Меню

Сила тока при уменьшении сопротивления в последовательной цепи

Сила тока при последовательном соединении

В электрических цепях используются различные типы соединений. Основными являются последовательные, параллельные и смешанные схемы подключений. В первом случае используется несколько сопротивлений, соединенных в единую цепочку друг за другом. То есть, начало одного резистора соединяется с концом второго, а начало второго – с концом третьего и так далее, до любого количества сопротивлений. Сила тока при последовательном соединении будет одинаковой во всех точках и на всех участках. Для определения и сравнения других параметров электрической цепи, следует рассматривать и остальные виды соединений, обладающие собственными свойствами и характеристиками.

Последовательное и параллельное соединение сопротивлений

Любая нагрузка обладает сопротивлением, препятствующим свободному течению электрического тока. Его путь проходит от источника тока, через проводники к нагрузке. Для нормального прохождения тока, проводник должен обладать хорошей проводимостью и легко отдавать электроны. Это положение пригодится далее при рассмотрении вопроса, что такое последовательное соединение.

Сила тока при последовательном соединении

В большинстве электрических цепей применяются медные проводники. Каждая цепь содержит приемники энергии – нагрузки, обладающие различными сопротивлениями. Параметры соединения лучше всего рассматривать на примере внешней цепи источника тока, состоящей из трех резисторов R1, R2, R3. Последовательное соединение предполагает поочередное включение этих элементов в замкнутую цепь. То есть начало R1 соединяется с концом R2, а начало R2 – с концом R3 и так далее. В такой цепочке может быть любое количество резисторов. Эти символы используют в расчетах последовательные и параллельные соединения.

Сила тока на всех участках будет одинаковой: I = I1 = I2 = I3, а общее сопротивление цепи составит сумму сопротивлений всех нагрузок: R = R1 + R2 + R3. Остается лишь определить, каким будет напряжение при последовательном соединении. В соответствии с законом Ома, напряжение представляет собой силу тока и сопротивления: U = IR. Отсюда следует, что напряжение на источнике тока будет равно сумме напряжений на каждой нагрузке, поскольку ток везде одинаковый: U = U1 + U2 + U3.

При постоянном значении напряжения, ток при последовательном соединении будет находиться в зависимости от сопротивления цепи. Поэтому при изменении сопротивления хотя-бы на одной из нагрузок, произойдет изменение сопротивления во всей цепи. Кроме того, изменятся ток и напряжение на каждой нагрузке. Основным недостатком последовательного соединения считается прекращение работы всех элементов цепи, при выходе из строя даже одного из них.

Совершенно другие характеристики тока, напряжения и сопротивления получаются при использовании параллельного соединения. В этом случае начала и концы нагрузок соединяются в двух общих точках. Происходит своеобразное разветвление тока, что приводит к снижению общего сопротивления и росту общей проводимости электрической цепи.

Для того чтобы отобразить эти свойства, вновь понадобится закон Ома. В данном случае сила тока при параллельном соединении и его формула будет выглядеть так: I = U/R. Таким образом, при параллельном соединении n-го количества одинаковых резисторов, общее сопротивление цепи будет в n раз меньше любого из них: Rобщ = R/n. Это указывает на обратно пропорциональное распределение токов в нагрузках по отношению к сопротивлениям этих нагрузок. То есть, при увеличении параллельно включенных сопротивлений, сила тока в них будет пропорционально уменьшаться. В виде формул все характеристики отображаются следующим образом: сила тока – I = I1 + I2 + I3, напряжение – U = U1 = U2 = U3, сопротивление – 1/R = 1/R1 + 1/R2 + 1/R3.

При неизменном значении напряжения между элементами, токи в этих резисторах не имеют зависимости друг от друга. Если один или несколько резисторов будут выключены из цепи, это никак не повлияет на работу других устройств, остающихся включенными. Данный фактор является основным преимуществом параллельного соединения электроприборов.

В схемах обычно не используется только последовательное соединение и параллельное соединение сопротивлений, они применяются в комбинированном виде, известном как смешанное соединение. Для вычисления характеристик таких цепей применяются формулы обоих вариантов. Все расчеты разбиваются на несколько этапов, когда вначале определяются параметры отдельных участков, после чего они складываются и получается общий результат.

