Меню

Ток покоя для мосфет

Параметры MOSFET транзисторов

Основные параметры мощных транзисторов

Мощный MOSFET транзистор

Технологические возможности и успехи в разработке мощных полевых транзисторов привели к тому, что в настоящее время не составляет особого труда приобрести их за приемлемую цену.

В связи с этим возрос интерес радиолюбителей к применению таких MOSFET транзисторов в своих электронных самоделках и проектах.

Стоит отметить тот факт, что MOSFET’ы существенно отличаются от своих биполярных собратьев, как по параметрам, так и своему устройству.

Пришло время ближе познакомиться с устройством и параметрами мощных MOSFET транзисторов, чтобы в случае необходимости более осознанно подобрать аналог для конкретного экземпляра, а также иметь возможность понимать суть тех или иных величин, указанных в даташите.

Что такое HEXFET транзистор?

В семействе полевых транзисторов есть отдельная группа мощных полупроводниковых приборов называемых HEXFET. Их принцип работы основан на весьма оригинальном техническом решении. Их структура представляет собой несколько тысяч МОП ячеек включенных параллельно.

Ячеистые структуры образуют шестиугольник. Из-за шестиугольной или по-другому гексагональной структуры данный тип мощных МОП-транзисторов и называют HEXFET. Первые три буквы этой аббревиатуры взяты от английского слова hexagonal – «гексагональный».

Под многократным увеличением кристалл мощного HEXFET транзистора выглядит вот так.

Поверхность кристалла транзистора HEXFET

Как видим, он имеет шестиугольную структуру.

Получается, что мощный MOSFET, по сути представляет собой эдакую супер-микросхему, в которой объединены тысячи отдельных простейших полевых транзисторов. В совокупности они создают один мощный транзистор, который может пропускать через себя большой ток и при этом практически не оказывать значительного сопротивления.

Благодаря особой структуре и технологии изготовления HEXFET, сопротивление их канала RDS(on) удалось заметно снизить. Это позволило решить проблему коммутации токов в несколько десятков ампер при напряжении до 1000 вольт.

Вот только небольшая область применения мощных HEXFET транзисторов:

Схемы коммутации электропитания.

Системы управления электродвигателями.

Усилители низкой частоты.

Ключи для управления мощными нагрузками.

Несмотря на то, что мосфеты, изготовленные по технологии HEXFET (параллельных каналов) обладают сравнительно небольшим сопротивлением открытого канала, сфера применения их ограничена, и они применяются в основном в высокочастотных сильноточных схемах. В высоковольтной силовой электронике предпочтение порой отдают схемам на основе IGBT.

Транзисторы HEXFET марки IRLZ44ZS

Транзисторы HEXFET марки IRLZ44ZS

Изображение MOSFET транзистора на принципиальной электрической схеме (N-канальный МОП).

Обозначение на схеме MOSFET-транзистора

Как и биполярные транзисторы, полевые структуры могут быть прямой проводимости или обратной. То есть с P-каналом или N-каналом. Выводы обозначаются следующим образом:

О том, как обозначаются полевые транзисторы разных типов на принципиальных схемах можно узнать на этой странице.

Основные параметры полевых транзисторов.

Вся совокупность параметров MOSFET может потребоваться только разработчикам сложной электронной аппаратуры и в даташите (справочном листе), как правило, не указывается. Достаточно знать основные параметры:

VDSS (Drain-to-Source Voltage) – напряжение между стоком и истоком. Это, как правило, напряжение питания вашей схемы. При подборе транзистора всегда необходимо помнить о 20% запасе.

ID (Continuous Drain Current) – ток стока или непрерывный ток стока. Всегда указывается при постоянной величине напряжения затвор-исток (например, VGS=10V). В даташите, как правило, указывается максимально возможный ток.

RDS(on) (Static Drain-to-Source On-Resistance) – сопротивление сток-исток открытого канала. При увеличении температуры кристалла сопротивление открытого канала увеличивается. Это легко увидеть на графике, взятом из даташита одного из мощных HEXFET транзисторов. Чем меньше сопротивление открытого канала (RDS(on)), тем лучше мосфет. Он меньше греется.

Зависимость сопротивления открытого канала от температуры кристалла

PD (Power Dissipation) – мощность транзистора в ваттах. По-иному этот параметр ещё называют мощностью рассеяния. В даташите на конкретное изделие величина данного параметра указывается для определённой температуры кристалла.

VGS (Gate-to-Source Voltage) – напряжение насыщения затвор-исток. Это напряжение, при превышении которого увеличения тока через канал не происходит. По сути, это максимальное напряжение между затвором и истоком.

VGS(th) (Gate Threshold Voltage) – пороговое напряжение включения транзистора. Это напряжение, при котором происходит открытие проводящего канала и он начинает пропускать ток между выводами истока и стока. Если между выводами затвора и истока приложить напряжение меньше VGS(th), то транзистор будет закрыт.

