Меню

Тиристорный блок управления электродвигателем постоянного тока

Тиристорный преобразователь постоянного тока

Для выравнивания переменного тока в постоянный требуется использование специальных устройств. Тиристорный преобразователь частоты для индукционного нагрева применяется в различных областях промышленности для регулирования напряжения и прочих параметров электрической энергии.

Принцип работы и конструкция

Для преобразования нагрузки может использоваться тиристорный или транзисторный высоковольтный преобразователь на базе IGBT. Тиристорный частотный преобразователь (ТП, ТПР или ТПЧ) – это электрическое устройство для преобразования переменного тока в постоянный, регулирования его уровня и прочих характеристик. С его помощью можно уравнивать различные параметры электрических редукторов: скорость вращения в момент пуска, угол и прочие.

Фото — тиристорный уравнитель

Тиристорный преобразователь применяется для двигателя постоянного тока (ДПТ) вместе с системой автоматического регулирования (FR A700 в Mitsubishi Electric, Siemens Simoreg DC Master, Omron Yaskawa). Он имеет очень широкую область применения благодаря своим достоинствам:

  1. Высокий показатель КПД – до 95 % (к примеру, у модели ПН-500);
  2. Широкий спектр контроля. Его можно использовать для двигателя с мощностью от десятых киловатта до нескольких мегакиловатт;
  3. Способность выдерживать сильные импульсные нагрузки при включении электродвигателя в сеть;
  4. Высокие показатели надежности и долговечности;
  5. Точность в работе.

Но у такой системы есть определенные недостатки. В первую очередь – это низкий коэффициент мощности, который проявляется при глубоком регулировании производственных процессов. Компенсировать его можно при помощи дополнительных устройств. Кроме этого, мощный преобразователь вызывает помехи в электрической сети, что сказывается на работе чувствительного электро- и радиооборудования.

  1. Трансформатор или реактор;
  2. Выпрямительные блоки;
  3. Дополнительный реактор, сглаживающий преобразование;
  4. Система защиты оборудования от перенапряжений.

Большинство современных преобразователей подключаются к трансформатору через реактор. Трансформатор в этой схеме является согласующим звеном между входящим и выходным напряжением, он уравновешивает разницу между ними. Помимо него, электросхема также включает в себя специальный сглаживающий реактор. Этот прибор необходим для нейтрализации определенных пульсаций, возникающих при выпрямлении и изменении типа тока. Но система не всегда включает в себя реактор, т. к. при достаточной индуктивности асинхронного двигателя в нем нет необходимости.

Агрегат пропускает через автономный инвертор (расположенный во входящем звене) первичную нагрузку. Они попадают в выпрямляющие блоки, установленные в выходном звене. Для подключения других индукционных потребителей используются специальные шины, которые помогают выравнивать питание в целой группе устройств.

Такой преобразователь бывает низкочастотный и высокочастотный. В зависимости от потребных частот и имеющихся параметров электричества подбирается нужная модель. Нужно отметить, что в станках, где используется трехфазный ток, применяется другой тип подключения. Однофазный переносит воздействия и преобразования, в то время как на преобразовании трехфазного тока теряется КПД.

преобразовательный пункт

Фото — преобразовательный пункт

Система используется в плавке металлов, сварочных работах, контроле кранового механизма и многих других производственных и технологических процессах. Применение такого принципа работы позволяет реализовать систему генератор-двигатель без использования генератора. Благодаря этому производится широкая регулировка частот вращения шпинделя даже на самых малых скоростях, настраиваются механические и другие характеристики электропривода и прочие параметры.

Разработка

Электрическая схема тиристорный преобразователь-двигатель (к примеру, КТЭ) для плавного переключения может быть двух видов:

  1. Однофазной;
  2. Многофазной.

В зависимости от типа исполнения варьируются соотношения расчетных единиц и принципы работы преобразователя.

нулевая схема трехфазного преобразованияФото — нулевая схема трехфазного преобразования

На этом чертеже схематически показано изменение электрической энергии при работе тиристорного преобразователя в режиме выпрямителя и инвертора. В то же время, для мостовой схемы можно сделать такую же диаграмму, но только состоящую из двух нулевых. Именно она наиболее часто используется при проектировании преобразователя для станочного оборудования. Это происходит из-за того, что исходное фазовое напряжение в ней в два раза превышает фазовой напряжение (Udo) в нулевой схеме работы.

питание

Фото — питание

Однофазная схема используется для контроля питания и работы привода машин с высоким индуктивным сопротивлением. Она работает в пределах мощности от 10 кВт до 20, намного реже – при больших мощностях. К примеру, подойдет для электрической печи, домашнего станка.

