Меню

Сообщение использование теплового действия электрического тока

Презентация по физике на тему:»Использование теплового действия электрического тока в устройстве инкубаторов и теплиц»

Использование теплового действия электрического тока в устройстве теплиц и ин.

Описание презентации по отдельным слайдам:

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов Работу выполнили ученицы 9 класса МОУ «СОШ» с Каменка Голоктионова Ксения, Воробьева Екатерина. Учитель: Чучков С.А.

Тепловое действие электрического тока. Закон Джоуля-Ленца. При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается. Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Джоуля — Ленца. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I2, сопротивления проводника R и времени t прохождения тока через проводник: Q = I2Rt Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды. В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается в окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.

Использование теплового действия электрического тока в устройстве инкубаторов

Для успешного вывода молодняка птицы необходимо поддерживать в инкубаторе строго постоянную температуру. Для этого используется различная электроаппаратура. Рассмотрим ее простейшую схему. В цепи течет ток от источника U только при замкнутом ключе К. При этом на резисторе R выделяется тепло по закону Джоуля- Ленца. Это тепло и нагревает яйца в инкубаторе. Ключ К — это термодатчик. Если температура за счет нагрева превысит необходимую, то ключ разомкнется из-за теплового расширения; ключ замкнут, только когда температура меньше либо равна необходимой.

Использование теплового действия электрического тока в устройстве инкубаторов. Инкуба́тор (от латинского incubo, — высиживаю птенцов) — аппарат для искусственного вывода молодняка сельскохозяйственной птицы из яиц. Простейшие инкубаторы обычно представляют собой специальные помещения, утеплённые бочки, печи и др. — ещё с древних времён были распространены в южных странах. Более 3000 лет назад в Египте уже строили инкубаторы для цыплят. Чтобы обогреть инкубатор, сжигали солому и, не имея измерительных приборов, поддерживали нужный режим на глаз. Инкубаторы использовавшиеся в СССР в 1970-е годы были «кабинетные» и «шкафные», последние были более известны. Эти инкубаторы — сложные устройства, где поддержание необходимой температуры и влажности воздуха, воздухообмен и поворачивание яиц, то есть весь процесс инкубации, происходит автоматически. Обогрев в каждом шкафу осуществляется четырьмя электронагревателями по 0,5 кВт каждый, включенными попарно в две ступени мощности. Управление включением и выключением нагревателей производят реле температуры мембранного типа, действующие независимо на каждую пару нагревателей. Реле замыкают свои контакты, когда температура в шкафу становится ниже соответственно 37,7 и 37,4 °С. При этом срабатывают промежуточные реле, включая одну, а затем и другую ступени нагрева. Отключаются нагреватели в обратном порядке. Включение всех четырех нагревателей обычно становится необходимым лишь при форсировании разогрева, например после закладки яиц. Чтобы поддерживать необходимую температуру, в обычных условиях достаточно двух нагревателей.

Теплица — тип садового парника, отличающийся размерами. Представляет собой защитное сооружение. Применяется для выращивания ранней рассады (капусты, томатов, огурцов, цветов сеянцев, укоренения черенков или доращивания горшечных растений), для последующего высаживания в открытый грунт. В отличие от парника, теплица из-за своих размеров, позволяет организовать весь цикл выращивания той или иной культуры в закрытом грунте. Размеры теплиц варьируются от 2 м до 6 м в длину и от 2 м до 3 м в ширину. Оптимальными размерами теплицы рекомендуются 2,5 х 2 м. В зависимости от вида овощей оптимальная температура в теплице должна составлять днем 16-25°С, а ночью на 4-8°С меньше, чем днем. Высокая температура по ночам и в пасмурные дни провоцирует слишком быстрый рост зеленой массы растения, что приводит к снижению урожайности и качества плодов. Недорогим и эффективным способом обогрева теплиц и парников следует считать электрический. Наиболее простыми в использовании являются переносные тепловентиляторы (обогреватели). Некоторые типы электрических нагревателей для теплиц могут работать в режиме циркуляции: нагнетать воздух, не грея его. Эта функция полезна для улучшения микроклимата теплицы в жаркую погоду. Тепловентиляторы рекомендуется устанавливать под стеллажами с высаженными растениями.