Зависимость порогового напряжения от температуры кристалла

На графике видно, как уменьшается пороговое напряжение VGS(th) при увеличении температуры кристалла транзистора. При температуре 175 0 C оно составляет около 1 вольта, а при температуре 0 0 C около 2,4 вольт. Поэтому в даташите, как правило, указывается минимальное (min.) и максимальное (max.) пороговое напряжение.

Транзистор IRLZ44ZSРассмотрим основные параметры мощного полевого HEXFET-транзистора на примере IRLZ44ZS фирмы International Rectifier. Несмотря на впечатляющие характеристики, он имеет малогабаритный корпус D 2 PAK для поверхностного монтажа. Глянем в datasheet и оценим параметры этого изделия.

Предельное напряжение сток-исток (VDSS): 55 Вольт.

Максимальный ток стока (ID): 51 Ампер.

Предельное напряжение затвор-исток (VGS): 16 Вольт.

Сопротивление сток-исток открытого канала (RDS(on)): 13,5 мОм.

Максимальная мощность (PD): 80 Ватт.

Сопротивление открытого канала IRLZ44ZS составляет всего лишь 13,5 миллиОм (0,0135 Ом)!

Взглянем на «кусочек» из таблицы, где указаны максимальные параметры.

Таблица с параметрами

Хорошо видно, как при неизменном напряжении на затворе, но при повышении температуры уменьшается ток (с 51A (при t=25 0 C) до 36А (при t=100 0 С)). Мощность при температуре корпуса 25 0 С равна 80 Ваттам. Так же указаны некоторые параметры в импульсном режиме.

Транзисторы MOSFET обладают большим быстродействием, но у них есть один существенный недостаток – большая ёмкость затвора. В документах входная ёмкость затвора обозначается как Ciss (Input Capacitance).

На что влияет ёмкость затвора? Она в большой степени влияет на определённые свойства полевых транзисторов. Поскольку входная ёмкость достаточно велика, и может достигать десятков пикофарад, применение полевых транзисторов в цепях высокой частоты ограничивается.

В схемах переключения время заряда паразитной входной ёмкости транзистора влияет на скорость его срабатывания.

Важные особенности MOSFET транзисторов.

МОП-транзисторОчень важно при работе с полевыми транзисторами, особенно с изолированным затвором, помнить, что они “смертельно” боятся статического электричества. Впаивать их в схему можно только предварительно закоротив выводы между собой тонкой проволокой.

При хранении все выводы МОП-транзистора лучше закоротить с помощью обычной алюминиевой фольги. Это уменьшит риск пробоя затвора статическим электричеством. При монтаже его на печатную плату лучше использовать паяльную станцию, а не обычный электрический паяльник.

Дело в том, что обычный электрический паяльник не имеет защиты от статического электричества и не «развязан» от электросети через трансформатор. На его медном жале всегда присутствуют электромагнитные «наводки» из электросети.

Любой всплеск напряжения в электросети может повредить паяемый элемент. Поэтому, впаивая полевой транзистор в схему электрическим паяльником, мы рискуем повредить MOSFET-транзистор.

Источник



Mosfet транзисторы принцип работы

Что такое МОП-транзистор, принцип работы, типы, на схеме, преимущества недостатки

МОП-транзистор (полевой транзистор на основе оксидов металлов и полупроводников) является наиболее широко используемым типом полевых транзисторов с изолированным затвором. Они используются в различных приложениях благодаря простым рабочим явлениям и преимуществам по сравнению с другими полевыми транзисторами.

Что такое МОП-транзистор

Metal Oxide Silicon Field Effect Transistor (Металлооксидные полевые транзисторы) сокращается как МОП-транзистор. Это униполярный транзистор, используемый в качестве электронного переключателя и для усиления электронных сигналов. Устройство имеет три терминала, состоящих из истока, затвора и стока. Помимо этих клемм имеется подложка, обычно называемая корпусом, которая всегда подключается к клемме источника для практических применений.

В последние годы его открытие привело к доминирующему использованию этих устройств в цифровых интегральных схемах из-за его структуры. Слой диоксида кремния (SiO2) действует как изолятор и обеспечивает электрическую изоляцию между затвором и активным каналом между истоком и стоком, что обеспечивает высокий входной импеданс, который почти бесконечен, таким образом захватывая весь входной сигнал.

Принцип работы МОП-транзистора (MOSFET)

Он изготовлен путем окисления кремниевых подложек. Он работает путем изменения ширины канала, через который происходит движение носителей заряда (электронов для N-канала и дырок для P-канала) от источника к стоку. Терминал затвора изолирован, напряжение которого регулирует проводимость устройства.

Типы МОП-транзистора (MOSFET)

На основе режима эксплуатации МОП-транзисторы можно разделить на два типа.

  • Режим насыщения
  • Режим истощения

Режим насыщения

В этом режиме отсутствует проводимость при нулевом напряжении, что означает, что оно по умолчанию закрыто или «ВЫКЛ», так как канал отсутствует. Когда напряжение затвора увеличивается больше, чем напряжение источника, носители заряда (дырки) смещаются, оставляя позади электроны, и, таким образом, устанавливается более широкий канал.