однолинейная схема

Фото — однолинейная схема

Трехфазная используется для оборудования, где требуется от 20 кВт для работы. К примеру, для синхронных приводов, двигателя крана и экскаватора. Еще одной популярной многофазной схемой контроля является шестифазная (Кемрон). Её проект предусматривает использование в конструкции уравнительного реактора, который направлен на контроль низкого напряжения и высокого тока. Этот силовой электрический прибор пропускает и преобразовывает электрическую энергию параллельным путем, а не последовательным (как большая часть аналогичных устройств). Его более сложно разработать своими руками, но степень надежности и эффективности значительно больше, нежели у однофазного тиристорного преобразователя. Но такой реверсивный контроллер имеет серьезный недостаток – его КПД менее 70 %.

Своими руками можно сделать собственный преобразователь, но многое зависит от используемой базы. Внизу дана схема, разработанная на основе Micro-Cap 9. Главной особенностью этой модели является необходимость в совместном моделировании различных узлов.

Схема тиристорного уравнителя

Фото — Схема тиристорного уравнителя

Видео: как работают тиристорные преобразователи

Техническое описание и обзор цен

Характеристики тиристорных преобразователей зависят от типа их исполнения и функциональных особенностей.

Параметры ТПЧ 320 800
Выходная мощность, кВт 320 800
Максимальная полная мощность, кВ-А 640 1250
Частота, Гц 50 50
Входящее напряжение, В 380 500
Максимальный ток, А 630 1000
КПД, % 94 94
Выходное напряжение, В 800 1000
Номинальный ток, А 400
Максимальный ток, А 800
Входящее напряжение, В 460
Габаритные размеры, мм 800x775x1637

ЭПУ-1-1-3447Е УХЛ4 (производитель заявляет, что этот преобразователь может работать в сложных условиях, повышенной пыльности и влажности):

Номинальный ток, А 25
Максимальный ток, А 100
Входящее напряжение, В 380

Но тиристорные преобразователи продаются не только по одной единице, но и в виде выпрямляющих комплексов (КТЭУ). Если единичный уравнитель при поломке нуждается в полном ремонте или демонтаже, то у комплекса производится замена вышедшего из строя оборудования. Такие системы используются как в приводах станков, так и в ЭКТ (комплектных тиристорных электроприводах).

Рассмотрим, какова цена тиристорного преобразователя ABB DCS400:

Город Цена, у. е.
Москва 100
Санкт-Петербург 100
Челябинск 95
Воронеж 98
Самара 95
Новосибирск 95
Ростов-на-Дону 98

Купить устройство можно в любом магазине электрических товаров, прайс-лист зависит от характеристик и типа исполнения.

Источник



Управление двигателями постоянного тока. Часть 1

Владимир Рентюк, Запорожье, Украина

В статье дается краткий обзор и анализ популярных схем, предназначенных для управления коллекторными двигателями постоянного тока, а также предлагаются оригинальные и малоизвестные схемотехнические решения

Электродвигатели являются, наверное, одним из самых массовых изделий электротехники. Как говорит нам всезнающая Википедия, электрический двигатель – электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую. Началом его истории можно считать открытие, которое сделал Майкл Фарадей в далеком 1821 году, установив возможность вращения проводника в магнитном поле. Но первый более-менее практический электродвигатель с вращающимся ротором ждал своего изобретения до 1834 года. Его во время работы в Кёнигсберге изобрел Мориц Герман фон Якоби, более известный у нас как Борис Семенович. Электродвигатели характеризуют два основных параметра – это скорость вращения вала (ротора) и момент вращения, развиваемый на валу. В общем плане оба этих параметра зависят от напряжения, подаваемого на двигатель и тока в его обмотках. В настоящее время имеется достаточно много разновидностей электродвигателей, и поскольку, как заметил наш известный литературный персонаж Козьма Прутков, нельзя объять необъятное, остановимся на рассмотрении особенностей управления двигателями постоянного тока (далее электродвигателями).

К двигателям постоянного тока относятся два типа – это привычные для нас коллекторные двигатели и бесколлекторные (шаговые) двигатели. В первых переменное магнитное поле, обеспечивающее вращение вала двигателя, образуется обмотками ротора, которые запитываются через щеточный коммутатор – коллектор. Оно и взаимодействует с постоянным магнитным полем статора, вращая ротор. Для работы таких двигателей внешние коммутаторы не требуются, их роль выполняет коллектор. Статор может быть изготовлен как из системы постоянных магнитов, так и из электромагнитов. Во втором типе электродвигателей обмотки образуют неподвижную часть двигателя (статор), а ротор сделан из постоянных магнитов. Здесь переменное магнитное поле образуется путем коммутации обмоток статора, которая выполняется внешней управляющей схемой. Шаговые двигатели («stepper motor» в английском написании) значительно дороже коллекторных. Это достаточно сложные устройства со своими специфическими особенностями. Их полное описание требует отдельной публикации и выходит за рамки данной статьи. Для получения более полной информации по двигателям этого типа и их схемам управления можно обратиться, например, к [1].

