Меню

Силы разделяющие заряды внутри источника тока это

Сторонние силы. Электродвижущая сила и напряжение

Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от то­чек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравниванию потенциалов во всех точках цепи и к исчезновению электричес­кого поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называ­ются источниками тока.Силы неэлектро­статического происхождения, действую­щие на заряды со стороны источников тока, называются сторонними.

Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии

химических реакций между электродами и электролитами; в генераторе — за счет механической энергии вращения ро­тора генератора и т. п. Роль источника тока в электрической цепи, образно гово­ря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электри­ческие заряды движутся внутри источни­ка тока против сил электростатического поля, благодаря чему на концах цепи под­держивается разность потенциалов и в це­пи течет постоянный электрический ток.

Сторонние силы совершают работу по перемещению электрических зарядов. Фи­зическая величина, определяемая работой, совершаемой сторонними силами при пе­ремещении единичного положительного заряда, называется электродвижущей си­лой (э. д. с.)ξ, действующей в цепи:

Эта работа производится за счет энергии, затрачиваемой в источнике тока, поэтому величину ξ можно также называть элек­тродвижущей силой источника тока, вклю­ченного в цепь. Часто, вместо того чтобы сказать: «в цепи действуют сторонние си­лы», говорят: «в цепи действует э. д. с.», т. е. термин «электродвижущая сила» употребляется как характеристика сторон­них сил. Э. д. с., как и потенциал, выража­ется в вольтах (ср. (84.9) и (97.1)).

Сторонняя сила Fст, действующая на заряд Q, может быть выражена как

где Ест — напряженность поля сторонних сил. Работа же сторонних сил по переме­щению заряда Q на замкнутом участке цепи равна

Разделив (97.2) на Q, получим выражение для э.д.с., действующей в цепи:

т. е. э.д.с., действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. Э.д.с., действующая на участке 12,

На заряд Q помимо сторонних сил действуют также силы электростатическо­го поля Fe=QE. Таким образом, резуль­тирующая сила, действующая в цепи на заряд Q, равна

F=Fст+Fc=Q(Eст+E).

Работа, совершаемая результирующей силой над зарядом Q на участке 12, равна

Используя выражения (97.3) и (84.8), можем записать

Для замкнутой цепи работа электростати­ческих сил равна нулю (см. §83), поэтому в данном случае A12=Qξ12.

НапряжениемU на участке 12 на­зывается физическая величина, определя­емая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении еди­ничного положительного заряда на дан­ном участке цепи. Таким образом, соглас­но (97.4),

Понятие напряжения является обоб­щением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует э.д.с., т. е. сторонние силы отсутствуют.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Т. Сторонние силы

Электрические цепи. Электродвижущая сила

Электрическая цепь состоит из источника тока, потребителей электроэнергии, соединительных проводов и ключа, служащего для размыкания и замыкания цепи и других элементов (рис. 1).

Читайте также:  Что характеризует энергия магнитного поля тока

Рисунки, на которых изображены способы соединения электрических приборов в цепь, называются электрическими схемами. Приборы на схемах обозначаются условными знаками.

Как отмечалось, для поддержания в цепи электрического тока необходимо, чтобы на концах ее (рис. 2) существовала постоянная разность потенциалов φAφB. Пусть в начальный момент времени φA > φB, тогда перенос положительного заряда q из точки А в точку В приведет к уменьшению разности потенциалов между ними. Для сохранения постоянной разности потенциалов необходимо перенести точно такой же заряд из B в A. Если в направлении АВ заряды движутся под действием сил электростатического поля, то в направлении ВА перемещение зарядов происходит против сил электростатического поля, т.е. под действием сил неэлектростатической природы, так называемых сторонних сил. Это условие выполняется в источнике тока, который поддерживает движение электрических зарядов. В большинстве источников тока движутся только электроны, в гальванических элементах — ионы обоих знаков.

