Меню

Статический коэффициент передачи тока h21э мин что это

Большая Энциклопедия Нефти и Газа

Статический коэффициент — передача — ток

Статический коэффициент передачи тока в схеме с общим эмиттером / 121э при И к Б — 5 В в зависимости от тока эмиттера / э в соответствии со справочными данными [8] приведен ниже. [1]

Статический коэффициент передачи тока Ь21э характеризует усилительные свойства транзистора. Статическим его называют потому, что этот параметр измеряют при неизменных напряжениях на его электродах и неизменных токах в его цепях. Большая ( заглавная) буква Э в этом выражении указывает на то, что при измерении транзистор включают по схеме ОЭ. Коэффициент Ь21э характеризуется отношением постоянного тока коллектора к постоянному току базы при заданных постоянном обратном напряжении коллектор-эмиттер и токе эмиттера. [2]

Статический коэффициент передачи тока составного транзис-стора Л21С ориентировочно можно считать равным произведению коэффициентов передачи тока составляющих его транзисторов. Составной транзистор дает большой эффект лишь при включении его с общим коллектором или общим эмиттером; с общей базой его усиление мало отличается от усиления одиночного транзистора ( так как Л21б1) и не используется. [3]

Зависимость статического коэффициента передачи тока от температуры ког / пуса. [4]

Зависимость относительного статического коэффициента передачи тока от тока коллек — тора. [5]

Для измерения статического коэффициента передачи тока необходимо поместить пластину с р — / г-переходами на столик приспособления и опустить иглы зонда на контактные площадки р-п-пе-рехода. [6]

При измерении статического коэффициента передачи тока п2) Э в цепи базы испытуемого транзистора переменными резисторами R4 и R5 устанавливают определенный ток 1Б: 25, 50 или 100 мкА на пределе 0 1 мА для маломощных и 0 5, 1 мА на пределе 1 мА для мощных транзисторов. Ток в цепи коллектора 1К измеряют на пределе 1К10 мА для маломощных и на пределе 1К100 мА для мощных транзисторов. Максимальные значения статического коэффициента передачи тока будут соответственно равны 400, 200, 100 для маломощных и 200, 100 для мощных транзисторов. [8]

Что называют статическим коэффициентом передачи тока биполярного транзистора . [9]

Приняв минимальное значение статического коэффициента передачи тока при большом сигнале Л21Э выбранного типа транзистора, с помощью формулы ( 5) проверяем соответствие транзистора по допустимой величине тока базы. [10]

При этом значение статического коэффициента передачи тока в схеме с ОЭ не нормируется. [11]

Так как величина статического коэффициента передачи тока эмиттера aN больше статического коэффициента передачи тока коллектора а, величина динамического сопротивления открытого транзистора в нормальном включении оказывается меньше, чем в инверсном. [13]

Рассмотрим пример расчета статического коэффициента передачи тока дрейфового транзистора . [15]

Источник

h-параметры биполярного транзистора и особенности включений

Транзисторы относятся к сложным электронным приборам. Для их исследования, а также для расчёта электронных схем, где применяют транзисторы, разработана особая методика.

В этой методике транзистор рассматривают как «чёрный ящик», не обращая внимания на его внутреннюю структуру, с двумя входными и двумя выходными зажимами, то есть как четырёхполюсник. Транзистор способен усиливать по мощности подводимые к нему сигналы, поэтому он относится к группе активных четырёхполюсников, для эквивалентных схем которых характерно наличие генераторов тока или напряжения.

Ниже,на рисунке 1, изображены теоретически рассматриваемые варианты включений биполярного транзистора.

Схемы включения биполярных транзисторов с общим эмиттером, общим коллектором и общей базой

Рисунок 1

На приведенных выше схемах включений изображено по четыре клеммы (две входных и две выходных), то есть можно сказать что каждая из них представляет собой четырёхполюсник.

При работе на малых сигналах транзистор рассматривают как линейный активный четырёхполюсник который может быть охарактеризован при помощи z, y или h – параметров. Малым сигналом считают, если при увеличении его амплитуды на 50% измеряемый параметр (z,y или h) изменяется на малую величину согласно заданной степени точности. Обычно это изменение не должно превышать 10%. Между z, y или h – параметрами есть связи, которые описываются специальными формулами перехода, в соответствующей справочной литературе. Поскольку h-параметры получили наибольшее распостранение на них и акцентируем наше внимание.