Коллекторные двигатели (Рисунок 1) более дешевы и, как правило, не требуют сложных систем управления. Для их функционирования достаточно подачи напряжения питания (выпрямленного, постоянного!). Проблемы начинают возникать, когда появляется необходимость в регулировке скорости вращения вала такого двигателя или в специальном режиме управления моментом вращения. Основных недостатков таких двигателей три – это малый момент на низких скоростях вращения (поэтому часто требуется редуктор, а это отражается на стоимости конструкции в целом), генерация высокого уровня электромагнитных и радиопомех (из-за скользящего контакта в коллекторе) и низкая надежность (точнее малый ресурс; причина в том же коллекторе). При использовании коллекторных двигателей необходимо учитывать, что ток потребления и скорость вращения их ротора зависят от нагрузки на валу. Коллекторные двигатели более универсальны и имеют более широкое распространение, особенно в недорогих устройствах, где определяющим фактором является цена.

Поскольку скорость вращения ротора коллекторного двигателя зависит, в первую очередь, от подаваемого на двигатель напряжения, то естественным является использование для его управления схем, имеющих возможность установки или регулировки выходного напряжения. Такими решениями, которые можно найти в Интернете, являются схемы на основе регулируемых стабилизаторов напряжения и, поскольку век дискретных стабилизаторов давно прошел, для этого целесообразно использовать недорогие интегральные компенсационные стабилизаторы, например, LM317 [2]. Возможные варианты такой схемы представлены на Рисунке 2.

Читайте также:  По графику зависимости силы тока от напряжения вычислите сопротивление проводника решение

Схема примитивная, но кажется очень удачной и, главное, недорогой. Посмотрим на нее с точки зрения инженера. Во-первых, можно ли ограничить момент вращения или ток двигателя? Это решается установкой дополнительного резистора. На Рисунке 2 он обозначен как RLIM. Его расчет имеется в спецификации, но он ухудшает характеристику схемы как стабилизатора напряжения (об этом будет ниже). Во-вторых, какой из вариантов управления скоростью лучше? Вариант на Рисунке 2а дает удобную линейную характеристику регулирования, поэтому он и более популярен. Вариант на Рисунке 2б имеет нелинейную характеристику. Но в первом случае при нарушении контакта в переменном резисторе мы получаем максимальную скорость, а во втором – минимальную. Что выбрать – зависит от конкретного применения. Теперь рассмотрим один пример для двигателя с типовыми параметрами: рабочее напряжение 12 В; максимальный рабочий ток 1 А. ИМС LM317, в зависимости от суффиксов, имеет максимальный выходной ток от 0.5 А до 1.5 А (см. спецификацию [2]; имеются аналогичные ИМС и с бóльшим током) и развитую защиту (от перегрузки и перегрева). С этой точки зрения для нашей задачи она подходит идеально. Проблемы скрываются, как всегда, в мелочах. Если двигатель будет выведен на максимальную мощность, что для нашего применения весьма реально, то на ИМС, даже при минимально допустимой разнице между входным напряжением VIN и выходным VOUT, равной 3 В, будет рассеиваться мощность не менее

Таким образом, нужен радиатор. Опять вопрос – на какую рассеиваемую мощность? На 3 Вт? А вот и нет. Если не полениться и рассчитать график нагрузки ИМС в зависимости от выходного напряжения (это легко выполнить в Excel), то мы получаем, что при наших условиях максимальная мощность на ИМС будет рассеиваться не при максимальном выходном напряжении регулятора, а при выходном напряжении равном 7.5 В (см. Рисунок 3), и она составит почти 5.0 Вт!

Рисунок 3. График зависимости мощности, рассеиваемой на ИМС регулятора, от выходного напряжения.

Как видим, получается что-то уже не дешевое, но очень громоздкое. Так что такой подход годится только для маломощных двигателей с рабочим током не более 0.25 А. В этом случае мощность на регулирующей ИМС будет на уровне 1.2 Вт, что уже будет приемлемо.