Источники электрического тока могут быть различны по своей конструкции, но в любом из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделение зарядов происходит под действием сторонних сил. Сторонние силы действуют лишь внутри источника тока и могут быть обусловлены химическими процессами (аккумуляторы, гальванические элементы), действием света (фотоэлементы), изменяющимися магнитными полями (генераторы) и т.д.

Любой источник тока характеризуют электродвижущей силой — ЭДС.

Электродвижущей силой ε источника тока называют физическую скалярную величину, равную работе сторонних сил по перемещению единич ного положительного заряда вдоль замкнутой цепи

Единицей электродвижущей силы в СИ является вольт (В).

ЭДС является энергетической характеристикой источника тока.

В источнике тока в процессе работы по разделению заряженных частиц происходит превращение механической, световой, внутренней и т.п. энергии в электрическую. Разделенные частицы накапливаются на полюсах источника тока (места, к которым с помощью клемм или зажимов подсоединяют потребители). Один полюс источника тока заряжается положительно, другой — отрицательно. Между полюсами источника тока создается электростатическое поле. Если полюса источника тока соединить проводником, то в такой электрической цепи возникает электрический ток. При этом характер поля меняется, оно перестает быть электростатическим.

На рисунке 3 схематично в виде сферического проводника изображена отрицательная клемма источника тока и сечение присоединенного к ней конца металлического провода. Пунктиром показаны некоторые линии напряженности поля клеммы до внесения в него провода, а стрелками — силы, действующие на свободные электроны провода, находящиеся в точках, помеченных цифрами. Электроны в различных точках поперечного сечения провода под действием кулоновских сил поля клеммы приобретают движение не только вдоль оси провода. Например, электрон, находящийся в точке 1, оказывается вовлеченным в «токовое» движение. Но вблизи точек 2, 3, 4, 5 электроны имеют возможность скапливаться на поверхности провода. Причем поверхностное распределение электронов по длине провода не будет равномерным. Следовательно, подключение провода к клемме источника тока приведет к тому, что некоторые электроны начнут двигаться вдоль провода, а часть электронов будет скапливаться на поверхности. Неравномерное распределение электронов на его поверхности обеспечивает неэквипотенциальность этой поверхности, наличие составляющих напряженности электрического поля, направленных вдоль поверхности проводника. Это поле перераспределенных электронов самого проводника и обеспечивает упорядоченное движение других электронов. Если распределение электронов по поверхности проводника с течением времени не изменяется, то такое поле называют стационарным электрическим полем. Таким образом, главную роль в создании стационарного электрического поля играют заряды, находящиеся на полюсах источника тока. При замыкании электрической цепи взаимодействие именно этих зарядов со свободными зарядами проводника приводит к появлению на всей поверхности проводника нескомпенсированных поверхностных зарядов. Именно эти заряды создают стационарное электрическое поле внутри проводника по всей его длине. Это поле внутри проводника однородное, и линии напряженности направлены вдоль оси проводника (рис. 4). Процесс установления электрического поля вдоль проводника происходит со скоростью c ≈ 3·10 8 м/с.

Читайте также:  Экономическая плотность тока для меди

Как и электростатическое поле, оно потенциально. Но между этими полями имеются существенные отличия:

  1. электростатическое поле — поле неподвижных зарядов. Источником стационарного электрического поля являются движущиеся заряды, причем общее число зарядов и картина их распределения в данном пространстве с течением времени не изменяются;
  2. электростатическое поле существует вне проводника. Напряженность электростатического поля всегда равна 0 внутри объема проводника, а в каждой точке внешней поверхности проводника направлена перпендикулярно к этой поверхности. Стационарное электрическое поле существует и вне и внутри проводника. Напряженность стационарного электрического поля не равна нулю внутри объема проводника, а на поверхности и внутри объема имеются составляющие напряженности, не перпендикулярные к поверхности проводника;
  3. потенциалы разных точек проводника, по которому проходит постоянный ток, разные (поверхность и объем проводника не эквипотенциальны). Потенциалы всех точек поверхности проводника, находящегося в электростатическом поле, одинаковы (поверхность и объем проводника эквипотенциальны);
  4. электростатическое поле не сопровождается появлением магнитного поля, а стационарное электрическое поле сопровождается его появлением и неразрывно с ним связано.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 259-261.