С помощью вентиляторов поддерживается надлежащий температурный режим, выравнивается температура по всему объему шкафа, подается свежий воздух к лоткам с яйцами. Вентилятор работает непрерывно, если дверь шкафа закрыта. При открывании двери блокировочный выключатель размыкает свои контакты, обесточивая промежуточное реле, которое своими контактами отключает электродвигатель вентилятора. Этим предотвращается возможность переохлаждения яиц наружным воздухом. Управление системой увлажнения осуществляется реле увлажнения, представляющим собой упруго натянутую вискозную ленту, которая имеет свойство заметно изменять свои размеры в зависимости от влажности воздуха. С понижением влажности лента укорачивается и, нажимая через упор на микро-выключатель, подает питание в соленоид увлажнения, который открывает кран подачи воды внутрь шкафа. Вода поступает каплями в сеточный испаритель на валу вентилятора и разносится им по всему шкафу. Для домашнего разведения птенцов можно сделать самодельный инкубатор, используя тепловое действие электрического тока. В этом случае электрическая схема инкубатора будет состоять из терморегулятора, электронного термометра, таймера поворотного механизма и блока питания. Блок управления находящийся вне инкубатора, соединяется с ним гибким кабелем. Внутри инкубатора находятся:

Источник



Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Электрический ток

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов.

2. Тепловое действие электрического тока. Закон Джоуля-Ленца.

3. Использование теплового действия электрического тока в устройстве теплиц.

4. Использование теплового действия электрического тока в устройстве инкубаторов.

Современный мир уже немыслимо представить без электричества. Электрический ток используется человеком повсеместно. Бытовые электроприборы прочно заняли свое место в жилище человека, в промышленности, на транспорте и различных учреждениях тоже нельзя обойтись без использования электричества.

Однако сельские жители, особенно пожилого возраста по-прежнему продолжают относиться осторожно к использованию электрического тока.

Цель доклада: Показать, как можно использовать электрический ток для нужд сельского хозяйства.

Подобрать литературу по теме доклада

Анализ и обобщение источников литературы

Выступление с докладом перед аудиторией.

Тепловое действие электрического тока. Закон Джоуля-Ленца.

Читайте также:  Принцип трансформатора переменного тока в генератор

При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается.
Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Джоуля — Ленца. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I2, сопротивления проводника R и времени t прохождения тока через проводник:

Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды.

В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается в окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.

По мере увеличения температуры провода растет разность температур провода и окружающей среды, увеличивается количество тепла, отдаваемое проводом. В связи с этим рост температуры провода все более замедляется. Наконец, при некоторой температуре устанавливается тепловое равновесие: за одинаковое время количество теплоты выделяющегося в проводе становится равным количеству теплоты выделяющемуся во внешнюю среду.

При дальнейшем прохождении неизменяющегося тока температура провода не изменяется и называется установившейся температурой.

Превращение электрической энергии в тепловую нашло широкое применение в технике и быту. Оно происходит, например, в различных производственных и бытовых электронагревательных приборах (электрических печах, электроплитах, электрических паяльниках и пр.), в электрических лампах накаливания, аппаратах для электрической сварки и пр.

Рассмотрим способы применения теплового действия электрического тока в устройстве теплиц и инкубаторов.

Использование теплового действия электрического тока в устройстве теплиц.

Теплица — тип садового парника, отличающийся размерами.

Представляет собой защитное сооружение. Применяется для выращивания ранней рассады (капусты, томатов, огурцов, цветов сеянцев, укоренения черенков или доращивания горшечных растений), для последующего высаживания в открытый грунт. В отличие от парника, теплица из-за своих размеров, позволяет организовать весь цикл выращивания той или иной культуры в закрытом грунте.