Напряжение на затворе прямо пропорционально току, то есть с увеличением напряжения на затворе ток увеличивается и наоборот.

Классификация режима насыщения МОП- транзисторов

Усовершенствованные МОП-транзисторы можно классифицировать на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).

  • N-канальный тип насыщения MOSFET
  • P-канальный тип насыщения MOSFET

N-канальный тип насыщения MOSFET

  • Слегка легированная субстрат P-типа образует корпус устройства, а исток и сток сильно легированы примесями N-типа.
  • N-канал имеет электроны в качестве основных носителей.
  • Подаваемое напряжение затвора положительно для включения устройства.
  • Он имеет более низкую собственную емкость и меньшую площадь соединения из-за высокой подвижности электронов, что позволяет ему работать на высоких скоростях переключения.
  • Он содержит положительно заряженные примеси, что делает преждевременным включение полевых МОП-транзисторов с N-каналом.
  • Сопротивление дренажу низкое по сравнению с P-типом.

P-канальный тип насыщения MOSFET

  • Слегка легированная подложка N-типа образует корпус устройства, а исток и сток сильно легированы примесями P-типа.
  • P-канал имеет отверстия в качестве основных носителей.
  • Он имеет более высокую внутреннюю емкость и малую подвижность отверстий, что делает его работающим при низкой скорости переключения по сравнению с N-типом.
  • Подаваемое напряжение затвора является отрицательным для включения устройства.
  • Водостойкость выше по сравнению с N-типом.
Читайте также:  В передачах пульсирующего тока электроэнергия передается

Режим истощения

В этом типе канал уже установлен, и очевидно, что проводимость происходит даже при нулевом напряжении, и он открыт или включен по умолчанию. В отличие от типа насыщения, здесь канал лишен носителей заряда, чтобы уменьшить ширину канала.

Напряжение на затворе обратно пропорционально току, т. Е. С увеличением напряжения на затворе ток уменьшается.

Классификация режима истощения МОП-транзисторов

Истощающие МОП-транзисторы могут быть классифицированы на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).

  • Тип истощения канала N МОП-транзистор
  • Тип истощения канала P МОП-транзистор

Тип истощения канала N МОП-транзистор

  • Полупроводник P-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
  • Применяемое напряжение на затворе отрицательное.
  • Канал обеднен свободными электронами.

Тип канала истощения канала MOSFET

  • Полупроводник N-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
  • Поданное напряжение затвора положительное.
  • Канал обеднен свободными отверстиями.

Символ на схеме разных типов МОП-транзистора (MOSFET)

Символы различных типов МОП-транзисторов изображены ниже.

Применение МОП-транзистора

  • Усилители MOSFET широко используются в радиочастотных приложениях.
  • Он действует как пассивный элемент, такой как резистор, конденсатор и индуктор.
  • Двигатели постоянного тока могут регулироваться силовыми полевыми МОП-транзисторами.
  • Высокая скорость переключения MOSFET делает его идеальным выбором при проектировании цепей прерывателей.

Преимущества МОП-транзистора

  • МОП-транзисторы обеспечивают большую эффективность при работе при более низких напряжениях.
  • Отсутствие тока затвора приводит к высокому входному импедансу и высокой скорости переключения.
  • Они работают при меньшей мощности и не потребляют ток.

Базовая структура MOSFET транзистора

Конструкция MOSFET (что это, рассказано в статье подробно) очень отличается от полевых. Оба типа транзисторов используют электрическое поле, создаваемое напряжением на затворе. Чтобы изменить поток носителей заряда, электронов для п-канала или отверстия для р-канала, через полупроводящий канал сток-исток. Электрод затвора помещен на вершине очень тонким изолирующим слоем, и есть пара небольших областей п-типа только под сток и исток электродов.

При помощи изолированного устройства затвора для МОП-транзистора никаких ограничений не применяется. Поэтому можно соединять с затвором полевого МОП-транзистора источник сигнала в любой полярности (положительный или отрицательной). Стоит отметить, что чаще встречаются импортные транзисторы, нежели их отечественные аналоги.

Это делает MOSFET устройства особенно ценными в качестве электронных переключателей или логических приборов, потому что без воздействия извне они, как правило, не проводят ток. И причина этому высокое входное сопротивление затвора. Следовательно, очень маленький или несущественный контроль необходим для МОП-транзисторов. Ведь они представляют собой устройства, управляемые извне напряжением.

Режим истощения МОП-транзистора

Режим истощения встречается значительно реже, нежели режимы усиления без приложения напряжения смещения к затвору. То есть, канал проводит при нулевом напряжении на затворе, следовательно, прибор «нормально закрыт». На схемах используется сплошная линия для обозначения нормально замкнутого проводящего канала.

Для п-канального МОП-транзистора истощения, отрицательное напряжение затвор-исток отрицательное, будет истощать (отсюда название) проводящий канал своих свободных электронов транзистора. Аналогично для р-канального МОП-транзистора обеднение положительного напряжения затвор-исток, будет истощать канал своих свободных дырок, переведя устройство в непроводящее состояние. А вот прозвонка транзистора не зависит от того, какой режим работы.

