), на которой стоит человек и сопротивления ее обуви;

— опасным является двухфазное прикосновение при любых режимов нейтрали;

— в сетях напряжением выше 1000 В опасность однофазного или двухфазного прикосновения практически одинакова, при этом высока вероятность смертельного поражения

Источник

Ток проходящий через тело человека однофазное прикосновение

Московский энергетический институт (ТУ)

Кафедра инженерной экологии и охраны труда

top.ht1.jpg (17384 bytes)

Учебно-методический комплекс

Справки по телефону: 362-71-32; e-mail: NovikovSG@mpei.ru доцент Новиков С.Г.

3. Анализ электробезопасности различных электрических сетей

А. Анализ электробезопасности электрических сетей типа IT

Для трехфазной трехпроводной сети с изолированной нейтралью типа IT , напряжением до 1 кВ (рис. 3.7. )

Рис. 3. 7 . Однофазное прикосновение в сети с изолированной нейтралью типа IT при нормальном режиме работы

характерным является то, что при однофазном прикосновении значение тока, проходящего через тело человека при нормальном режиме работы сети, тем меньше, чем меньше рабочее напряжение сети (фазное напряжение) и чем больше значение сопротивления изоляции проводов относительно земли. Действительно, ток через тело человека и напряжение прикосновения описываются следующими выражениями [3], полученными из (3.3, 3.4) при условии, что Y = 0; Y PEN =0:

где Y L1 , Y L2 , Y L3 — полные проводимости изоляции фазных проводов относительно земли в комплексной форме:

U — действующее значение фазного напряжения сети;

a — фазный оператор трехфазной системы, учитывающий сдвиг фаз.

При равенстве проводимостей фазных проводов относительно земли Y L1 = Y L2 = Y L3 = Y (т.е. при равенстве сопротивлений изоляции и емкостей фазных проводов относительно земли R L1 = R L2 = R L3 = R и С L1 = С L2 = С L3 = С ), ток через тело человека и напряжение прикосновения определяется:

где Z — полное сопротивление фазного провода относительно земли в комплексной форме

R — активное сопротивление изоляции фазного провода относительно земли; С- емкость фазного провода относительно земли.

В действительной форме этот ток равен

При равенстве сопротивление изоляции фазных проводов относительно земли R L1 = R L2 = R L3 = R и отсутствии емкостей, т.е. С L1 = С L2 = С L3 = С = 0 , выражение (3.9) упрощается

Таким образом, в сетях с изолированной нейтралью при нормальном режим работы опасность для человека при прямом однофазном прикосновении зависит от сопротивления изоляции и емкости фазных проводов относительно земли. С увеличением сопротивления изоляции и уменьшении емкости фазных проводов относительно земли опасность уменьшается. Этот вывод иллюстрируется графиками зависимости Ih = f(R) при С = 0 (что может иметь место в коротких сетях) и Ih = f(С) при R = const, представленными на рис. 3.8 [3].

Читайте также:  Ток динамической стойкости что это

Рис. 3.8. Зависимость значения тока, протекающего через тело человека, прикоснувшегося к фазному проводу в сети IT с симметричными параметрами в нормальном режиме работы, от сопротивления изоляции и емкости фазных проводов относительно земли

При аварийном режиме работы сети ( рис.3.9), когда один из фазных проводов, например, провод L2, замкнулся на землю, опасность поражения током человека, прикоснувшегося к исправному фазному проводу, значительно возрастает.

Рис. 3.9. Однофазное прикосновение к исправному проводу в сети с изолированной нейтралью типа IT при аварийном режиме работы

В этом случае ток через тело человека будет равен:

где R ЗМ — сопротивление растеканию тока в месте замыкания фазного провода на землю (на рис.3.9 — фазного провода L2).

Так как обычно выполняется условие R ЗМ h , то:

Рис. 3.10. Однофазное прикосновение к неисправному проводу в сети с изолированной нейтралью типа IT при аварийном режиме работы

При аварийном режиме работы сети типа IT, когда человек касается провода, замкнувшегося на землю (рис. 3.10; человек касается фазного провода L 3 ) ток через тело человека будет определяться падением напряжения на сопротивлении растеканию тока в месте замыкания на землю R ЗМ :

где I ЗМ — ток замыкания на землю; a 1 , a 2 — коэффициетны напряжения прикосновения.

Ток замыкания на землю в сети IT зависит от сопротивления изоляции и емкости фазных проводов относительно земли, сопротивления растеканию R ЗМ , R h . Если принять во внимание, что обычно R ЗМ h , то

В действтельности ток замыкания на землю будет меньше, что более безопасно для человека.