Выход из положения – использовать для управления метод широтно-импульсной модуляции (ШИМ). Он, действительно, самый распространенный. Его суть – подача на двигатель промодулированных по длительности однополярных прямоугольных импульсов. Согласно теории сигналов, в структуре такой последовательности имеется постоянная составляющая, пропорциональная отношению τ/T, где: τ – длительность импульса, а T – период последовательности. Вот она-то и управляет скоростью двигателя, который выделяет ее как интегратор в этой системе. Поскольку выходной каскад регулятора на основе ШИМ работает в ключевом режиме он, как правило, не нуждается в больших радиаторах для отвода тепла, даже при относительно больших мощностях двигателя, и КПД такого регулятора несравненно выше предыдущего. В ряде случаев можно использовать понижающие или повышающие DC/DC-преобразователи, но они имеют ряд ограничений, например, по глубине регулировки выходного напряжения и минимальной нагрузке. Поэтому, как правило, чаще встречаются иные решения. «Классическое» схемное решение такого регулятора представлено на Рисунке 4 [3]. Оно использовано в качестве дросселя (регулятора) в профессиональной модели железной дороги.

Рисунок 4. «Классическая» схема управления коллекторным двигателем на основе ШИМ (согласно оригиналу [3]).

На первом операционном усилителе собран генератор, на втором компаратор. На вход компаратора подается сигнал с конденсатора C1, а путем регулирования порога срабатывания формируется уже сигнал прямоугольной формы с нужным отношением τ/T (Рисунок 5).

Управление двигателями постоянного тока
Рисунок 5. Диаграмма управления коллекторным двигателем на основе ШИМ. Верхняя трасса – напряжение на конденсаторе С1; средняя (пересекает верхнюю) – сигнал управления (напряжение на движке резистора RV2); нижняя – напряжение на двигателе.

Диапазон регулировки устанавливается подстроечными резисторами RV1 (быстрее) и RV3 (медленнее), а сама регулировка скорости осуществляется резистором RV2 (скорость). Обращаю внимание читателей, что в Интернете на русскоязычных форумах гуляет похожая схема с ошибками в номиналах делителя, задающего порог компаратора. Управление непосредственно двигателем осуществляется через ключ на мощном полевом транзисторе типа BUZ11 [4]. Особенности этого транзистора типа MOSFET – большой рабочий ток (30 А постоянного, и до 120 А импульсного), сверхмалое сопротивление открытого канала (40 мОм) и, следовательно, минимальная мощность потерь в открытом состоянии.

На что нужно в первую очередь обращать внимание при использовании таких схем? Во-первых, это исполнение цепи управления. Здесь в схеме (Рисунок 4) есть небольшая недоработка. Если со временем возникнут проблемы с подвижным контактом переменного резистора, мы получим полный почти мгновенный разгон двигателя. Это может вывести из строя наше устройство. Какое противоядие? Установить добавочный достаточно высокоомный резистор, например, 300 кОм с вывода 5 ИМС на общий провод. В этом случае при отказе регулятора двигатель будет остановлен.

Еще одна проблема таких регуляторов – это выходной каскад или драйвер двигателя. В подобных схемах он может быть выполнен как на полевых транзисторах, так и на биполярных; последние несравненно дешевле. Но и в первом и во втором варианте необходимо учитывать некоторые важные моменты. Для управления полевым транзистором типа MOSFET нужно обеспечить заряд и разряд его входной емкости, а она может составлять тысячи пикофарад. Если не использовать последовательный с затвором резистор (R6 на Рисунке 4) или его номинал будет слишком мал, то на относительно высоких частотах управления операционный усилитель может выйти из строя. Если же использовать R6 большого номинала, то транзистор будет дольше находиться в активной зоне своей передаточной характеристики и, следовательно, имеем рост потерь и нагрев ключа.

Еще одно замечание к схеме на Рисунке 4. Использование дополнительного диода D2 лишено смысла, так как в структуре транзистора BUZ11 уже имеется свой внутренний защитный быстродействующий диод с лучшими характеристиками, чем предлагаемый. Диод D1 также явно лишний, транзистор BUZ11 допускает подачу напряжения затвор-исток ± 20 В, да и переполюсовка в цепи управления при однополярном питании, как и напряжение выше 12 В, невозможны.

Если использовать биполярный транзистор, то возникает проблема формирования достаточного по величине базового тока. Как известно, для насыщения ключа на биполярном транзисторе ток его базы должен быть, по крайней мере, не менее 0.06 от тока нагрузки. Понятно, что операционный усилитель такой ток может не обеспечить. С этой целью в аналогичном, по сути, регуляторе, который используется, например, в популярном мини-гравере PT-5201 компании Pro’sKit, применен транзистор TIP125, представляющий собой схему Дарлингтона. Тут интересный момент. Эти мини-граверы иногда выходят из строя, но не из-за перегрева транзистора, как можно было бы предположить, а из-за перегрева ИМС LM358 (максимальная рабочая температура +70 °С) выходным транзистором (максимально допустимая температура +150 °С). В изделиях, которыми пользовался автор статьи, он был вплотную прижат к корпусу ИМС и посажен на клей, что недопустимо нагревало ИМС и почти блокировало теплоотвод. Если вам попалась такое исполнение, то лучше «отклеить» транзистор от ИМС и максимально отогнуть. За это know-how автор статьи был премирован компанией Pro’sKit набором инструментов. Как видите все нужно решать в комплексе – смотреть не только на схемотехнику, но и внимательно относится к конструкции регулятора в целом.