Размеры теплиц варьируются от 2 м до 6 м в длину и от 2 м до 3 м в ширину. Оптимальными размерами теплицы рекомендуются 2,5 х 2 м. Если в теплице планируют устроить полки вдоль обеих сторон, выбирают размер 3 х 2,5 м.

В зависимости от вида овощей оптимальная температура в теплице должна составлять днем 16-25°С, а ночью на 4-8°С меньше, чем днем. Высокая температура по ночам и в пасмурные дни провоцирует слишком быстрый рост зеленой массы растения, что приводит к снижению урожайности и качества плодов.

Недорогим и эффективным способом обогрева теплиц и парников следует считать электрический.

Наиболее простыми в использовании являются переносные тепловентиляторы (обогреватели). Некоторые типы электрических нагревателей для теплиц могут работать в режиме циркуляции: нагнетать воздух, не грея его. Эта функция полезна для улучшения микроклимата теплицы в жаркую погоду. Тепловентиляторы рекомендуется устанавливать под стеллажами с высаженными растениями.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

Вторым из существующих способов обогрева теплиц, — кабельный обогрев грунта теплиц. Для обогрева грунта теплиц используется кабель с изоляцией из полипропилена, бронёй в виде оплётки из стальных оцинкованных проволок и оболочкой из изолирующего материала, диаметр наружный 6 мм, радиус изгиба 35 мм.

Для обеспечения оптимальной температуры Схемапочвы требуется мощность 75-100 Вт/м2. Мощность нагревательного кабеля или ленты не должна превышать 20 Вт/м. Для регулирования температуры нужно использовать терморегуляторы, так как оптимальная температура почвы для растений меняется от 15 до 250С, а для торфяных горшочков и грядок с рассадой — 300С.

ИнфракрасныеТретьим способом обогрева с помощью теплового действия электрического тока можно считать применение в теплицах инфракрасных потолочных обогревателей. Небольшого размера, они не занимают полезную площадь (стены, пол теплицы), потому что крепятся на потолке. Применение инфракрасных обогревателей позволяет создавать в теплице разные температурные зоны. Это удобно, в том случае, если в теплице находятся растения привыкшие к разным температурным условиям (растения из разных климатических поясов).При помощи особого принципа обогрева, потолочные ИК обогреватели прогревают сначала землю (почву), а уже потом окружающий воздух. По сути, такой принцип обогрева является подобием естественного процесса «обогрева» нашей планеты солнцем. Инфракрасные обогреватели излучают инфракрасное тепло, прогревающее поверхность грунта, а уже после прогрева грунта тепло передается окружающему воздуху. Если ты скачал этот доклад и даже его не прочитал, то получишь два. С помощью термостата инфракрасный обогреватель отключается, когда воздух нагревается в теплице до заданной температуры. Таким образом, поддерживается постоянная температура. Помимо этого, происходит дополнительная экономия энергии.

Для теплиц подойдет и водяное отопление, работающее от электричества. Водяное отопление, пожалуй, наиболее выгодно для обогрева теплиц. В бойлере нагревается вода, а затем циркуляционным насосом перекачивается в пластиковые трубы. Трубы водяного отопления можно проложить между растениями или вдоль внешних стенок теплицы.

Использование теплового действия электрического тока в устройстве инкубаторов.

Инкуба́тор (от латинского incubo, — высиживаю птенцов) — аппарат для искусственного вывода молодняка сельскохозяйственной птицы из яиц.