Другими словами, для режима истощения п-канального МОП-транзистора:

  1. Положительное напряжение на стоке означает большее количество электронов и тока.
  2. Отрицательное напряжение означает меньше электронов и ток.

Обратные утверждения также верны и для транзисторов р-канала. Тогда режим истощения МОП-транзистора эквивалентно «нормально разомкнутому» переключателю.

N-канальный МОП-транзистор в режиме истощения

Режим истощения МОП-транзистора построен таким же образом, как и у полевых транзисторов. Причем канал сток-исток – это проводящий слой с электронами и дырками, который присутствует в п-типа или р-типа каналах. Такое легирование канала создает проводящий путь низкого сопротивления между стоком и источника с нулевым напряжением. Используя тестер транзисторов, можно провести замеры токов и напряжений на его выходе и входе.

Режим усиления МОП-транзистора

Более распространенным у транзисторов MOSFET является режим усиления, он обратный для режима истощения. Здесь проводящий канал слаболегированный или даже нелегированный, что делает его непроводящим. Это приводит к тому, что устройство в режиме покоя не проводит ток (когда напряжение смещения затвора равно нулю). На схемах для обозначения МОП-транзисторов такого типа используют ломаную линию, чтобы обозначить нормально открытый токоизолирующий канал.

Для повышения N-канального МОП-транзистора ток стока будет течь только тогда, когда напряжение на затворе прикладывается к затвору больше, чем пороговое напряжение. При подаче положительного напряжения на затвор к п-типа MOSFET (что это, режимы работы, схемы включения, описаны в статье) привлекает большее количество электронов в направлении оксидного слоя вокруг затвора, тем самым увеличивая усиление (отсюда название) толщины канала, позволяя свободнее протекать току.

Особенности режима усиления

Увеличение положительного напряжения затвора вызовет появление сопротивления в канале. Это не покажет тестер транзисторов, он может только проверить целостность переходов. Чтобы уменьшить дальнейший рост, нужно увеличить тока стока. Другими словами, для режима усиления п-канального МОП-транзистора:

  1. Положительный сигнал транзистор переводит в проводящий режим.
  2. Отсутствие сигнала или же его отрицательное значение переводит в непроводящий режим транзистор. Следовательно, в режиме усиления МОП-транзистор эквивалентен «нормально разомкнутому» переключателю.

Обратные утверждения справедливы для режимов усиления р-канальных МОП-транзисторов. При нулевом напряжении устройство в режиме «Выкл» и канал открыт. Применение напряжения отрицательного значения к затвору р-типа у MOSFET увеличивает проводимость каналов, переводя его режим «Вкл». Проверить можно, используя тестер (цифровой или стрелочный). Тогда для режима усиления р-канального МОП-транзистора:

  1. Положительный сигнал переводит транзистор «Выкл».
  2. Отрицательный включает транзистор в режим «Вкл».

Режим усиления N-канального МОП-транзистора

В режиме усиления МОП-транзисторы имеют низкое входное сопротивление в проводящем режиме и чрезвычайно высокое в непроводящем. Также их бесконечно высокое входное сопротивление из-за их изолированного затвора. Режима усиления транзисторов используется в интегральных схемах для получения типа КМОП логических вентилей и коммутации силовых цепей в форме, как PMOS (P-канал) и NMOS (N-канал) входов. CMOS – это комплементарный МОП в том смысле, что это логическое устройство имеет как PMOS, так и NMOS в своей конструкции.

Транзистор полевой

В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от «электрическое поле». Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. «Полевики» по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода: исток, сток, затвор.

исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания.

сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания.

затвор (gate) — управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs.

Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис.1 изображены типы полевых транзисторов и их обозначения на схемах.

Рис.1. Типы полевых транзисторов и их схематическое обозначение.

«Полевик» с изолированным затвором и индуцированным каналом

Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: «полевик», «мосфет», «ключ».

Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.

Обратный диод

Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях.

Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой.

В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору.

Читайте также:  Электрический ток виды волн

Рис.2. Паразитные элементы в составе полевого транзистора.

Основные преимущества MOSFET

  • меньшее потребление, высокий КПД. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
  • простая схема управления. Схемы управления напряжением более просты, чем схемы управления током.
  • высокая скорость переключения. Отсутствуют неосновные носители. Следовательно не тратится время на их рассасывание. Частота работы сотни и тысячи килогерц
  • повышеная теплоустойчивость. С ростом температуры растет сопротивление канала, следовательно понижается ток, а это приводит к понижению температуры. Происходит саморегуляция.