Эквивалентная схема биполярного транзистора с применением h-параметров приведена ниже, на рисунке 2.

Эквивалентная схема h-параметров биполярного транзистора

Рисунок 2

Принимая для этой схемы, что независимыми переменными являются входной ток Im1 и выходное напряжение Um2 , а зависимыми переменными входное напряжение Um1 и выходной ток Im2 можно составить систему уравнений (1), задействуя h-параметры:

Система уравнений для биполярного транзистора

h11 = Um1/Im1, при Um2 = 0, входное сопротивление;

h21 = Im2/Im1, при Um2 = 0, коэффициент передачи тока;

h22 = Im2/Um2, при Im1 = 0, выходная проводимость.

Входное сопротивление, h11 — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

Коэффициент обратной связи по напряжению, h12 – безразмерная величина, показывающая какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока (холостой ход), и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

Коэффициент передачи тока (коэффициент усиления по току), h21 — безразмерная величина, показывающая усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

Выходная проводимость, h22 — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

При обозначении h – параметров, внизу, в зависимости от схемы включения, к цифровым индексам добавляется буква. Для схемы с общим эмиттером это h11Э, h12Э, h21Э, h22Э ; для схемы с общим коллектором — h11К, h12К, h21К, h22К ; для схемы с общей базой это h11б, h12б, h21б, h22б .

Особенности при различных схемах включения

Разработчики успешно создают радиоэлектронные схемы, используя в своих сложных расчётах и опытах различные комбинации из схем включения транзистора.

На рисунке 3, приведенном ниже, показаны применяемые на практике основные схемы включений.

Схемы включения биполярных транзисторов с общим эмиттером, общим коллектором и общей базой реальное применение

Рисунок 3

С общим эмиттером (ОЭ)

Это наиболее распостранённая схема включения, которая даёт высокое усиление как по напряжению, так и по току, а следовательно и по мощности, благодаря чему она имеет преимущества перед схемами с ОК и ОБ. Схема имеет невысокое (порядка сотен Ом) входное сопротивление, но это всё же позволяет применять в ней переходные конденсаторы относительно небольшой ёмкости. Выходное сопротивление высокое, и достигает порядка десятков кОм, что можно отнести к недостаткам. Схема с ОЭ изменяет фазу сигнала на выходе по сравнению с фазой сигнала на входе на 180 градусов. Для её работы достаточно иметь всего лишь один источник питания. Применяется в усилителях низкой частоты, различных устройствах автоматики и т.п..

Источник



Испытатели транзисторов малой и большой мощности (h21э, Ікво, Ікэк)

Чтобы судить о пригодности транзистора для того или иного устройства, достаточно знать два-три основных его параметра:

  1. Обратный ток коллектор-эмиттер при замкнутых выводах эмиттера и базы — Ікэк-ток в цепи коллектор-эмиттер при заданном обратном напряжении между коллектором и эмиттером.
  2. Обратный Ток коллектора — Ікво-ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера.
  3. Статический коэффициент передачи тока базы — h21э -отношение постоянного тока коллектора к постоянному току базы при Заданном постоянном обратном напряжении коллектор-эмиттер и Токе эмиттера в схеме с общим эмиттером (ОЭ).
Читайте также:  Значение переменного тока которое показывают измерительные приборы называется

Проще всего измерить ток Ікэк схеме, упрощенно изображенной на рис. 1. Узел А1 на нем обобщает все детали, входящие в прибор. Требования к узлу просты: он не должен оказывать влияние на результаты измерений, а при коротком замыкании в испытуемом транзисторе VТ1 ограничить ток до безопасного для- стрелочного индикатора значения.

Измерение Iкбо не предусматривается приборами, но это не трудно сделать, отключив вывод эмиттера от цепи измерения.

Некоторые трудности возникают при измерении статического коэффициента передачи h21э. В простых приборах он измеряется при фиксированном токе базы измерением тока коллектора, ио точность таких приборов невысока, поскольку коэффициент передачи зависит от тока коллектора (эмиттера). Поэтому h21э следует измерять при фиксированном токе эмиттера, как и рекомендует ГОСТ.

Достаточно при этом измерять ток базы и судить по нему о величине h21э. Тогда шкалу стрелочного индикатора можно отградуировать непосредственно в значениях коэффициента передачи. Правда, она получается неравномерной, но зато на ней укладываются все необходимые значения (от 19 до 1000).