Простейшие инкубаторы обычно представляют собой специальные помещения, утеплённые бочки, печи и др. — ещё с древних времён были распространены в южных странах. Более 3000 лет назад в Египте уже строили инкубаторы для цыплят. Чтобы обогреть инкубатор, сжигали солому и, не имея измерительных приборов, поддерживали нужный режим на глаз. Инкубаторы использовавшиеся в СССР в 1970-е годы были «кабинетные» и «шкафные», последние были более известны. Эти инкубаторы — сложные устройства, где поддержание необходимой температуры и влажности воздуха, воздухообмен и поворачивание яиц, то есть весь процесс инкубации, происходит автоматически. Обогрев в каждом шкафу осуществляется четырьмя электронагревателями по 0,5 кВт каждый, включенными попарно в две ступени мощности. Управление включением и выключением нагревателей производят реле температуры мембранного типа, действующие независимо на каждую пару нагревателей. Реле замыкают свои контакты, когда температура в шкафу становится ниже соответственно 37,7 и 37,4 °С. При этом срабатывают промежуточные реле, включая одну, а затем и другую ступени нагрева. Отключаются нагреватели в обратном порядке. Включение всех четырех нагревателей обычно становится необходимым лишь при форсировании разогрева, например после закладки яиц. Чтобы поддерживать необходимую температуру, в обычных условиях достаточно двух нагревателей.

Читайте также:  Тест по теме электрический ток в металлах полупроводниках

Для предохранения шкафа от перегрева установлено третье температурное реле, которое настраивается на температуру 37,9 °С. Если температура в шкафу превышает это значение, регулятор температуры размыкает цепь питания реле, которое одним контактом отключает цепи питания реле, а другим — включает питание соленоида охлаждения. Соленоид открывает заслонки вентиляционных окон, и свежий воздух засасывается вентилятором в шкаф.

С помощью вентиляторов поддерживается надлежащий температурный режим, выравнивается температура по всему объему шкафа, подается свежий воздух к лоткам с яйцами. Вентилятор работает непрерывно, если дверь шкафа закрыта. При открывании двери блокировочный выключатель размыкает свои контакты, обесточивая промежуточное реле, которое своими контактами отключает электродвигатель вентилятора. Этим предотвращается возможность переохлаждения яиц наружным воздухом.

Управление системой увлажнения осуществляется реле увлажнения, представляющим собой упруго натянутую вискозную ленту, которая имеет свойство заметно изменять свои размеры в зависимости от влажности воздуха. С понижением влажности лента укорачивается и, нажимая через упор на микро-выключатель, подает питание в соленоид увлажнения, который открывает кран подачи воды внутрь шкафа. Вода поступает каплями в сеточный испаритель на валу вентилятора и разносится им по всему шкафу.

Для домашнего разведения птенцов можно сделать самодельный инкубатор, используя тепловое действие электрического тока. В этом случае электрическая схема инкубатора будет состоять из терморегулятора, электронного термометра, таймера поворотного механизма и блока питания. Блок управления находящийся вне инкубатора, соединяется с ним гибким кабелем. Внутри инкубатора находятся:

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

вентилятор для принудительного циркулирования нагретого воздуха,

двигатель поворотного механизма с редуктором для наклона лотков с яйцами,

датчики температуры терморегулятора и термометра.

Для нагревания воздуха в инкубаторе оптимально использовать два сопротивления мощностью 25 Вт, для перемешивания воздуха нужно использовать вентилятор. Для наблюдения за процессом выведения цыплят устанавливается лампа подсветки мощностью 10. 20 Вт.

Правильное расположение нагревательных элементов в инкубаторе крайне важно для увеличения процента вывода цыплят. В разных конструкциях инкубаторов нагреватели располагают над лотками, под лотками или сбоку по периметру инкубатора. Однако наиболее равномерное распределение температуры по площади лотка получается при подогреве сверху. В этом случае максимальна и теплоотдача, поскольку теплый воздух не успевает перемешаться с поступающим через вентиляционные отверстия холодным воздухом. Расстояние от нагревательных элементов до яиц зависит от типа нагревателей. Если в качестве нагревателей использовать электрические лампы накаливания, которые являются точечным источником тепла, минимальное расстояние от ламп до лотка должно быть не менее 25 см. Если же нагревателем является спираль из нихромовой проволоки, залитая гипсом, то такой нагреватель можно расположить на расстоянии 10 см от лотка.