Таким образом, прикосновение к неисправному фазному проводу (замкнувшемуся на землю) в сети IT значительно менее опасно, чем к исправному. Значение тока, протекающего через тело человека, в этом случае меньше, чем при прямом однофазном прикосновении в нормальном режиме работы.

Источник

Однофазное прикосновение

Однофазное (однополюсное) прикосновение происходит во много раз чаще, чем двухфазное прикосновение, но является менее опасным, поскольку напряжение, под которым оказывается человек не превышает фазного напряжения сети и ток через тело человека меньше в 1,73 раза. Кроме того, на этот ток большое влияние оказывает режим нейтрали источника тока, сопротивление изоляции проводов сети относительно земли, сопротивление земли, сопротивление основания (пола), на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

При нормальном режиме работы однофазной 2-х проводной сети изолированной от земли (рис. 2.10, а), у которой ёмкостью проводов относительно земли можно принять равными нулю, а сопротивления изоляции проводов равны по величине напряжение прикосновения ток, проходящий через тело человека прикоснувшегося к одному из проводов можно вычислить по формулам:

где: и токи, проходящие через сопротивления изоляции проводов и соответственно.

Учитывая, что и

тогда напряжение прикосновения:

а ток, проходящий через человека:

Так как то выражения упрощаются и примут вид:

Очевидно, что чем лучше изоляция проводов относительно земли,тем меньше опасность однофазного (и двухфазного) прикосновения к проводу.

При аварийном режиме однофазной 2-х проводной сети изолированной от земли, когда один из проводов сети замкнут на землю через сопротивление (рис. 2.10, б), которое намного меньше по сравнению с сопротивлением изоляции проводов и, которое можно принять равным нулю, напряжение прикосновения и ток через человека, прикоснувшегося к исправному проводу, будут иметь наибольшие возможные значения:

Очевидно, что при аварийном режиме работы сети (при замыкании одного провода на землю) человек, прикоснувшийся ко второму исправному проводу, оказывается под полным напряжением сети независимо от сопротивления изоляции проводов. Опасность поражения в этом случае значительно выше, чем в случае прикосновения к тому же проводу сети в период её нормально работы.

В однофазной двухпроводной сети с заземлённым проводом (рис. 2.11), ёмкостью которой можно пренебречь при прикосновении к незаземлённому проводу напряжение прикосновения и ток через тело человека определяются выражениями:

где: — сопротивление заземления провода.

Очевидно, что при человек оказывается практически под полным напряжением сети, а ток через тело человека имеет наибольшее значение.

Влияние сопротивлений и изоляции проводов сети в этом случае незначительно и ими можно пренебречь.

Необходимо отметить исключительно важное значение изоляции основания (полов и обуви) на котором стоит человек. Сопротивления обуви и пола включаются последовательно с сопротивлением тела человека . С учётом этого расчётная формула величины тока через тело человека будет иметь вид:

Прикосновение человека к заземлённому проводу ошибочно считают безопасным полагая, что напряжение этого провода относительно земли мало. В действительности же при прикосновении к заземлённому проводу (Рис. 28, б), человек оказывается под воздействием напряжения равного падению напряжения в заземлённом проводе на участке от места его заземления (А) до места касания (В):

где: — ток нагрузки, проходящий по проводу;

В нормальных условиях это напряжение не велико, а наибольшее его значение соответствует наиболее удалённой от источника точке.

При к.з. между проводами сети (рис. 2.11, в) ток резко возрастает. Очевидно, что и напряжение прикосновения возрастает практически пропорционально увеличению тока в проводе и при к.з. может достигать опасных для человека значений.

Читайте также:  Пусковой ток статора это

Известно, что в 3-х фазной 4-х проводной сети напряжение прикосновения приложенное к телу человека, прикоснувшегося к фазному проводу электрической сети с нейтралью (в общем случае) заземлённой через активное и индуктивное сопротивление определяется выражением:

а ток, проходящий при этом через тело человека, выражением:

где: , , , , , полные проводимости, соответственно, фазных (1,2,3) проводов, нейтрального провода (н), заземления (о) и тела человека (h), а – фазный оператор 3-х фазной системы, учитывающий сдвиг фаз.

При нормальном режиме работы сети проводимости фазных и нулевых проводов относительно земли по сравнению с незначительны и их можно приравнять к нулю, т.е.

Рис. 2.12. Прикосновение человека к одной фазе 3-х фазной сети с заземленной нейтралью.