Законы последовательного и параллельного соединения проводников

Основным законом, применяемым при расчетах различных видов соединений, является закон Ома. Его основным положением является наличие на участке цепи силы тока, прямо пропорциональной напряжению и обратно пропорциональной сопротивлению на данном участке. В виде формулы этот закон выглядит так: I = U/R. Он служит основой для проведения расчетов электрических цепей, соединяемых последовательно или параллельно. Порядок вычислений и зависимость всех параметров от закона Ома наглядно показаны на рисунке. Отсюда выводится и формула последовательного соединения.

Более сложные вычисления с участием других величин требуют применения правила Кирхгофа. Его основное положение заключается в том, что несколько последовательно соединенных источников тока, будут обладать электродвижущей силой (ЭДС), составляющей алгебраическую сумму ЭДС каждого из них. Общее сопротивление этих батарей будет состоять из суммы сопротивлений каждой батареи. Если выполняется параллельное подключение n-го количества источников с равными ЭДС и внутренними сопротивлениями, то общая сумма ЭДС будет равно ЭДС на любом из источников. Значение внутреннего сопротивления составит rв = r/n. Эти положения актуальны не только для источников тока, но и для проводников, в том числе и формулы параллельное соединение проводников.

В том случае, когда ЭДС источников будет иметь разное значение, для расчетов силы тока на различных участках цепи применяются дополнительные правила Кирхгофа.

Источник



Последовательное и параллельное соединение резисторов.

Как я и обещал в статье про переменные резисторы (ссылка), сегодня речь пойдет о возможных способах соединения, в частности о последовательном соединении резисторов и о параллельном.

Последовательное соединение резисторов.

Давайте начнем с рассмотрения цепей, элементы которой соединены последовательно. И хоть мы и будем рассматривать только резисторы в качестве элементов цепи в данной статье, но правила, касающиеся напряжений и токов при разных соединениях будут справедливы и для других элементов. Итак, первая цепь, которую мы будем разбирать выглядит следующим образом:

Последовательное соединение резисторов.

Здесь у нас классический случай последовательного соединения – два последовательно включенных резистора. Но не будем забегать вперед и рассчитывать общее сопротивление цепи, а для начала рассмотрим все напряжения и токи. Итак, первое правило заключается в том, что протекающие по всем проводникам токи при последовательном соединении равны между собой:

А для определения общего напряжения при последовательном соединении, напряжения на отдельных элементах необходимо просуммировать:

В то же время, по закону Ома для напряжений, сопротивлений и токов в данной цепи справедливы следующие соотношения:

Тогда для вычисления общего напряжения можно будет использовать следующее выражение:

Но для общего напряжение также справедлив закон Ома:

Здесь R_0 – это общее сопротивление цепи, которое исходя из двух формул для общего напряжения равно:

Таким образом, при последовательном соединении резисторов общее сопротивление цепи будет равно сумме сопротивлений всех проводников.

Например для следующей цепи:

Пример цепи.

Общее сопротивление будет равно:

Количество элементов значения не имеет, правило, по которому мы определяем общее сопротивление будем работать в любом случае 🙂 А если при последовательном соединении все сопротивления равны ( R_1 = R_2 = … = R ), то общее сопротивление цепи составит:

В данной формуле n равно количеству элементов цепи. С последовательным соединением резисторов мы разобрались, давайте перейдем к параллельному.

Параллельное соединение резисторов.

Параллельное соединение резисторов.

При параллельном соединении напряжения на проводниках равны:

А для токов справедливо следующее выражение:

Читайте также:  Полное сопротивление катушки для постоянного тока

То есть общий ток разветвляется на две составляющие, а его значение равно сумме всех составляющих. По закону Ома:

Подставим эти выражения в формулу общего тока:

А по закону Ома ток:

Приравниваем эти выражения и получаем формулу для общего сопротивления цепи:

Данную формулу можно записать и несколько иначе:

Таким образом, при параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Аналогичная ситуация будет наблюдаться и при большем количестве проводников, соединенных параллельно:

Пример цепи.

Смешанное соединение резисторов.

Помимо параллельного и последовательного соединений резисторов существует еще смешанное соединение. Из названия уже понятно, что при таком соединении в цепи присутствуют резисторы, соединенные как параллельно, так и последовательно. Вот пример такой цепи:

Смешанное соединение резисторов.