Для инкубатора на 50 яиц суммарная мощность нагревателя должна составлять 80 Ватт. При этом лампочки накаливания желательно выбирать наименьшей мощности, тогда инкубатор будет обогреваться более равномерно. Например, для инкубатора на 50 яиц предпочтительнее использовать 3 лампочки по 25 Вт, чем две — по 40 Вт. Для повышения надежности ламп их можно соединить последовательно. Тогда напряжение на каждой из ламп будет в 2 раза ниже сетевого, соответственно, и мощность ламп окажется в два раза ниже их паспортной мощности. Поэтому при параллельно — последовательном соединении количество ламп удваивается.

Электрические лампы накаливания являются хорошим нагревательным элементом для домашнего инкубатора, поскольку не только позволяют точно поддерживать температуру, но и являются электробезопасными обогревателями.

Электрический ток, проходя по проводам, совершает различные действия. Наиболее используемым действием электрического тока является тепловое.

Тепловое действие широко используется человеком, в том числе его можно использовать для нужд сельского хозяйства при выращивании растений, овощей и для промышленного и домашнего разведения птенцов в инкубаторах

Источник

Тепловое действие тока

Подключение проводника к источнику питания провоцирует взаимодействие носителей зарядов с молекулярной структурой соответствующего вещества. При определенных условиях этот процесс сопровождается нагревом. Тепловое действие тока используют при создании ТЭНов, предохранителей, других устройств. Примеры расчетов и другие полезные сведения из этой публикации помогут решать различные практические задачи.

Простой эксперимент демонстрирует, как происходит повышение температуры проводника

Формула расчета и ее элементы

Суть явления понятна из упомянутого выше общего определения. Движущиеся электроны взаимодействуют с ионами вещества проводника с преобразованием механической энергии в теплоту. Увеличение силы тока повышает интенсивность процесса.

Наглядный пример – электролиз. При опускании в раствор подключенных к батарее пластин положительно заряженные ионы и электроны движутся в противоположных направлениях. Достаточно высокий ток провоцирует перемещение примесей с последующим осаждением на поверхности электродов. Одновременно происходит нагрев жидкости.

При подключении к источнику медного проводника химические реакции отсутствуют. Если исключить механические воздействия (электромагнитная индукция, движение ионов в растворе), вся работа тока в соответствующей цепи будет направлена только на увеличение внутренней энергии вещества.

Действие электрического тока при подключении к жидкому и металлическому проводнику

Следовательно, во втором примере работу (A) можно принять равной увеличению энергетического потенциала, который выражается соответствующим количеством теплоты (Q). Основная формула:

где:

  • U – напряжение;
  • I – ток;
  • t – время.

Для удобства расчетов можно использовать иные эквиваленты на основе формул закона Ома:

  • U = I * R;
  • R – электрическое сопротивление проводника;
  • значит, Q = I2 * R * t.

Закон теплового действия тока закон Джоуля-Ленца

Рассмотренный выше эффект нагрева был зарегистрирован в начале 19 века. Однако точную зависимость теплоты и силы тока вместе с формулами для вычислений установили позднее в 1841 и 1842 г. ученые Д. Джоуль и Э. Ленц. По их фамилиям получил название соответствующий закон.

Практическое значение

Понятно, что количество выделяемого тепла зависит от плотности тока и проводимости определенного вещества. Наглядно соответствующие влияния можно регистрировать в ходе последовательного пропускания тока 2 и 50 А через контрольную медную жилу сечением 2 мм кв. Во втором эксперименте нагрев будет значительно сильнее. Его можно уменьшить, увеличив диаметр проводника.

Снижение потерь энергии

Рассмотренный пример демонстрирует нежелательное явление для линий электропередач. Использование части энергии на обогрев окружающего пространства увеличивает потери воздушных линий. Превышение порогового значения провоцирует разрушение жил, защитных оболочек. Чрезмерное повышение температуры – причина возникновения пожаров.

Подобные явления происходят, если выбрана чрезмерная сила тока, либо недостаточно поперечное сечение проводника. Количество тепла, выделяемого в линии, обратно пропорционально зависит от квадрата напряжения (U) на подключенном потребляющем устройстве. Повышением U можно уменьшить потери. Однако подобное действие увеличивает вероятность короткого замыкания, ухудшает общие параметры безопасности.

