Меню

Схема сумеречного выключателя света

Сумеречные выключатели освещения с гальванической развязкой (220В)

Принципиальные схемы сумеречных выключателей для управление ночным освещением. В простейшем случае это фотореле, включающее уличный или садовый фонарь снаступлением темноты, чуть сложнее -устройство с таймером, ограничивающим продолжительность ночного освещения (чтобы свет не горел всю ночь, а только вечером). Сейчас в продаже есть много таких устройств, особенно первого типа. Но, на мой взгляд, практически всем им свойственен существенный недостаток -наличие гальванической связи с электросетью, а это может привести к поражению электрическим током.

Первая схема

На рисунке 1 показана схема простого сумеречного выключателя, включающего уличный или садовый фонарь с наступлением темноты, и выключающий его на рассвете.

Светочувствительным элементом здесь является фотодиод FD1 типа ФД263, включенный по схеме фоторезистора, это когда он включен в обратном направлении по току, и его обратное сопротивление находится в обратной зависимости от уровня естественного света. Вместе с резистором R1 он образует делитель напряжения.

Рис.1. Принципиальная схема сумеречного выключателя освещения на микросхеме К561ЛЕ5.

Работает прибор следующим образом. Ночью, при низкой естественной освещен ности сопротивление фотодиода ED1, включенного как фоторезистор, высоко. Поэтому на соединенных вместе входах элемента D1.1 микросхемы D1 имеется напряжение, соответствующее логическому нулю.

Триггер Шмитта 01.1-01.2 находится в нулевом положении, и на выходе элемента D1.3 логическая единица, которая через резистор R3 поступает на транзисторный ключ VT1, в коллекторной цепи которого включено оптореле К1. Транзистор VT1 открывается и появляется ток через светодиод оптореле К1, которое открывается и включает лампу освещения, подключенную к розетке Х2.

Днем освещенность выше, поэтому сопротивление фотодиода FD1 низко. На соединенные вместе входы элемента поступает напряжение, соответствующее логической единице. На выходе элемента D1.3 будет ноль, который через резистор R3 поступает на транзисторный ключ VT1, в коллекторной цепи которого включено оптореле К1.

Транзистор VT1 закрывается и прекращается ток через светодиод оптореле К1, которое закрывается и выключает лампу освещения, подключенную к розетке Х2.

Так происходит каждые сутки. Конденсатор С1 немного затормаживает работу делителя напряжения на FD1 и R1, чтобы исключить переключения от резких изменений освещенности, например, фар проезжающего автомобиля, или от наводок, которые могут иметь место в определенных случаях. Световой порог «дня / ночи» регулируется, переменным резистором R1.

А от сопротивления R2 зависит гистерезис этого порога.

Гальванически низковольтная схема полностью развязана от электросети. Управление нагрузками осуществляется посредством оптической связи (через оптореле), а питание поступает через трансформатор Т1. Поэтому в случае попадания на органы управления воды или прикосновения к ним поражение током исключается, так как они не находятся под потенциалом электросети.

Пространственно фотодиод FD1 должен располагаться так, чтобы на него не попадал прямой свет от уличного или садового светильника, которым он управляет.

Вторая схема

Вторая схема сумеречного выключателя показана на рисунке 2. В ней есть таймер, ограничивающий продолжительность горения садового или уличного светильника, чтобы он горел не всю ночь, а только вечером некоторое время.

Рис.2. Схема сумеречного выключателя освещения на микросхемах К561ЛЕ5, К561ИЕ16.

Практически это таймер, запускаемый при понижении уровня внешней освещенности ниже установленного порога. Здесь используется такой же фотодатчик на фотодиоде FD1, образующий вместе с резистором R4 светозависмый делитель напряжения. Уровень света, при котором нужно включать садовый или уличный светильник устанавливается переменным резистором R4.

Когда естественного освещения достаточно сопротивление FD1 ниже сопротивления И4 и напряжение на выходе элемента D1.4 — логическая единица. Это устанавливает счетчик D2 в нулевое положение и удерживает его в этом положении, плюс, единица, поступающая на вывод 9 D1.3 устанавливает логический ноль на выходе D1.3. Транзистор VT1 закрыт, ток через светодиод оптореле К1 отсутствует и осветительная лампа выключена.