Такие приборы уже разрабатывались радиолюбителями (см., например, статью Б. Степанова, В. Фролова «Испытатель транзисторов»- Радио, 1975, № 1, с. 49-51). Однако в них довольно часто не принимали мер по фиксации напряжения коллектор-эмиттер. Подобное решение оправдывали тем, что h21э мало зависит от этого напряжения.

Однако, как показывает практика, эта зависимость все же заметна в схеме ОЭ, поэтому напряжение коллектор-эмиттер желательно фиксировать.

Схема измерения обратного тока коллектор-эмиттер

Рис. 1. Схема измерения обратного тока коллектор-эмиттер.

Схема измерения статического коэффициента передачи тока

Рис. 2. Схема измерения статического коэффициента передачи тока.

Исходя из этих соображений в радиокружке КЮТ Первоуральского Новотрубного завода Евгением Ивановым и Игорем Ефремовым под руководством автора была разработана схема измерения, принцип которой иллюстрирует рис. 2. Ток эмиттера ls испытуемого транзистора стабилизирован генератором стабильного тока А1, что снимает большинство требований к источнику питания G1: его напряжение может быть нестабильным, от него потребляется практически только ток 1э- Напряжение коллектор-эмиттер транзистора фиксировано, поскольку равно сумме стабильных напряжений на стабилитроне VD1, эмиттерном переходе транзистора VT1 и стрелочном индикаторе РА1. Сильная отрицательная обратная связь между коллектором и базой транзистора через стабилитрон и стрелочный индикатор удерживает транзистор в активном режиме, для которого справедливы следующие соотношения:

Испытатели транзисторов малой и большой мощности (h21э, Ікво, Ікэк)

Испытатели транзисторов малой и большой мощности (h21э, Ікво, Ікэк)

где Ік, Іэ, Іб — соответственно ток коллектора, эмиттера, базы транзистора, мА.

Для построении шкалы непосредственного отсчета удобно пользоваться формулой:

выражение для расчета

Приведенные формулы справедливы только в случае весьма малого тока ІКБО, характерного для кремниевых транзисторов. Если же этот ток значителен, для более точного подсчета коэффициента передачи лучше пользоваться формулой:

расчетная формула

А теперь познакомимся с практическими конструкциями приборов.

Испытатель маломощных транзисторов

Его принципиальная схема приведена на рис. 3. Испытуемый транзистор подключают к зажимам ХТ1 — ХТ5. Источник стабильного тока собран на транзисторах VT1 и VT2. Переключателем SA2 можно установить один из двух токов эмиттера: 1 мА или 5 мА.

Чтобы не изменять шкалу измерений h21э, во втором положении переключателя параллельно индикатору РА1 подключается резистор R1, уменьшая впятеро его чувствительность.

Принципиальная схема испытателя маломощных транзисторов

Рис. 3. Принципиальная схема испытателя маломощных транзисторов.

Переключателем SA1 выбирают род работы — измерение h21э или Ікэк. Во втором случае в цепь измеряемого тока включается дополнительный токоограничительный резистор R2. В остальных случаях при коротких замыканиях в испытываемых цепях ток ограничивает генератор стабильного тока.

Чтобы упростить коммутацию, в цепь измерения тока базы введен выпрямительный мост VD2 — VD5. Напряжение коллектор-эмиттер определяется суммой напряжений на последовательно включенных стабилитроне VD1, двух диодах выпрямительного моста и эмиттерном переходе испытуемого транзистора. Переключателем SA3 выбирают структуру транзистора.

Питание на прибор подается только на время измерения кнопочным выключателем SB1.

Питается прибор от источника GB1, которым может быть батарея «Крона» или аккумулятор 7Д-0Д. Периодически аккумулятор можно подзаряжать, подключая зарядное устройство к гнездам 1 и 2 разъема XS1. Возможно питание прибора от внешнего источника постоянного тока напряжением 6.

15 В (нижний предел определяется устойчивостью работы во всех режимах, верхний — номинальным напряжением конденсатора С1), подключаемого к гнездам 2. и 3 разъема XS1. Диоды VD6 и VD7 при этом выполняют роль разделительных.

Преобразователь ПМ-1

Рис. 4. Преобразователь ПМ-1.

Удобно использовать для питания прибора от сети преобразователь ПМ-1 (рис. 4) от электрофицированных игрушек. Он недорог и обладает хорошей электрической изоляцией между обмотками, обеспечивающей безопасность в работе.