Основные характеристики MOSFET

  • Vds(max) – максимальное напряжение сток-исток в закрытом состоянии транзистора
  • Rds(on) – активное сопротивление канала в открытом состоянии транзистора. Этот параметр указывают для определенных значений Vgs 10В или 4.5В или 2.5 В при которых сопротивление становится минимальным.
  • Vgs(th) – пороговое напряжение при котором транзистор начнет открываться.
  • Ids – максимальный постоянный ток через транзистор.
  • Ids(Imp) – импульсный (кратковременный) ток, который выдерживает транзистор.
  • Ciss, Crss, Coss – емкость затвор-исток (input), затвор-сток (reverse), сток-исток(output).
  • Qg – заряд который необходимо передать затвору для переключения.
  • Vgs(max) – максимальное допустимое напряжение затвор-исток.
  • t(on), t(of) – время переключения транзистора.
  • характеристики обратного диода сток-исток ( максимальный ток, падение напряжения, время восстановление)

Что еще нужно знать про полевой транзистор?

P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте.

МОП транзистор — потенциальный прибор и управляется напряжением (потенциалом), затвор отделен слоем диэлектрика , по сути это конденсатор и через него не протекает постоянный ток, поэтому он не потребляет ток управления в статике, но во время переключения требуется приличный ток для заряда-разряда емкости.

МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.

Vgs – управляющее напряжение, Vg-Vs. Если измерять относительно общего минуса, то: для n канального Vgs>0, для p канального Vgs Понравилась статья? Расскажите друзьям:

Источник

Ток покоя для мосфет

Текущее время: Вс апр 25, 2021 08:42:36

Часовой пояс: UTC + 3 часа

Расчёт напряжения и тока затвора MOSFET

Страница 1 из 1 [ Сообщений: 19 ]

_________________
Прибор, защищённый предохранителем, сгорает первым, защитив предохранитель. Закон Мерфи.

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Компания «Компэл» и Analog Devices приглашают всех желающих 27/04/2021 принять участие в вебинаре, посвященном решениям Analog Devices для гальванической изоляции. В программе вебинара: технологии гальванической изоляции iCoupler, цифровые изоляторы, технология isoPower, гальванически изолированные интерфейсы (RS-485, CAN, USB, I2C, LVDS) и другое. Вебинар будет интересен разработчикам промышленной автоматики и медицинской техники.

_________________
Прибор, защищённый предохранителем, сгорает первым, защитив предохранитель. Закон Мерфи.

Широкий ассортимент винтовых клеммников Degson включает в себя различные вариации с шагом выводов от 2,54 до 15 мм, с числом ярусов от одного до трёх и углами подключения проводника 45°, 90°, 180°. К тому же Degson предлагает довольно большой выбор клеммных винтовых колодок кастомизированных цветов.

_________________
Прибор, защищённый предохранителем, сгорает первым, защитив предохранитель. Закон Мерфи.

_________________
Хоть оптика и увеличивает изображения но, глядя через оптический прицел, все проблемы мельчают.

ПРИСТ расширяет ассортимент

Простенькая формула подсчёта мощности, извините, вбивается в головы школяров на уроках физики (в каком там классе электричество нонче?). Выглядит как P=I*U. Всё остальное приводится к ней же. Но в вашем случае транзисторы работают в ключевом режиме, и гораздо раньше достигнете ограничения по совсем другим параметрам, нежели по мощности рассеяния на переходе.
p.s. Seriyvolk прав — используйте для управления мост. В моменты, когда все транзисторы закрыты, первичка должна быть закорочена. Вот Вам пример схемного решения для затравки — первичка включается вместо мотора, тип транзисторов соответственно тоже меняется, да хотя бы на КП505/КП507. Важно, чтобы был понят сам принцип. Изображение
p.p.s. Телекот, в силовом мосту нет необходимости использования настолько высоковольтных транзисторов. По вольтажу требования точно такие же, как и у полумоста, т.е. 400 вольт вполне хватает. А вот по току двукратное «послабление». Так что мост на больших мощностях выглядит выгоднее.

_________________
Хоть оптика и увеличивает изображения но, глядя через оптический прицел, все проблемы мельчают.

_________________
Хоть оптика и увеличивает изображения но, глядя через оптический прицел, все проблемы мельчают.

_________________
Прибор, защищённый предохранителем, сгорает первым, защитив предохранитель. Закон Мерфи.

_________________
Прибор, защищённый предохранителем, сгорает первым, защитив предохранитель. Закон Мерфи.

_________________
Хоть оптика и увеличивает изображения но, глядя через оптический прицел, все проблемы мельчают.

Так так, что мы здесь видим. После напряжения 7 вольт, тока, больше 4-х ампер, из мосфета не выжмешь. А при 4.5 вольта — 100 мА, при напряжении до 100 В на стоке.

Для FQPF10N60C встречал инфу (не помню где)- «. Гарантируют открытие при 4 вольтах на затворе.
Вообще эти транзисторы специально разработаны для прямого управления логическими микросхемами с напряжением питания 5 вольт. » А по диаграмме выходных характеристик, при разном управляющем напряжении, видно приерно то-же что и для IRF740. Интересно — что имелось в виду.

_________________
Прибор, защищённый предохранителем, сгорает первым, защитив предохранитель. Закон Мерфи.

Часовой пояс: UTC + 3 часа

Кто сейчас на форуме

Сейчас этот форум просматривают: EternalEngine, oleg63m, Roman Solovey и гости: 30

Источник

AudioKiller’s site

Audio, Hi-Fi, Hi-End. Электроника. Аудио.