При снижении уровня естественной освещенности ниже установленного резистором R4 порога напряжение на входе R1.4 увеличивается и достигает порога логической единицы. При этом на выходе R1.4 устанавливается логический ноль. Так как на оба входа R1.3 теперь поступают логические нули, на его выходе устанавливается логическая единица. Транзистор VT1 открывается и появляется ток через светодиод оптореле К1, которое открывается и включает лампу дворового или уличного светильника.

Читайте также:  Клавиша выключателя не включает свет

Одновременно запускается таймер. Счетчик D2 начинает считать импульсы, поступающие на его вход от мультивибратора на элементах D1.1 и D1.2. Время, в течение которого будет работать искусственное освещение устанавливается переменным резистором R1 в пределах от одного до 6 часов.

R1 регулирует частоту импульсов, поступающих на счетчик, а от их частоты зависит то, как скоро счетчик досчитает до 8192. Как только заканчивается заданный временной интервал на выводе 3 D2 появляется логическая единица. Она поступает на вывод 8 D1.3 и на выходе D1.3 напряжение падает до логического нуля.

Транзистор VT1 закрывается и осветительная лама выключается. Одновременно единица с вывода 3 D2 поступает на вывод 2 D1.1 и блокирует мультивибратор D1.1-D1.2. Схема будет находиться в таком состоянии до наступления рассвета.

Гальванически низковольтная схема полностью развязана от электросети. Управление нагрузками осуществляется посредством оптической связи (через оптореле), а питание поступает через трансформатор Т1. Поэтому в случае попадания на органы управления воды или прикосновения к ним поражение током исключается, так как они не находятся под потенциалом электросети.

Пространственно фотодиод FD1 должен располагаться так, чтобы на него не попадал прямой свет от уличного или садового светильника, которым он управляет.

Детали схем

Источник питания выполнен на трансформаторе Т1 типа ТВК100Л. Это выходной трансформатор кадровой развертки от старого лампового черно-белого телевизора. Вместо него можно использовать любой маломощный силовой трансформатор, на вторичной обмотке которого есть переменное напряжение 7-10V при максимальном токе не ниже 100mA.

Например, использовать трансформатор от какого-то миниатюрного сетевого источника питания, например, от сетевого адаптера телевизионной игровой приставки или компьютерной периферии, или же намотать его самостоятельно.

Выпрямительный мост КЦ402 можно заменить любым маломощным выпрямительным мостом или собрать мост на четырех диодах, типа КД209, КД105, 1N4004 или других.

В схемах датчика света используется ИК-фотодиоды ФД263. Такие фотодиоды широко использовались в системах дистанционного управления старых отечественных телевизоров. Несмотря на то, что они предназначены для инфракрасного излучения, они очень хорошо реагируют и на видимый свет. Вместо ФД263 можно попробовать и другие фотодиоды. Либо поставить фоторезисторы.

При этом, возможно, номинальное сопротивление переменных резисторов И1 (рис.1) и R4 (рис.2) придется изменить.

Микросхемы К561ЛЕ5 можно заменить любыми КМОП микросхемами, в которых есть не меньше четырех ИЛИ-НЕ элементов, например, К176ЛЕ5, CD4001. Причем, микросхему D1 по рисунку 1 можно заменить любой ИМС КМОП с числом инверторов не менее 4-х, то есть, здесь может работать и такая микросхема как К561ЛН1, К561ЛН2, К561ЛА7, CD4011.

А вот D1 в схеме по рисунку 2 должна быть обязательно с элементами «ИЛИ-НЕ». Микросхему К561ИЕ16 (рис.2) можно заменить счетчиком CD4020 или CD4060, используя только счетчик этой микросхемы. Возможно использовать и счетчик с меньшим числом разрядов — К561ИЕ20 или CD4040.

В этом случае вместо вывода 3 используем вывод 1, и потребуется уменьшить частоту импульсов, генерируемых мультивибратором D1.1-D1.2 путем увеличения емкости конденсатора С2 в 4 раза.

Налаживание

Налаживание схемы по рис.2 заключается в установке пределов регулировки времени подбором R2, C2 и в градуировке шкалы времени. Чтобы облегчить этот процесс можно определять время по величине полного периода импульсов, вырабатываемых мультивибратором D1.1-D1.2, умножая его на 8192 (значение получится в секундах, которое затем нужно перевести в часы).