Преобразователь нужно лишь оснастить штырьковой частью разъема XS1.

В приборе использован стрелочный индикатор типа М261М с током полного отклонения стрелки 50 мкА и сопротивлением рамки 2600 Ом. Резисторы — МЛТ-0,25. Диоды VD2 — VD5 должны быть обязательно кремниевые, с возможно меньшим обратным током. Диоды VD6, VD7 — любые из серий Д9, Д220, с возможно меньшим прямым напряжением.

Транзисторы — любые из серий КТ312, КТ315, со статическим коэффициентом передачи не менее 60. Оксидный конденсатор — любого типа, емкостью 20. 100 мкФ на номинальное напряжение не ниже 15 В. Разъем XS1-СГ-3 или СГ-5, зажимы ХТ1 — ХТ5 — любой конструкции.

Испытатели транзисторов малой и большой мощности (h21э, Ікво, Ікэк)

Рис. б. Внешний вид испытателя маломощных транзисторов.

Шкала отсчета индикатора

Рис. 6. Шкала отсчета индикатора.

Детали прибора собраны в корпусе размерами 140Х 115X65 мм (рис. 5), изготовленном из пластмассы. Лицевая стенка, на которой укреплены стрелочный индикатор, кнопочный выключатель, переключатели, зажимы и разъем, закрыта фальшпанелью из органического стекла, под которую подложена цветная бумага с надписями.

Чтобы не вскрывать стрелочный индикатор и не чертить шкалу, к прибору изготовлен трафарет (рис. 6), дублирующий шкалу отсчета. Можно просто составить, таблицу, в которой для каждого деления шкалы указать соответствующее значение статического коэффициента передачи.

Для составления такой таблицы подойдут вышеприведенные формулы.

Налаживание прибора сводится к точной установке токов 1э 1 мА и Б мА подбором резисторов R3, R4 и к подбору резистора R1, сопротивление которого должно быть в 4 раза меньше сопротивления рамки стрелочного индикатора.

Испытатель мощных транзисторов

Схема этого прибора приведена на рис. 7. Поскольку к испытателю мощных транзисторов предъявляют меньшие требования по точности показаний, возникает вопрос: какие упрощения могут быть сделаны по сравнению с предыдущей конструкцией?

Испытывают мощные транзисторы при больших токах эмиттера (в данном приборе выбраны 0,1 А и 1 А), поэтому прибор питается только от сети через понижающий трансформатор Т1 и выпрямительный мост VD6 — VD9.

Читайте также:  Ток у которого изменяется амплитуда колебаний

Принципиальная схема испытателя мощных транзисторов

Рис. 7. Принципиальная схема испытателя мощных транзисторов.

Построить генератор стабильного тока на указанные сравнительно большие токи трудно, да и нет необходимости — его роль выполняют резисторы R4 — R7, диоды выпрямительного моста, обмотка трансформатора. Правда, стабильный ток эмиттера протекает только при стабильном напряжении сети и таком же напряжении коллектор-эмиттер испытуемого транзистора.

Дело облегчается тем, что последнее напряжение выбирается малым — обычно 2 В, чтобы избежать разогрева транзистора. Это напряжение равно сумме падений напряжения на двух диодах моста VD2 — VD5 и эмиттер ном переходе испытуемого транзистора.

Ожидалось, что будет заметно сказываться на токе эмиттера разность падений напряжений на эмиттерных переходах германиевого и кремниевого транзисторов, но ожидание не подтвердилось: на практике эта разность оказалась весьма малой. Другое дело — нестабильность сетевого напряжения, она вызывает еще большую нестабильность тока эмиттера (из-за нелинейности сопротивлений полупроводниковых диодов и постоянства напряжения коллектор-эмиттер испытуемого транзистора).

Поэтому для повышения точности измерений h21э прибор следует включать в сеть через автотрансформатор (например, ЛАТР) и поддерживать им напряжение питания прибора 220 В.

Очередной вопрос — о пульсациях выпрямленного напряжения: какая амплитуда их допустима? Многочисленные опыты по сравнению показаний прибора, питающегося от источника «чистого» постоянного тока и от источника пульсирующего тока, не выявили практически никакой разницы показаний h21э при использовании стрелочного индикатора магнитоэлектрической системы.

Сглаживающее действие конденсатора О прибора проявляется только при измерении небольших токов Ікэк (примерно до 10 мА). Кремниевый диод VD1 защищает стрелочный индикатор РА1 от перегрузок. В остальном схема прибора похожа на схему предыдущего устройства.