  • Новости
  • Мои планы
  • For sale
  • FAQ
  • Задайте вопрос
  • Обо мне
  • Подписка на новости

Материалы раздела:

  • — Теория
  • — Усилители
    • Лампы или транзисторы?
    • Выходной каскад усилителя мощности
    • Оптимальный ток покоя выходного каскада на полевых транзисторах в усилителях мощности
    • Подключение блоков внутри усилителя
    • Усилитель с регулируемым выходным сопротивлением
  • — Источники питания
  • — Акустические системы
  • — Другое

Оптимальный ток покоя выходного каскада на полевых транзисторах в усилителях мощности

Интернет-версия статьи, опубликованной в журнале Радио 2016 №9

Выходной каскад усилителя – весьма нелинейный узел. И снижение его искажений очень хорошо отразится на работе усилителя и на его качестве звучания. Самые низкие искажения выходного каскада будут, конечно же, в классе А. Вот только греться выходные транзисторы при этом будут очень сильно. Чтобы снизить их нагрев обычно снижают напряжения питания. А это повышает искажения полевиков. И, главное, снижает максимальную выходную мощность усилителя. Значит появляется опасность возникновения клиппинга. То есть стремление улучшить звук, приводит к возможности его сильного ухудшения.

Что же делать? А нельзя ли найти такой ток покоя выходных полевых транзисторов, чтобы и искажения были маленькими, и нагрев небольшим?

Известный разработчик звуковой техники Дуглас Селф в книге «Проектирование усилителей мощности звуковой частоты» писал, что для низких искажений ток покоя выходного каскада на биполярных транзисторах должен быть как раз маленьким, выходные транзисторы должны работать в классе В. То есть греться минимально. Однако для выходных полевых транзисторов невозможно теоретически указать оптимальное значение тока покоя, при котором искажения выходных полевых транзисторов были бы минимальны.

Я усомнился в том, что оптимального тока покоя для полевых транзисторов не существует вообще. Какая-то оптимальная величина тока покоя, которую можно рекомендовать устанавливать в УМЗЧ, должна быть. Чтобы и качество высокое, и нагрев небольшой. Поэтому провел экспериментальную проверку влияния тока покоя выходного каскада на его искажения. Для этого я применил такую систему. Собрал высококачественный усилитель с полевыми транзисторами на выходе, по топологии Лина. Для того чтобы легче было измерять величину искажений, глубина общей ООС была уменьшена на 30 дБ. С целью линеаризации каскада усиления напряжения усилителя, вносящего наибольшие искажения, в него была введена местная ООС глубиной 12 дБ. Такая модернизация позволила более четко выделить искажения, вносимые выходным каскадом усилителя.

Итак, перед вами результаты реальных измерений на настоящем усилителе.

Цель оптимизации – получить достаточно низкие искажения, вносимые выходным каскадом при сравнительно небольшом токе покоя, а значит и нагреве выходных транзисторов.

С целью всестороннего изучения искажений, вносимых выходным каскадом, измерялись следующие виды искажений такого специализированного усилителя:

— коэффициент интермодуляционных искажений, использующий стандартный метод SMPTE с частотами 60 Гц и 7 кГц и соотношением амплитуд 4:1;

— коэффициент гармоник, нормированный к номеру гармоники k, вычисленный для первых одиннадцати гармоник:

Оптимальный ток покоя выходного каскада на полевых транзисторах в усилителях мощности

Этот коэффициент используется сравнительно редко. Однако в нем есть необходимость, так как этот коэффициент учитывает не только величину гармоники, но и ее номер. Чем больше номер, тем больше коэффициент. Известно, что чем выше номер гармоники, тем более она заметна и неприятна на слух. В результате нормированный коэффициент гармоник не только вычисляет искажения, он позволяет учесть ширину спектра искажений и хоршо отображает «неприятное звучание» высших гармоник. Этот параметр гораздо сильнее связан с субъективным качеством звучания, чем «обычный» Кг. Но нормированный Кг непривычен — его практически не используют (потому что он более честно показывает искажения, а производители хотят красивых рекламных чисел). Поэтому для сравнения спектров вычислялся коэффициент, который можно назвать «фактор спектра» (ФС):

Оптимальный ток покоя выходного каскада на полевых транзисторах в усилителях мощности

Фактор спектра показывает ширину спектра искажений. Если в спектре присутствует только вторая гармоника, то ФС=1. Бо’льшие значения ФС соответствуют присутствию в спектре искажений большего числа высших гармоник. На рис. 1 показана зависимость фактора спектра от ширины спектра сигнала (график на рис. 1 построен по результатам проведенных измерений). Здесь показаны только первые одиннадцать гармоник, а вообще реальный спектр искажений при больших значениях фактора спектра содержал гармоники значительной амплитуды вплоть до двадцатой!