Источник

Фізика — легко!

Вивчаємо фізику та не тільки

Фізика — легко!

Электродвижущая сила источника тока

Ещё почитать можно здесь easyelectronics.ru

Внутри источника тока происходит разделение зарядов — на положительном полюсе источника накапливается положительный заряд, на отрицательном — отрицательный. Из-за этого между полюсами возникает разность потенциалов, и во внешней части цепи возникает электрическое поле, под действием которого во внешней цепи течёт ток.

Вне источника тока свободные заряды движутся под действием сил электростатического поля, но всередине источника они движутся против сил этого поля.

Причины движения зарядов в источнике по своей природе отличаются от природы кулоновских сил . Совокупность причин, из-за которых происходит вынужденное перемещение зарядов внутри источника тока, называют стороннними силами .

Природа сторонних сил разная. Они могут возникать в результате:
1. химических реакций (в гальванических элементах, аккумуляторах);
2. из-за светового воздействия (фотоэлементы);
3. изменения магнитного поля (в электромагнитных генераторах) и т.д.

То есть СТОРОННИЕ СИЛЫ — это любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т.е. кулоновских).

Сторонние силы своей работой замыкают цепь и обеспечивают постоянство тока. Каждый источник тока характеризуется работой действующих в нём сторонних сил по перемещению единичного положительного заряда, то есть определённой электродвижущей силой (ЭДС).

Электродвижущая сила — это скалярная величина, которая характеризует энергетические свойства источника тока и равна отношению работы сторонних сил по перемещению положительного заряда внутри источника к значению этого заряда.

Читайте также:  Чему равна сила тока если заряд 20 кулон проходит через поперечное сечение за 1 с

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Источник

Электродвижущая сила. Внутреннее сопротивление источника тока.

Сторонние силы. Для поддержания постоянной разности потенциалов на концах проводника, а значит, и тока необходимо наличие сторонних сил неэлектрической природы, с помощью которых происходит разделение электрических зарядов.

Электродвижущая сила Внутреннее сопротивление источника тока

Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).

Сторонние силы приводят в движение заряженные частицы внут­ри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создается электрическое поле во всех про­водниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движут­ся от положительно заряженного электрода к отрицательному), а во всей остальной цепи их приводит а движение электрическое поле (см. рис. выше).

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение разных видов энергии в электричес­кую. По типу преобразованной энергии различают следующие виды электродвижущей силы:

— электростатическая — в электрофорной машине, в которой происходит превращение механической энергии при трении в электрическую;

— термоэлектрическая — в термоэлементе — внутренняя энергия нагретого спая двух проволок, изготовленных из разных металлов, превращается в электрическую;

— фотоэлектрическая — в фотоэлементе. Здесь происходит превращение энергии света в элек­трическую: при освещении некоторых веществ, например, селена, оксида меди (I), кремния наблюдается потеря отрицательного электрического заряда;

— химическая — в гальванических элементах, аккумуляторах и др. источниках, в которых происходит превращение химической энергии в электрическую.

Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г. Омом в 1827 г. для цепей постоянного тока. В 1857 г. Кирхгофф определил ЭДС как работу сторонних сил при переносе единичного электрического заряда вдоль замкнутого контура:

где ɛ — ЭДС источника тока, Аст — работа сторонних сил, q — количество перемещенного заряда.

Электродвижущую силу выражают в вольтах.

Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке.

Внутреннее сопротивление источника тока .

Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R. Ток в замкну­той цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r.

В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.

Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до со­тни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.

Источник