Трансформатор Т1 может быть от преобразователя ПМ-1, ио его нетрудно изготовить самим. Понадобится магнитопровод УШ14X18. Обмотка I должна содержать 4200 витков провода ПЭВ-1 0,14, обмотка II -160 витков ПЭВ-1 0,9 с отводом от 44-го витка, считая от верхнего по схеме вывода. Подойдет другой готовый или самодельный трансформатор с напряжением на вторичной обмотке 6,3 В при токе нагрузки до 1 А.

Резисторы -МЛТ-0,5 (Rl, R3), МЛТ-1 (R5). МЛТ-2 (R2, R6, R7) и проволочный (R4), изготовленный из провода с высоким удельным сопротивлением. Лампа HL1 — МНЗ,5-0,28.

Стрелочный индикатор — типа М24 с током полного отклонения стрелки 5 мА.

Внешний вид испытателя мощных транзисторов

Рис. 8. Внешний вид испытателя мощных транзисторов.

Шкала отсчета индикатора

Рис. 9. Шкала отсчета индикатора.

Диоды могут быть другие, рассчитанные на выпрямленный ток до 0,7 A (VD6 — VD9) и 100 мА (остальные). Прибор смонтирован в корпусе размерами 280 X 170×130 мм (рис. 8). Детали распаяны на выводах переключателей и на монтажной плате, укрепленной на зажимах стрелочного индикатора.

Как и в предыдущем случае, к прибору изготовлен трафарет (рис. 9), дублирующий шкалу отсчета.

Налаживание прибора сводится к установке указанных токов эмиттера подбором резисторов R4 и R5. Контроль тока ведут по падению напряжения на резисторах R6, R7. Резистор R1 подбирают таким, чтобы сумма сопротивлений его и индикатора РА1 была в 9 раз больше сопротивления резистора R2.

Аристов Александр Сергеевич — руководитель радиокружка клуба юных техников Первоуральского новотрубного завода, родился в 1946 году. В двенадцать лет строил приемники, измерительные приборы, устройства автоматики. По окончании школы вел радиокружок, работая на заводе и учась в техникуме. С 1968 года полностью посвятил себя занятиям с юными радиолюбителями. Описания конструкций кружковцев руководитель рассказал в трех десятках статей, опубликованных в отечественных и зарубежных журналах, на страницах сборника ВРЛ. Работы кружковцев отмечены 25 медалями «Юный участник ВДНХ», а труд руководителя — тремя бронзовыми медалями ВДНХ СССР.

Источник

Тема: Что такое модуль коэффициента h21э .

Опции темы
  • Версия для печати
  • Версия для печати всех страниц
  • Подписаться на эту тему…
  • Поиск по теме

    Что такое модуль коэффициента h21э .

    Пожалуйста помогите разобраться. Столкнулся в справочнике по транзисторам с понятием модуля и ни как не могу постичь его. Статический Коэффициент Передачи Тока — это (h21э=Iб/Iк), а Модуль Коэффициента Передачи Тока — (. ) ?

    Наименование:
    Модуль Коэффициента Передачи Тока на высокой частоте

    Обозначение:
    h21э

    Значение (минимальное):
    2.5

    Даже частично переведя шифровку «модуль» все равно не могу понять смысла:

    В энциклопедии сказано:
    1) [ Общее понятие ]. Понятие модуль (от лат. modulus — «маленькая мера») в общем означает составную часть, отделимую или хотя бы мысленно выделяемую из общего. Модульной обычно называют вещь, состоящую из чётко выраженных частей, которые нередко можно убирать или добавлять, не разрушая вещь в целом.
    . Ссылка

    2) [ Понятие модуля в математике ]. Абсолютная величина или модуль вещественного числа x есть расстояние от x до нуля.
    . Ссылка

    Re: Что такое модуль коэффициента h21э .

    Сообщение от alimundus

    [color=darkblue]Пожалуйста помогите разобраться. Столкнулся в справочнике по транзисторам с понятием модуля и ни как не могу постичь его. Статический Коэффициент Передачи Тока — это (h21э=Iб/Iк), а Модуль Коэффициента Передачи Тока —

    2) Понятие модуля в математике. Абсолютная величина или модуль вещественного числа x есть расстояние от x до нуля.
    .

    Re: Что такое модуль коэффициента h21э .