Читайте также:  Эдс источника тока в цепи с сопротивлением внутреннего участка 0 2 ом

Выбор проводов для цепей

Отмеченные выше проблемы теплового разрушения в значительной мере зависят от удельного сопротивления (Rу). Для наглядности можно использовать материалы со значительно различающимися характеристиками.

Эксперимент с различными проводниками

Расчеты количества теплоты (Q, Дж) для образцов длиной 1 м сечением 1 мм кв. при силе тока 5А за 30 секунд:

  • медь – 12,75;
  • сталь – 75;
  • никелин – 315.

Особое внимание следует уделять параметрам силовых кабелей, которые должны сохранять целостность в процессе реальной эксплуатации. Как правило, бытовые линии монтируют в глубине строительных конструкций. Такой способ подразумевает хорошую защищенность от неблагоприятных внешних воздействий. Вместе с тем возрастают затраты на исправление ошибок и устранение последствий аварий.

Чтобы использовать кабельную продукцию правильно, следует руководствоваться тематическими нормативами, которые изложены в ПУЭ. Для упрощения выбора предлагаются специализированные таблицы, в которых приведены результаты расчетов с учетом следующих важных факторов:

  • тип изоляции;
  • длительность и величина перегрузок;
  • особенности прокладки.

Отдельно рассмотрены в ПУЭ поправочные коэффициенты, учитывающие увеличение сопротивления при росте температуры. Данное явление объясняется повышением частоты колебаний атомов, что создает дополнительные препятствия электрическому току.

Пример:

  • проводник нагревается номинальным током 7 А до +50°C при температуре окружающей среды +25°C;
  • подбирают подходящую продукцию с учетом реальных условий;
  • если кабель будет применяться на открытом воздухе, где температура повышается до +45°C, используют коэффициент 0,45 (допустимый ток уменьшается I=7*0,45=3,15 А);
  • при морозе (-5°С) выбирают иной поправочный множитель:

Ускорить выбор можно с помощью сводных таблиц. В них приведены допустимые токи для медных (алюминиевых) жил с нормированным сечением.

Электронагревательные приборы

С учетом одинаковой величины тока в любой части единой цепи можно создать конструкцию для намеренного нагрева определенной зоны. Здесь устанавливают проводник с высоким удельным сопротивлением либо уменьшают площадь поперечного сечения. Точный расчет поможет исключить повышение температуры до критического уровня, разрушающего изделие.

Подводящие питание проводники выбирают на основе принципов, изложенных в предыдущем разделе. Они не должны перегреваться чрезмерно в установленных планом условиях эксплуатации.

Плавкие предохранители

Термический разрыв цепи используют для защиты оборудования и потребителей, если сила тока превышает номинальное значение. Специализированные устройства (плавкие предохранители) делают из свинца, стали, других металлов и сплавов. В нормальном рабочем режиме тепло рассеивается, не вызывает повреждений. После достижения пороговых значений существенно увеличиваются сопротивление и температура. На определенном уровне происходит разрушение элемента с одновременным отключением источника питания.

Плавкие предохранители оценивают комплексным параметром (К) по формуле:

где:

  • I – пороговое значение тока;
  • t – это максимальное время разрушения.

Одноразовые недорогие изделия этой категории рассчитаны на сравнительно небольшие токи (0,25-2 А). Типичная конструкция – тонкая проволока в трубке из кварцевого стекла с контактами для установки на монтажную плату. Такие предохранители устанавливают в радиоаппаратуре для защиты отдельных цепей. Визуальной проверкой можно быстро установить целостность предохранителей.

Вставки, рассчитанные на сильные токи, помещают в песок или другую специальную среду. Такое решение предотвращает образование плазмы, обеспечивает быстрый разрыв цепи. В некоторых модификациях корпус предохранителя создают из специальных материалов, генерирующих газ при сильном нагреве. Он ускоряет гашение дуги. Также применяют механизмы, увеличивающие расстояние между клеммами контактов при возникновении аварийных ситуаций.