В 3-х фазной сети с заземлённой нейтралью (рис. 2.12), цепь тока, проходящего через человека включает в себя, кроме сопротивления тела человека, ещё и сопротивление его обуви, сопротивление пола, а также сопротивление заземления источника тока. Причём все эти сопротивления включены последовательно.

Ток, проходящий через тело человека в этом случае будет определяться по формуле:

где: Uф — фазное напряжение сети, В;
Rh — cопротивление тела человека, Ом;
Rоб — сопротивление обуви человека, Ом;
Rn — сопротивление пола (основания), Ом;
R — сопротивление заземления нейтрали источника тока, Ом

Наиболее неблагоприятный случай будет, когда человек, прикоснувшийся к фазному проводу, имеет на ногах токопроводящую обувь (сырую или подбитую металлическими гвоздями) и стоит непосредственно на сырой земле или на токопроводящем (металлическом) полу (или на заземленной металлической конструкции). В этом случае Rоб = и Rn=0.

Ток, проходящий через тело человека будет определяться по формуле:

Обычно сопротивление заземления нейтрали (R) во много раз меньше сопротивления тела человека (Rh) и не превышает 10 Ом, им можно пренебречь, и тогда ток через тело человека можно определить по формуле:

Так, в сети с фазным напряжением 220 В при Rh=1000 Ом, ток через человека будет:

Этот ток также смертельно опасен для человека.

В случае. когда человек имеет на ногах непроводящую обувь (например, диэлектрические галоши) и стоит на изолирующем основании (например, на деревянном полу), то принимая Rоб= 45000 Ом и Rn=100000 Ом, получим:

Этот ток не опасен для человека.

В действительных условиях диэлектрическая обувь и изолирующие основания обладают значительно большими сопротивлениями, и ток, проходящий человека, будет ещё меньше.

Рис. 2.13. Присоединение человека к одной фазе 3-х фазной сети с изолированной нейтралью

В сети 3-х фазной с изолированной нейтралью ток (рис. 2.13), проходящий через человека в землю, возвращается к источнику тока через изоляцию проводов сети, которая в исправном состоянии обладает большим сопротивлением.

С учётом сопротивлений обуви (Rоб) и пола (Rn), на котором стоит человек, включенных последовательно сопротивлению тела человека (Rh), ток, проходящий через человека, определяется по формуле:

где: Rиз — cопротивление изоляции одной фазы сети относительно земли, Ом

При наиболее неблагоприятном случае (Rоб и Rn=0) уравнение упростится и примет вид:

Для случая сети с Uф=220 В при Rиз=90000 Ом и Rh=1000 Ом ток через тело человека будет равен:

Этот ток будет ощутимым, но не смертельным для человека.

На основании вышеизложенного, можно сделать вывод, что в сети с изолированной нейтралью условия безопасности находятся в прямой зависимости от сопротивления изоляции проводов сети относительно земли, (чем лучше изоляция, тем меньше ток, проходящий через тело человека).

Кроме того, в сети с изолированной нейтралью, ток через человека, прикоснувшегося к фазному проводу будет ограничиваться сопротивлением обуви и пола.

При Rоб=45000 Ом и Rn=100000 Ом ток через человека:

Этот ток практически безопасен для человека.

Таким образом, при прочих равных условиях прикосновение человека к одной фазе в сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью.

Если человек прикасаться к нетоковедущим частям (к корпусу) электроустановки, то ток через него зависит и от сопротивления изоляции между корпусом и токоведущими частями. В большей степени эта зависимость проявляется при прикосновении к корпусу однофазного электроприемника в сети с глухозаземленной нейтралью. Схема замещения для этого случая приведена на рис. 2.14, где Rн –сопротивление нагрузки, Rиз – сопротивление изоляции между корпусом и токоведущими частями электроприемника.

Из схемы видно, что Rиз представляет собой дополнительное сопротивление в цепи тела человека, поэтому ток через человека будет определяться выражением:

Сопротивление изоляции в этом случае (при малом R) должно удовлетворять условию:

где: Ihq — пороговый неощутимый ток

В этом случае человек не будет ощущать воздействие электрического тока при обслуживании электроустановки.

Таким образом, на безопасность электроустановок значительное влияние оказывают сопротивления изоляции токоведущих частей относительно земли и корпусов электроустановок. Эти сопротивления нормируются. В ряде случаев нормируются не сопротивления изоляции, а токи, определяемые ими (токи утечки).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Adblock
detector