Источник

Простой сумеречный выключатель своими руками. Схема

В данной статье приведена очень простая система сумеречного выключателя. C наступлением темноты сопротивление фоторезистора R1 увеличивается, в результате чего транзистор VТ1 (BC549) запирается, а транзистор VТ2 (BC549) включается и электромагнитное реле K1 своими контактами включает осветительный прибор.

Читайте также:  Как сделать выключатель для моторчика

Чтобы избежать неконтролируемого переключения реле на границе светочувствительности, в цепь эмиттера транзистора VТ1 включен резистор R5, тем самым создает гистерезис переключения.

Конденсатор С2 предохраняет схему от кратких изменений освещения, например, по причине фар проезжающих машин.

Для эффективной работы схемы необходимо использовать транзисторы с высоким коэффициентом усиления по току. Желательно использовать транзисторы типа C.

В прототипе применен новый тип фоторезистора (LDR), не содержащий кадмия, который рекомендуется по экологическим причинам. Он очень маленький, имеет размер примерно две спичечные головки. Если использовать другой фоторезистор, то его сопротивление при дневном освещении должно составлять несколько сотен Ом, а после наступления темноты увеличиваться примерно до 10 кОм.

Порог освещенности, при котором будет переключение освещения, можно выставить с помощью подстроичного резистора R2. При необходимости сопротивление этого резистора может быть увеличено (в разумных пределах). В процессе настройки конденсатор С2 должен быть временно удален, чтобы схема реагировала быстрее.

Ток срабатывания реле при 12 В не должен превышать 50 мА. При допустимой контактной нагрузке 8 А ток нагрузки не должен превышать 4 А.

Схема в Proteus:

Скачать проект в Proteus (8,6 KiB, скачано: 51)

Источник



Как сделать самый простой сумеречный выключатель (фотореле) — схема и описание

Современная элементная база электроники значительно упрощает схемотехнику. Даже обычный сумеречный выключатель теперь можно собрать всего из трех деталей.

Достаточно часто возникают ситуации, когда с наступлением темноты требуется включение освещения. Это может быть вход в подъезд многоквартирного дома, крыльцо и двор частного домовладения, а то и просто освещение номера дома. Такое включение осуществляется, как правило, с помощью сумеречного выключателя (фотореле).

Подобных схем разработано достаточно много, как в любительских, так и в промышленных условиях. Как и все остальное эти конструкции имеют свои положительные и отрицательные свойства. Некоторыми из отрицательных свойств являются такие, как потребность во внешнем источнике постоянного напряжения (+12 В), или сложность схемы.

К недостаткам подобных устройств следует также отнести применение реле, контакты которого со временем просто обгорают. В магазинах электротоваров сейчас продается немало простых и дешевых сумеречных выключателей, но качество их работы зачастую неудовлетворительно. Такие сложности часто отталкивают потребителя от использования таких выключателей.

Функциональная схема сумеречных выключателей достаточно проста. Условно ее можно разделить на три компонента: фотоэлемент (фоторезистор, фототранзистор, фотодиод), пороговое устройство (компаратор), выходное устройство (реле или симистор). При дневном освещении сопротивление фоторезистора невелико, поэтому напряжение на нем не превышает порога срабатывания компаратора. И поэтому нагрузка (освещение) отключена.

С уменьшением освещенности сопротивление фоторезистора увеличивается и напряжение на нем возрастает. В определенный момент уровень напряжения на фоторезисторе достигает порога срабатывания компаратора, который с помощью реле включает освещение.

Казалось бы, алгоритм работы достаточно простой, и реализовать его несложно. Но, тем не менее, некоторые схемы достаточно сложны, и если выполнены на транзисторах без применения микросхем, могут содержать десяток – другой деталей.

Вместе с тем современная элементная база электроники позволяет создавать очень простые и функциональные схемы фотореле. Достигается это интеграцией (встраиванием) одних элементов в другие. Примером такой интеграции может служить одна из разработок фирмы Teccor Electronics.

Это симистор, или на иностранный манер триак, со встроенным (интегрированным) симметричным динистором, выполняющим роль порогового устройства. Такое устройство получило название Quadrac. Его внутренняя схема показана на рисунке 1.

Нетрудно видеть, что это обычный симистор, вот только в цепь управляющего электрода последовательно включен симметричный динистор. По справочным данным (DataSheet) пороговое напряжение интегрированного динистора находится в пределах 33…43 В.

Рисунок 1. Симистор типа Quadrac. Схема принципиальная.