К сведению. Для сильноточных цепей выпускают предохранители со сменными вставками.

Применение теплового действия электротока

Тепловое действие электрического тока используется в нагревательных элементах:

  • отопительных приборов;
  • бойлеров;
  • утюгов;
  • стиральных и посудомоечных машин;
  • чайников, кофеварок.

С помощью специального кабеля предотвращают промерзание труб и образование наледей на порогах. Тепловыми «пушками» быстро поднимают температуру в крупных помещениях, ускоряют выполнение штукатурных работ.

Следует отметить перспективность применения электрических конвекторов, по сравнению с классическими радиаторами отопления:

  • простота;
  • компактность;
  • малый вес;
  • долговечность;
  • хорошая совместимость с новейшими системами управления и контроля категории «умный дом».

Отдельно следует отметить высокий уровень безопасности. Защиту сильноточных цепей можно обеспечить дешевыми плавкими предохранителями. Это гораздо дешевле и надежнее, по сравнению с комплексом мероприятий по предотвращению образования газовой смеси.

В типовых предохранителях, кроме цифровых обозначений, номинальную силу тока указывают цветными метками

Не всегда тепловое действие выполняет полезные функции. Устаревшие лампы накаливания, например, значительную часть энергии тратят на бесполезный обогрев окружающего пространства. Значительно эффективнее работают экономичные газоразрядные и светодиодные приборы.

Видео

Источник

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Подготовьте доклад на тему Использование теплового действия электрического тока в устройстве теплиц и инкубаторов.

Ответ

Тепловое действие электрического тока исполь­зуется в сельском хозяйстве для обогрева теплиц и инкубаторов.

Теплица — это помещение, предназначенное для выращивания различных растений, съедобных и цветов, в котором поддерживается нужная для растений температура круглый год, что позволяет вне сезонов снимать урожаи неоднократно. Один из существующих способов обогрева теплиц — кабельный обогрев.

Кабельный обогрев — это относительно недо­рогой, экономичный и надежный способ обогрева теплиц, при котором для предотвращения ухо­да тепла в грунт необходим слой теплоизоляции, причем в качестве материала теплоизоляции вы­бирается материалы, которые не впитывают влагу, например, пенополистирол, либо пенополиэтилен толщиной 5-10 см.

Сверху слой теплоизоляции закрывается полиэтиленовой пленкой, играющей роль гидроизоляции. Поверх укладывается слой песка толщиной примерно 10 см, внутри которо­го лежит нагревательный кабель так, чтобы слой песка над кабелем был не менее 5 см. Шаг уклад­ки кабеля примерно 15 см.

Поверх слоя песка укладывается сетка-рабица для защиты кабеля от повреждений. Затем насыпается слой плодородного грунта толщиной 20-25 см. Для регулирования температуры используются терморегуляторы.

Инкубатор представляет собой шкаф, где по ярусам на специальных лотках размещены яй­ца. Он обогревается с помощью нагревательных проволочных спиралей, по которым пропускается электрический ток.

Автоматически поддерживается температура в интервале от 37,7 до З8 °С, для это­го используют терморегуляторы с биметаллической пластинкой или другого типа.

Биметаллическая пластинка терморегулятора сделана из двух раз­нородных металлических пластин, например же­лезной и из сплава инвара и закреплена с одно­го конца. Когда температура в инкубаторе ниже нормы, биметаллический терморегулятор замыка­ет контакты электрической цепи и ток проходит по нагревательным спиралям. Если температура терморегулятора больше заданной, биметалличе­ская пластина так изгибается в сторону менее удлинившегося слоя, что отходит от контакта. Электрическая цепь нагревателя размыкается; она остается в таком положении до тех пор, пока тем­пература не ниже нормы; тогда биметаллический терморегулятор снова замкнет цепь.

Источник