    Сообщение от Федор371

    Из-за этого обстоятельства на одни транзисторы указывают модуль на другие нет?

    Сообщение от Федор371

    Что подразумевает понятие комплексная величина?

    Все это все равно слишком абстрактно для моего юного ума.

    Уважаемый alimundus (к сожалению не знаю значения этого слова)!

    Очевидно, Вы только начинаете знакомиться с радиотехникой и транзисторами, в частности. Поэтому любой подробный ответ не заменит Вам самостоятельного изучения этого вопроса, а вызовет новые вопросы. Я попробую более просто и подробно ответить на Ваш вопрос, но он сформулирован не достаточно четко, поэтому ответ может оказаться не тем, какой Вы ожидаете.
    Итак, к-т передачи по току (тока) h21э (буква э означает, что транзистор включен «с общим эмиттером»), 21 означает, что измеряется отношение выходного (2) к входному (1) параметру (в данном случае току), про букву h пока не будем, это «система» параметров (бывают и другие. ), то есть h21э — отношение тока коллектора к току базы транзистора! Но,
    1. токи коллектора и эмиттера могут быть постоянными и переменными. Если измерить постоянные токи, то получим h21э на постоянном токе (или статический), если на переменном — то соответственно h21э — на переменном токе (или динамический, или комплексный). Комплексный означает, что токи коллектора и базы будут отличаться не только по амплитуде, но и по фазе (в математике есть комплексные числа, которые характризуют одновременно и амплитуду и фазу. ).
    Соответственно, «модулем» h21э будет соотношение токов коллектора и базы без учета фазы!
    2. Коэффициент передачи по току зависит как от амплитуды сигнала, в том числе и на постоянном токе, так и от частоты переменного тока (чем выше частота, тем меньше к-т передачи. ), поэтому в вашем примере 2.5 — это минимальный к-т передачи на определенной частоте (часто на частоте 100мгц)
    В справочниках иногда приводятся графики зависимости h21 от тока и от частоты.
    Надеюсь, объяснение достаточно простое и понятное для Вас, тем не менее чтение книг крайне желательно для дальнейшего углубления Ваших знаний.
    Желаю успехов!
    Даю маленький совет: если не понятно прочитанное, прочитайте и постарайтесь понять второй раз, третий, пятый. Обычно, после пятого раза становится понятно больше, чем после первого!

    Читайте также:  Лабораторная работа измерение мощности в цепях постоянного тока

    Источник

    Радиолюбитель

    Последние комментарии

    • Pit на Компьютер – осциллограф, генератор, анализатор спектра
    • Владислав на Новогодние схемы
    • Алек на Светодиодный ночник
    • Владимир на Программа “Компьютер – осциллограф”
    • ДЕМЬЯН на Регулируемый блок питания 0-12 В на транзисторах

    Радиодетали – почтой

    Введение в электронику. Транзисторы

    Введение в электронику.
    Транзисторы

    Серия статей известного автора множества радиолюбительских публикаций Дригалкина В.В. для начинающих радиолюбителей

    Доброго дня уважаемые радиолюбители!
    Приветствую вас на сайте “ Радиолюбитель “

    Транзисторы

    Транзистор входит в целую группу деталей, которую называют полупроводниковые приборы. Кроме транзистора, в нее входят диоды, стабилитроны и другие детали. В каждой из них использован полупроводниковый материал (полупроводник). Что это такое? Все существующие вещества можно условно поделить на три большие группы. Одни из них – медь, железо, алюминий и прочие металлы – хорошо проводят электрический ток. Это проводники. Древесина, фарфор, пластмасса совсем не проводят тока. Они – непроводники, изоляторы (диэлектрики).
    Полупроводники же занимают промежуточное положение между проводниками и диэлектриками. Такие материалы проводят ток только при определенных условиях.

    Из полупроводниковых приборов транзистор чаще всего применяется в радиоэлектронике, особенно биполярный. Первые такие транзисторы были изготовлены на основе германия. В настоящее время их изготавливают в основном из кремния и арсенида галлия. У биполярного транзистора три вывода: база (б), эмитер (е) и коллектор (к). Назначение выводов называют цоколевкой или в народе – расПИНовкой (от английского PIN – вывод). Цоколевку транзисторов можно найти в специальной справочной литературе.