Есть еще несколько интересных схем более простых ШИМ-регуляторов. Например, две схемы на одиночном операционном усилителе с драйвером опубликованы в [5] (Одна из них приведена на Рисунке 6а). Есть схемы и на базе популярного таймера серии 555 [6] (Рисунок 6б). Эти дешевые решения не должны вводить вас в заблуждение своей кажущейся простотой. Вспомним А.С. Пушкина: «Не гонялся бы ты, поп, за дешевизной». Или французов: «За каждое удовольствие нужно платить». Обе эти схемы формируют суррогатный сигнал ШИМ с изменением опорной частоты. Так схемы на ОУ из [5] меняют частоту управления во время регулирования от 170 Гц до 500 Гц, а схема на таймере – от 150 Гц до 1000 Гц, и ее диапазон регулировки (верхний диапазон) ограничен скважностью 9.5. Для некоторых применений это может быть недопустимо, так как на больших частотах двигатель может и не заработать, или не дать нужный момент вращения. Это происходит из-за того, что ток в обмотке двигателя, которая представляет собой индуктивность, устанавливается не мгновенно, а нарастает и спадает по экспоненте. Более корректные схемы на базе таймера и одиночного ОУ приведены на Рисунке 7.

Аналогичные по структуре регуляторы можно построить и на цифровых логических элементах, но они имеют малую нагрузочную способность и требуют отдельного источника питания, поэтому в данной статье не рассматриваются. Применение же таймера 555 интересно тем, что частота генератора, выполненного на его базе, практически не зависит от напряжения питания. Кроме того, большинство ныне выпускаемых зарубежных аналогов, выполненных по биполярной технологии, допускает выходной ток до 200 мА и более. То есть, они могут легко справиться и с емкостью затвора MOSFET и с мощными ключами на биполярных транзисторах. Близкий к таймеру 555 советско-российский аналог – это ИМС (КР)1006ВИ1. Максимальный выходной ток для КР1006ВИ1 и КМОП-версий таймера составляет 100 мА.

Источник

Способы и схемы управления тиристором или симистором

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Тиристор

Определение

Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Читайте также:  Зависимость тока от напряжения источник питания

Обозначение имристоров на схемах

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Схема

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Принцип работы тиристора

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Схема управления тиристором

Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).

Открытие и закрытие тристора

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Тиристорный регулятор мощности

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Схема тиристорного регулятора мощности

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Схема простейшего тиристорного регулятора мощности

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

Симисторный регулятор

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Диммер

Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.

Управление симистором с помощью микроконтроллера

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Схема с детектором перехода через ноль на транзисторной оптопаре

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Источник

Тиристорный электропривод

Тиристорный электроприводВ промышленности широкое распространение получили приводы с управляемыми полупроводниковыми вентилями — тиристорами. Тиристоры изготовляют на ток, доходящий до сотен ампер, на напряжение до 1000 и более вольт. Они отличаются высоким к. п. д., относительно малыми размерами, высоким быстродействием и способностью работать в широком диапазоне температуры окружающей среды (от -60 до +60 °С).

Тиристор представляет собой не полностью управляемый прибор, который включается подачей соответствующего потенциала на управляющий электрод, а отключается только принудительным разрывом цепи тока за счет отключения напряжения, естественного перехода его через нуль или подачи гасящего напряжения обратного знака. Изменением момента подачи управляющего напряжения (его задержкой) можно регулировать среднее значение выпрямленного напряжения и тем самым скорость двигателя.

Среднее значение выпрямленного напряжения при отсутствии регулирования в основном определяется схемой включения тиристорного преобразователя. Схемы преобразователей делятся на два класса: с нулевым выводом и мостовые.

В установках средней и большой мощности преимущественно используются мостовые схемы преобразователей, что в основном обусловлено двумя причинами:

меньшим напряжением на каждом из тиристоров,

отсутствием постоянной составляющей тока, протекающего по обмоткам трансформатора.

Схемы преобразователей могут также отличаться числом фаз: от одной в установках малой мощности до 12 — 24 в мощных преобразователях.