Для измерений использовалась звуковая карта EMU-0404 и последняя версия программы SpectraPLUS. Коэффициенты гармоник и интермодуляционных искажений вычислялись программой по встроенным алгоритмам. Нормированный коэффициент гармоник вычислялся на основе амплитуд гармоник, выдаваемых программой.

Исследовались наиболее популярные мощные комплементарные транзисторы, устанавливаемые в выходной каскад усилителя:

IRFP240/IRFP9240 фирмы International Rectifier;

2SJ201/2SK1530 фирмы Toshiba;

2SJ162/2SK1058 фирмы Hitachi.

Во всех случаях измерялись две-три пары однотипных транзисторов. Результаты не усреднялись, но разброс результатов для однотипных транзисторов был несущественным. В пары транзисторы не подбирались.

Измерения производились для двух типов нагрузки: активной, сопротивлением 6 ом и сложной комплексной, имитирующей реальные акустические системы.

Искажения выходных транзисторов на активной нагрузке показаны на рис. 2 — рис. 4.

Хорошо видно, что при увеличении тока покоя величина искажений, вносимых выходным каскадом, снижается. Вместе с искажениями снижается и значение фактора спектра. Это означает, что в спектре искажений снижается содержание гармоник высоких порядков, что положительно сказывается на звучании усилителя, воспринимаемом на слух. При условии, что выходной каскад остается работать в классе АВ, можно легко найти оптимальный ток покоя, при котором искажения невелики и при увеличении тока снижения искажений практически не происходит. Оптимальный ток получается равным 300 мА для транзисторов IR, 200 мА для транзисторов Toshiba и 120 мА для транзисторов Hitachi. Интересно, что последние транзисторы значительно отличаются по величине искажений. Надо сказать, что они отличаются и по работе на постоянном токе, для обеспечения работы этих транзисторов пришлось переделывать цепь смещения усилителя.

Искажения выходных транзисторов при работе на комплексную нагрузку показаны на рис. 5 — рис. 7.

Для комплексной нагрузки также характерно наличие оптимальной величины тока покоя, близкой по значениям к оптимальным величинам тока на активной нагрузке.

Интересно отметить, что при увеличении тока покоя выше оптимального значения, искажения выходного каскада в ряде случаев растут. Вполне возможно, что здесь проявляется влияние изменения крутизны выходного каскада, описанное Д. Селфом.

Важность параметра «фактор спектра» можно продемонстрировать на таком примере. На рис. 5 у транзистора Toshiba величины Кг и IMD при токах покоя 250 мА и 2000 мА практически равны. Из этого можно сделать вывод о том, что выходные транзисторы на этих токах работают совершенно одинаково. Однако значения фактора спектра для этих токов равны ФС(250 мА)=2,6 и ФС(2000 мА)=1,08. И спектры искажений в этих случаях разные. Они близки к спектрам, показанным на рис. 1 черным и синим графиками. Спектр искажений при токе покоя 250 мА содержит как минимум девять гармоник заметной амплитуды, тогда как спектр при токе 2000 мА содержит только вторую и третью гармоники.

Транзисторы разных производителей демонстрируют совершенно разное поведение. Это позволяет сделать вывод о том, что, несмотря на примерно одинаковые основные параметры транзисторов, их свойства сильно различаются. Однотипные транзисторы имеют очень близкие свойства. На рис. 8 показаны характеристики, измеренные на двух разных парах однотипных транзисторов. Различие лежит в пределах погрешности измерений.

Для более полного исследования и исключения случайности полученных результатов был проведен ряд дополнительных измерений. С целью их упрощения измерялся только коэффициент гармоник, который хорошо отражает нелинейность выходных транзисторов. Исследовались транзисторы 2SJ201/2SK1530 фирмы Toshiba. На рис. 9 показана зависимость Кг от тока покоя для различных значений сопротивления активной нагрузки. В целом зависимость сохраняется, и значение оптимального тока покоя можно считать неизменным.

На рис. 10 показана зависимость Кг от тока покоя на активной нагрузке для различных значений выходного напряжения. Графики пересекаются в одной точке: с одной стороны, чем меньше выходное напряжение, тем выше относительные искажения «ступенька» при малом токе покоя. Поэтому маленькое выходное напряжение дает большие искажения. Это при малом токе покоя. С другой стороны меньшее выходное напряжение создает меньшую нелинейность выходных транзисторов (у полевых транзисторов крутизна зависит от напряжения) и, следовательно, меньшие искажения при достаточно большом токе. И снова графики демонстрируют примерно то же значение оптимального тока покоя.

Две последние зависимости коэффициента гармоник от температуры выходных транзисторов и от частоты тестового тона (рис 10 и рис. 11) показывают, что ни один из этих факторов не влияет на поведение транзисторов. Так что полученные результаты (рис. 2 – рис. 7) верны при любых условиях работы усилителя.