    Транзистор – усилительный прибор. Условно его можно сравнить с таким известным Вам устройством, как рупор. Довольно произнести что-нибудь перед узким отверстием рупора, направив широкое отверстие в сторону приятеля, который стоит за несколько десятков метров, и голос, усиленный рупором, будет ему хорошо слышан. Если воспринять узкое отверстие как вход рупора-усилителя, а широкий – как выход, то можно сказать, что исходный сигнал в несколько раз более сильный от входных. Это и есть показатель усилительной способности рупора, его коэффициент усиления. Некоторые разновидности транзисторов и их обозначение на принципиальной схеме представлены на Рис. 1.

    Если пропустить через участок база-эмитер слабый ток, он будет усилен транзистором в десятки и даже в сотни раз. Усиленный ток потечет через участок коллектор-эмитер2. В зависимости от наибольшего тока, что можно пропускать через коллектор, транзисторы разделяют на маломощные, средней и большой мощности. Кроме того, эти полупроводниковые приборы могут быть структуры р-п-р или n-p-n (на английском). Так различаются транзисторы с разным расположением пластов полупроводниковых материалов3 (если в диоде два пласта материалов, то здесь их три) . Тем не менее, не думайте, что транзисторы разной структуры имеют и разное усиление. Это совсем не обязательно. Усилительная способность транзистора определяется его так называемым статическим коэффициентом передачи тока. Для некоторых конструкций этот коэффициент важный, и его указывают в описании.
    Статический коэффициент передачи тока транзистора указывает во сколько раз больший ток по участку коллектор-эмиттер способен пропустить транзистор по отношению к току база-эмиттер. Для некоторых схем этот параметр очень важен. В отечественной схемотехнике он обозначается как h21э, в зарубежной как hFE.
    Приведу пример: допустим, hFE = 500, и через переход база-эмиттер проходит ток 0.1mA, тогда транзистор пропустит максимум через себя 50mA. Если в электрической цепи за транзистором стоит деталь, потребляющая 30mA, то у транзистора будет запас, и он передаст именно 30mA, но если стоит деталь, потребляющая больше 50mA (например, 80mA), то ей будет доступно всего 50mA.
    В электронных конструкциях может встретится еще одна разновидность транзистора – полевой. У него чаще всего три вывода, но называют их по-другому: затвор (как база), исток (эмитер), сток (коллектор). Некоторые полевые транзисторы в металлическом корпусе имеют четыре выводазатвор, исток, сток и корпус. Последний вывод, как Вы уже догадались, соединен с корпусом транзистора. Подбирать эти транзисторы по усилительной способности не нужно, а вот проверять исправность особенно не нового транзистора рекомендуется, т.к. “полевики” выходят из строя при самых непредвиденных обстоятельствах. В частности полевые транзисторы очень чувствительны к статическому электричеству, поэтому их рекомендуется проверять, предварительно организовав заземление. Для снятие статики достаточно коснуться рукой батареи отопления или любых заземленных предметов. При хранении полевых транзисторов, особенно маломощных, их выводы должны быть замкнуты между собой. Полевые транзисторы, благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, находят широкое применение в блоках питания компьютеров, мониторов, телевизоров и другой радиоэлектронной аппаратуры.

    Внешний вид транзисторов
    Обозначение транзисторов на принципиальной схеме
    Транзисторы бывают и однопереходные. У этой детали две базы и один эмиттер. В отличии от биполярных и полевых транзисторов однопереходные представляет собой прибор с отрицательным сопротивлением. Это означает, что в определённых условиях входное напряжение или сигнал могут уменьшаться даже при возрастании выходного тока через нагрузку. Когда однопереходном транзистор находится во включённом состоянии, выключить его можно только разомкнув цепь, либо сняв входное напряжение.

    По диапазону рабочих частот транзисторы делятся на низкочастотные, среднечастотные и высокочастотные.

    По мощности различают транзисторы малой, средней и большой мощности. Чем мощнее транзистор – тем больше его внешний вид. Такие транзисторы имеют отверстия для крепления на радиатор – кусочек алюминия, который рассеивает тепло полупроводника, выделяемое во время его работы.

    Среди транзисторов присутствуют фотоэлементы. Фототранзистор отличается от классического варианта тем, что область базы доступна для светового облучения, за счёт чего появляется возможность управлять усилением электрического тока с помощью оптического излучения. Применяют два варианта включения фототранзисторов: диодное — с использованием только двух выводов (эмиттера и коллектора) и транзисторное — с использованием трех выводов, когда на вход подают не только световой, но и электрический сигналы.

    Источник