Все варианты тиристорных преобразователей наряду с положительными свойствами, как-то малой инерционностью, отсутствием вращающихся элементов, меньшими (по сравнению с электромеханическими преобразователями) габаритами, обладают и рядом недостатков:

1. Жесткая связь с питающей сетью: все колебания напряжения в сети непосредственно передаются в систему привода, а толчки нагрузки на оси двигателя немедленно передаются в сеть и вызывают всплески тока.

2. Низкий коэффициент мощности при регулировании напряжения в сторону снижения.

3. Генерация высших гармонических, загружающих питающую сеть.

Механическая характеристика двигателя, питаемого от тиристорного преобразователя, определяется напряжением, приложенным к якорю, и характером его изменения с нагрузкой, т. е. внешней характеристикой преобразователя и параметрами преобразователя и двигателя.

Устройство и принцип действия тиристора

Тиристор (рис. 1 , а) представляет собой четырехслойный кремниевый полупроводник с двумя р-n-переходами и одним n- р-переходом. Величина силы тока I , проходящего через тиристор под действием анодного напряжения Uа, зависит от тока I у управления, проходящего через управляющий электрод под действием напряжения Uy управления.

Если ток управления отсутствует ( I у = 0), то при повышении напряжения U а ток I в цепи потребителя П будет нарастать, оставаясь, однако, весьма малым по величине (рис. 1 , б).

тиристор

Структурная схема (а), вольтамперная характеристика (б) и конструктивное оформление (в) тиристора

Рис. 1. Структурная схема (а), вольтамперная характеристика (б) и конструктивное оформление (в) тиристора

В это время переход n-р, включенный в непроводящем направлении, обладает большим сопротивлением. При определенном значении Ua1 анодного напряжения, называемом напряжением открывания, зажигания или переключения, наступает лавинный пробой запирающего слоя. Его сопротивление становится малым, а сила тока возрастает до значения, определяемого, в соответствии с законом Ома, сопротивлением Rп потребителя П.

При увеличении силы тока Iу напряжение Ua уменьшается. Ток Iу, при котором напряжение Ua достигает наименьшего значения, называют током Iс спрямления.

Закрывание тиристора происходит при снятии напряжения Ua или при изменении его знака. Номинальной силой тока Iн тиристора называют наибольшее среднее значение силы тока, проходящего в прямом направлении, не вызывающее недопустимого перегрева.

Номинальным напряжением U н называют наибольшее допустимое амплитудное напряжение, при котором обеспечивается заданная надежность прибора.

Читайте также:  При каком токе надо заряжать акб

Падение напряжения Δ U н , созданное номинальным током, называют номинальным падением напряжения (обычно Δ U н = 1 — 2 В).

Величина силы тока Iс спрямления колеблется в пределах 0,1 — 0,4 А при напряжении Uc 6 — 8 В.

Тиристор надежно открывается при длительности импульса в 20 — 30 мкс. Интервал между импульсами не должен быть менее 100 мкс. Когда напряжение Ua уменьшается до нуля, тиристор запирается.

Внешнее конструктивное оформление тиристора приведено на рис. 1, в . На медном основании 1 с шестигранной огранкой и хвостовиком с резьбой укрепляется кремниевая четырехслойная структура 2 с силовым отрицательным 3 и управляющим 4 выводами. Кремниевая структура защищена металлическим кожухом 5 цилиндрической формы. В кожухе укреплен изолятор 6. Резьбу в основании 1 используют для установки тиристора и для присоединения к положительному полюсу источника анодного напряжения.

При увеличении напряжения Ua уменьшается ток управления, необходимый для открывания тиристора (см. рис. 1 , б). Ток управления открывания пропорционален напряжению uуо управления открывания.

Если U а меняется по закону синуса (рис. 2 ), то необходимые напряжения и 0 открывания могут быть изображены штриховой линией. Если приложенное напряжение управления Uy 1 постоянно и его значение ниже минимального значения напряжения uуо , то тиристор не открывается.

Если напряжение управления увеличить до значения Uy2, то тиристор откроется, как только напряжение Uy2 окажется больше напряжения uуо. Изменяя величину uу, можно изменять угол открывания тиристора в пределах от 0 до 90 о .

Управление тиристором

Рис. 2. Управление тиристором

Для открывания тиристора при углах, превышающих 90°, применяют переменное напряжение управления uу, изменяющееся, например, синусоидально. При напряжении, соответствующем точке пересечения синусоидой этого напряжения штриховой кривой uуо = f( ωt) , т иристор открывается.

Смещая синусоиду uуо по горизонтали вправо или влево, можно изменять угол ωt 0 открывания тиристора. Такое управление углом открывания называют горизонтальным. Его осуществляют посредством специальных фазосмещателей.