Симисторы типа Quadrac выпускаются в стандартном корпусе TO-220 с изолированным кристаллом, как показано на рисунке 2. По конструкции и внешнему виду они не отличаются от обычных симисторов. Даже расположение выводов то же.

Читайте также:  Схема плавного пуска выключатель

Рисунок 2. Симистор типа Quadrac. Внешний вид и расположение выводов.

В зависимости от конкретной модели Quadrac различаются по максимальным токам и напряжениям: токи находятся в пределах 4…15 А, а допустимые напряжения 200…600 В. Для применения в высокоиндуктивных цепях предназначаются специализированные Quadrac. Эти модели имеют в конце обозначения букву H, например Q6006LTH.

Вообще, разобраться в маркировке именно этих симисторов достаточно просто. Разберемся с ней на примере только что упомянутого Q6006LTH.

Первая буква Q, как нетрудно догадаться, заимствована от Quadrac и означает, что это не что иное, как симистор со встроенным динистором.

Следующие за первой буквой две цифры, в данном случае это 60, означают, что рабочее напряжение данного прибора 600 В.

Две последних цифры 06, говорят о том, что максимальный рабочий ток составляет 6 А.

Буква H в конце обозначения это информация о том, что данный тип прибора можно использовать для управления индуктивной нагрузкой, например катушкой магнитного пускателя.

При использовании в подобном случае обычного симистора (без буквы H в конце обозначения) выводы 1 и 2 квадрака Q1 (смотри схему на рисунке 3) приходится шунтировать RC цепочкой состоящей из последовательно соединенных резистора 100 Ом и конденсатора 0,1 МкФ. При этом мощность резистора должна быть не менее двух ватт, а рабочее напряжение конденсатора не ниже 600 В. Конденсатор как всегда в таких случаях пленочный типа К-73-17. Если этих мер не предпринять, то катушка пускателя удерживаться как следует не будет: получится звонок громкого боя.

Q4015LTH. Такой Quadrac судя по обозначению имеет рабочее напряжение 400 В, максимальный ток 15 А, и предназначен для работы с высокоиндуктивной нагрузкой.

Назначение обычного симистора это переключение переменного тока при помощи импульсов напряжения на управляющем электроде. При его использовании в сумеречном выключателе обязательно потребуется пороговое устройство, как было описано выше.

Симистор типа Quadrac пороговое устройство содержит внутри себя. Это интегрированный динистор с порогом срабатывания около 40 В. Для того, чтобы создать на таком симисторе сумеречный выключатель достаточно всего двух деталей. На схеме это резистор R1 и фотоэлемент (фоторезистор) PHOTOCELL. Такая схема показана на рисунке 3.

Рисунок 3. Простой сумеречный выключатель.

Когда фотоэлемент фотореле засвечен его сопротивление невелико (не более нескольких кОм), напряжение на управляющем электроде квадрака незначительное, отчего он находится в закрытом состоянии. При этом лампочка, естественно, не горит.

При снижении освещенности сопротивление фоторезистора увеличивается, поэтому на управляющем электроде появятся импульсы напряжения, амплитуда которых с наступлением темноты возрастает. Когда амплитуда импульсов достигнет 40 В симистор откроется, лампа зажжется.

В описываемом устройстве применен квадрак (такое наименование вполне применимо, даже «Яндекс» находит по нему то, что нужно) с рабочим напряжением 600В и током 4 А. при таких параметрах можно включать нагрузку мощностью 400…500 Вт, и при этом даже не требуется установка симистора на радиатор. Если же установить его на радиатор площадью около 100 квадратных сантиметров, то мощность нагрузки можно увеличить до 750 Ватт.

Если планируется подключение нагрузки с большей мощностью, то следует применить Quadrac на рабочие токи 6, 8, 10 или 15 А.

Настройка устройства сводится к подбору сопротивления резистора R1, именно от этой величины зависит, при какой освещенности будет срабатывать устройство. Величина сопротивления резистора R1 также зависит от примененного фотоэлемента сумеречного выключателя, поэтому, указанное на схеме значение, следует принимать за ориентировочное. Тип фоторезистора на схеме не указан. Можно применить любой, например СФ3-1, ФСК-7 или ФСК-Г1.

Налаживание самодельного фотореле можно выполнить при освещении фотоэлемента обычной лампой накаливания, подключенной через регулятор мощности.

Источник