Если сравнить зависимости Кг от тока покоя, то можно заметить, что на всех графиках искажения достигают значения, равного примерно 0,25%, и дальше не уменьшаются. Это происходит потому, что величина искажений выходного каскада достигает и становится меньше величины искажений второго по уровню нелинейности узла усилителя – каскада усиления напряжения, который имеет Кг порядка 0,25%. Однако на правильность выводов данная ситуация не влияет:

1. Ищется не минимум искажений, а оптимум тока покоя. Как только искажения выходного каскада стали меньше, чем каскада усиления напряжения, то оптимум найден – главный вклад в искажения усилителя в целом вносит другой узел, следовательно, выходной каскад в дальнейшем совершенствовании не нуждается.

2. Каскад усиления напряжения дополнительно линеаризован на 12 дБ. Так что если искажения выходного каскада стали меньше чем у линеаризованного усилителя напряжения, то уж наверняка они будут гораздо меньше искажений «обычного». И их вклад в общие искажения усилителя будет весьма мал.

3. Тот факт, что при дальнейшем увеличении тока покоя сверх оптимального значения с выходным каскадом происходят какие-то изменения, показывает фактор спектра – при дальнейшем увеличении тока покоя спектр искажений сокращается. Возможно, что уменьшается и амплитуда искажений. Так что минимум искажений явно не достигнут, но однозначно достигнут оптимум тока покоя, когда искажения выходного каскада уже достаточно низкие, а нагрев выходных транзисторов небольшой.

В качестве иллюстрации оптимальности полученных значений можно привести результаты применения теории оптимизации к данной задаче. Целевая функция получается следующим образом. Имеются две переменные – ток покоя и коэффициент гармоник. Обе они проявляют свойство: чем меньше значение, тем лучше. Следовательно, переменные следует перемножать и искать минимум целевой функции. Поскольку величина Кг изменяется на порядок, а ток покоя на два порядка, то переменные следует привести к одному масштабу изменения, чтобы переменная, изменяющаяся сильнее, не «перетягивала» на себя результат. Для этого следует из величины тока покоя извлечь квадратный корень, что приведет диапазон ее изменения к диапазону изменения Кг. Таким образом получаем критерий оптимальности:

Оптимальный ток покоя выходного каскада на полевых транзисторах в усилителях мощности

Результаты показаны на рис. 13, 14, 15. Они полностью согласуется с выводами, сделанными выше.

Выводы.

1. Искажения, вносимые выходным каскадом УМЗЧ, существенно зависят от тока покоя выходных полевых транзисторов.

2. Наименьшие искажения наблюдаются при работе в классе А, что полностью согласуется с теорией. В классе В искажения существенно выше, чем в классе АВ. С ростом тока покоя искажения в общем случае уменьшаются.

3. Существует оптимальное значение тока покоя, при котором искажения достаточно малы при работе транзисторов в классе АВ. В ряде случаев, при увеличении тока покоя выше оптимального значения, искажения выходного каскада растут.

4. Величина оптимального тока покоя для разных транзисторов лежит в диапазоне 150…300 мА, что намного больше тех значений, которые принято устанавливать в усилителях мощности. Обычно в усилителях устанавливают ток покоя 80…100 мА, а в некоторых промышленных конструкциях даже 40…60 мА.

5. Кроме амплитуды искажений, от тока покоя зависит и их спектр. При низких значениях тока покоя спектр гармоник значительно расширяется, а гармоники высоких порядков хуже подавляются отрицательной обратной связью. То есть при маленьком токе покоя у нас сразу две беды: большая величина Кг и широктй спектр искажений. Качество звучания наверняка будет невысоким. Спектр оптимального тока покоя содержит небольшое количество высших гармоник, которые эффективно подавляются общей ООС. Да и значение Кг невелико. Поэтому усилитель, ток покоя выходного каскада которого равен оптимальному, должен восприниматься на слух как хорошо звучащий.

6. Для транзисторов IRFP240/IRFP9240 оптимальный ток покоя составляет 300 мА. Для транзисторов 2SJ201/2SK1530 оптимальный ток покоя составляет 200…250 мА. Для транзисторов 2SJ162/2SK1058 оптимальный ток покоя составляет 120…150 мА.

7. Оптимальный ток покоя зависит только от типа выходных транзисторов. Другие факторы, такие как выходное напряжение или сопротивление нагрузки на его величину практически не влияют.

8. Самыми лучшими показали себя транзисторы 2SJ201/2SK1530 фирмы Toshiba. Транзисторы IRFP240/IRFP9240 фирмы International Rectifier заняли второе место. Они хоть и являются переключательными, тем не менее мало чем уступают транзисторам фирмы Toshiba. Транзисторы 2SJ162/2SK1058 фирмы Hitachi являются заметно нелинейными и не рекомендуются для высококачественного усиления. Оптимум тока покоя для них тоже получается каким-то расплывчатым.

9. При неоптимальном маленьком токе покоя (таком, какой часто устанавливают в усилителях) искажения, вносимые выходным каскадом, в четыре-шесть раз выше (а на слух — с учетом ширины спектра — в шесть-десять раз выше), чем при оптимальном. Поэтому для высококачественного усиления необходимо задавать ток покоя выходного каскада равным оптимальному.

Источник

Приборы счетчики инструменты © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.