Смещая ту же синусоиду по вертикали вверх или вниз, также можно изменять угол открывания. Такое управление называют вертикальным. В этом случае с переменным напряжением управления u у алгебраически складывают постоянное напряжение, например, напряжение Uy 1 . Угол открывания регулируют путем изменения величины этого напряжения.

После открывания тиристор остается открытым до конца положительного полупериода, и напряжение управления не влияет на его работу. Это позволяет применить также импульсное управление, периодически подавая положительные импульсы напряжения управления в нужные моменты времени (рис. 2 внизу). При этом повышается четкость управления.

Изменяя тем или иным способом угол открывания тиристора, можно подавать на потребитель импульсы напряжения различной формы. При этом изменяется величина среднего значения напряжения на зажимах потребителя.

Для управления тиристорами применяют различные устройства. В схеме, показанной на рис. 3 , напряжение сети переменного тока подается на первичную обмотку трансформатора Tp 1 .

Схема управления тиристорами

Рис. 3. Схема управления тиристорами

В цепь вторичной обмотки этого трансформатора включен двухполупериодный выпрямитель B 1 , В2, В 3 , В4 со значительной индуктивностью L в цепи постоянного тока. Пульсации выпрямленного тока при этом практически устраняются. Но такой постоянный ток может быть получен лишь при двухполупериодном выпрямлении переменного тока, имеющего форму, показанную на рис. 4 , а.

Таким образом, в данном случае выпрямитель В1, В2, ВЗ, В4 (см. рис. 3) является преобразователем формы переменного тока. При такой схеме конденсаторы С1 и С2 попеременно заряжаются прямоугольными импульсами тока (рис. 4, а). При этом на обкладках конденсаторов С1 и С2 образуется пилообразное напряжение (рис. 4, б), приложенное к базам транзисторов Т1 и Т2 (см. рис. 3).

Это напряжение называют опорным. В цепи базы каждого транзистора действует также и напряжение Uy постоянного тока. Когда пилообразное напряжение равно нулю, напряжение Uy создает на базах обоих транзисторов положительные потенциалы. Каждый транзистор открывается током базы при отрицательном потенциале на базе.

Это происходит, когда отрицательные значения пилообразного опорного напряжения оказываются большими, чем Uy (рис. 4, б). Это условие выполняется в зависимости от величины Uy при различных значениях фазового угла. При этом транзистор открывается на различные промежутки времени в зависимости от величины напряжения Uy.

Графики напряжений управления тиристорами

Рис. 4. Графики напряжений управления тиристорами

Когда тот или другой транзистор открывается, через первичную обмотку трансформатора Тр2 или Тр3 (см. рис. 3) проходит прямоугольный импульс тока. При прохождении переднего фронта этого импульса во вторичной обмотке возникает импульс напряжения, который подается на управляющий электрод тиристора.

При прохождении заднего фронта импульса тока во вторичной обмотке возникает импульс напряжения противоположной полярности. Этот импульс замыкается полупроводниковым диодом, шунтирующим вторичную обмотку, и на тиристор не подается.

При управлении тиристорами (см. рис. 3) двумя трансформаторами создают два импульса, сдвинутых по фазе на 180°.

Системы тиристорного управления двигателями

В системах тиристорного управления двигателями постоянного тока изменение постоянного напряжения на якоре двигателя используют для регулирования его частоты вращения. В этих случаях обычно используют схемы многофазного выпрямления.

На рис. 5, а сплошной линией показана простейшая схема такого рода. В этой схеме каждый из тиристоров Т1, Т2, Т3 включен последовательно со вторичной обмоткой трансформатора и якорем электродвигателя; э. д. с. вторичных обмоток сдвинуты по фазе. Поэтому на якорь двигателя при управлении углом открывания тиристорами подаются импульсы напряжения, сдвинутые по фазе друг относительно друга.

Схемы тиристорного привода

Рис. 5. Схемы тиристорного привода

В многофазной схеме, в зависимости от выбранного угла зажигания тиристоров, через якорь двигателя могут протекать прерывистые и непрерывные токи. У реверсивного электропривода (рис. 5, а, вся схема) используют два комплекта тиристоров: Т1, Т2, Т3 и Т4, Т5, Т6.

Открывая тиристоры той или иной группы, изменяют направление тока в якоре электродвигателя и, следовательно, направление его вращения.

Реверс двигателя может быть также осуществлен путем изменения направления тока в обмотке возбуждения электродвигателя. Такой реверс применяют в тех случаях, когда не требуется высокого быстродействия, поскольку обмотка возбуждения обладает по сравнению с обмоткой якоря весьма высокой индуктивностью. Такой реверс часто применяют для тиристорных приводов главного движения металлорежущих станков.

Второй комплект тиристоров позволяет также осуществить тормозные режимы, требующие изменения направления тока в цепи якоря электродвигателя. Тиристоры в рассматриваемых схемах привода используют для включения и отключения двигателя, а также для ограничения величины пускового и тормозного тока, исключая необходимость применения контакторов, а также пусковых и тормозных реостатов.

В схемах тиристорного электропривода постоянного тока силовые трансформаторы нежелательны. Они повышают размеры и стоимость установки, поэтому часто используют схему, приведенную на рис. 5, б.

В этой схеме управления зажиганием тиристоров осуществляет блок управления БУ1. Его присоединяют к сети трехфазного тока, обеспечивая этим питание и согласование фаз импульсов управления с анодным напряжением тиристоров.

В тиристорном приводе обычно применяют обратную связь по частоте вращения электродвигателя. При этом используют тахогенератор Т и промежуточный транзисторный усилитель УТ. Применяют также обратную связь по э. д. с. электродвигателя, осуществляемую путем одновременного действия отрицательной обратной связи по напряжению и положительной обратной связи по току якоря.

Для регулирования тока возбуждения применяют тиристор Т7 с блоком управления БУ2. В отрицательные полупериоды анодного напряжения, когда тиристор Т7 не пропускает ток, ток в ОВД продолжает протекать за счет э. д. с. самоиндукции, замыкаясь через шунтирующий вентиль В1.

Тиристорные электроприводы с широтно-импульсным управлением

В рассмотренных тиристорных приводах питание двигателя осуществляется импульсами напряжения частотой 50 Гц. В целях увеличения быстродействия частоту импульсов целесообразно повышать. Это достигается в тиристорных приводах с широтно-импульсным управлением, где через якорь двигателя пропускают прямоугольные импульсы постоянного тока различной длительности (широты) частотой до 2-5 кГц. Помимо высокого быстродействия такое управление обеспечивает большие диапазоны регулирования частоты вращения электродвигателя и более высокие энергетические показатели.

При широтно-импульсном управлении двигатель питается от неуправляемого выпрямителя, а тиристор, включенный последовательно с якорем, периодически закрывается и открывается. При этом через цепь якоря двигателя проходят импульсы постоянного тока. Изменение длительности (широты) этих импульсов приводит к изменению частоты вращения электродвигателя.

Поскольку в данном случае тиристор работает под постоянным напряжением, для его закрывания применяют особые схемы. Одна из простейших схем широтно-импульсного управления приведена на рис. 6.

Тиристорный электропривод с широтно-импульсным управлением

Рис. 6. Тиристорный электропривод с широтно-импульсным управлением

В этой схеме тиристор Тр запирается при включении тиристора Тг гашения. При открывании этого тиристора заряженный конденсатор С разряжается на дроссель Др1, создавая в нем значительную э. д. с. При этом на концах дросселя возникает напряжение, большее, чем напряжение U силового выпрямителя и направленное ему навстречу.

Через силовой выпрямитель и шунтирующий диод Д1 это напряжение подается на тиристор Тр и вызывает его запирание. При запирании тиристора конденсатор С вновь заряжается до напряжения коммутации Uк > U.

Вследствие повышенной частоты импульсов тока и инерции якоря двигателя импульсный характер питания на плавности вращения двигателя практически не отражается. Тиристоры Тр и Тг открываются посредством специальной фазосмещающей схемы, позволяющей изменять ширину импульса.

Электропромышленность выпускает различные модификации комплектных регулируемых тиристорных электроприводов постоянного тока мощностью. Среди них имеются приводы с диапазонами регулирования частоты вращения 1:20; 1:200; 1:2000 путем изменения напряжения, нереверсивные и реверсивные приводы, с электрическим торможением и без него. Управление осуществляется транзисторными фазоимпульсными устройствами. В приводах используют отрицательные обратные связи по частоте вращения двигателей и по противо-э. д. с.

Преимуществами тиристорных приводов являются высокие энергетические показатели, малые размеры и масса, отсутствие каких-либо вращающихся машин помимо электродвигателя, высокое быстродействие, постоянная готовность к работе. Основным недостатком тиристорных приводов является их пока еще высокая стоимость, значительно превышающая стоимость приводов с электромашинными и магнитными усилителями.

В настоящее время существует устойчивая тенденция повсеместной замены тиристорных электроприводов постоянного тока на частотно-регулируемые электроприводы переменного тока.

Если Вам понравилась эта статья, поделитесь ссылкой на нее в социальных сетях. Это сильно поможет развитию нашего сайта!

Не нашли, то что искали? Используйте форму поиска по сайту

Источник