Давайте рассчитаем общее сопротивление цепи. Начнем с резисторов R_1 и R_2 – они соединены параллельно. Мы можем рассчитать общее сопротивление для этих резисторов и заменить их в схеме одним единственным резистором R_ <1-2>:

Теперь у нас образовались две группы последовательно соединенных резисторов:

  • R_ <1-2>и R_3
  • R_4 и R_5

Упрощенная схема.

Заменим эти две группы двумя резисторами, сопротивление которых равно:

Упрощенная схема 2.

Как видите, схема стала уже совсем простой 🙂 Заменим группу параллельно соединенных резисторов R_ <1-2-3>и R_ <4-5>одним резистором R_ <1-2-3-4-5>:

И в итоге у нас на схеме осталось только два резистора соединенных последовательно:

Финальная цепь.

Общее сопротивление цепи получилось равным:

Таким вот образом достаточно большая схема свелась к простейшему последовательному соединению двух резисторов!

Тут стоит отметить, что некоторые схемы невозможно так просто преобразовать и определить общее сопротивление – для таких схем нужно использовать правила Кирхгофа, о которых мы обязательно поговорим в будущих статьях. А сегодняшняя статья на этом подошла к концу, до скорых встреч на нашем сайте!

Источник

Последовательное и параллельное соединение

Последовательное и параллельное соединение очень широко используется в электронике и электротехнике и порой даже необходимо для правильной работы того или иного узла электроники. И начнем, пожалуй, с самых простых компонентов радиоэлектронных цепей – проводников.

Для начала давайте вспомним, что такое проводник? Проводник – это вещество или какой-либо материал, который отлично проводит электрический ток. Если какой-либо проводник отлично проводит электрический ток, то он в любом случае обладает каким-либо сопротивлением. Сопротивление проводника мы находим по формуле:

формула сопротивления проводникаформула сопротивление проводника

ρ – это удельное сопротивление, Ом × м

R – сопротивление проводника, Ом

S – площадь поперечного сечения, м 2

l – длина проводника, м

Более подробно об этом я писал здесь.

Следовательно, любой проводник представляет из себя резистор с каким-либо сопротивлением. Значит, любой проводник можно нарисовать так.

резистор обозначение резистора на схемах

Последовательное соединение проводников

Сопротивление при последовательном соединении проводников

Последовательное соединение проводников – это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.

последовательное соединение проводников

последовательное соединение резисторов

Чему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.

общее сопротивление при последовательном соединении

Получается, можно записать, что

формула при последовательном соединении проводников

формула при последовательном соединении резисторов

Пример

У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.

Решение

То есть, как вы видите, цепочку из 3 резисторов мы просто заменили на один резистор RAB .

общее сопротивление

показать на реальном примере с помощью мультиметра
Видео где подробно расписывается про эти соединения:

Сила тока через последовательное соединение проводников

Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.

замкнутая цепь

Получается, если через резистор RAB течет какой-то определенный ток, следовательно, если разложить наш резистор на составляющие R1 , R2 , R3 , то получится, что через них течет та же самая сила тока, которая текла через резистор RAB .

сила тока через последовательное соединение проводников

сила тока через последовательное соединение проводников

Получается, что при последовательном соединении проводников сила тока, которая течет через каждый проводник одинакова. То есть через резистор R1 течет такая же сила тока, как и через резистор R2 и такая же сила тока течет через резистор R3 .

Напряжение при последовательном соединении проводников

Давайте еще раз рассмотрим цепь с тремя резисторами

цепь с тремя резисторами

Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?

Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на любом резисторе. Давайте так и сделаем.

Пусть у нас будет цепь с такими параметрами.

задача на закон ома

Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.

общее сопротивление

Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.

Половина дела сделано. Теперь осталось узнать, какое напряжение падает на каждом резисторе. То есть нам надо найти значения UR1 , UR2 , UR3 . Но как это сделать?

падение напряжения на резисторе

Да все также, через закон Ома. Мы знаем, что через каждый резистор проходит сила тока 1 Ампер, мы уже вычислили это значение. Закон ома гласит I=U/R , отсюда получаем, что U=IR.

Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.

Мы получили самый простой делитель напряжения.

Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.

Параллельное соединение проводников

Параллельное соединение проводников выглядит вот так.

параллельное соединение проводников

параллельное соединение резисторов

Ну что, думаю, начнем с сопротивления.

Сопротивление при параллельном соединении проводников

Давайте пометим клеммы как А и В

В этом случае общее сопротивление RAB будет находиться по формуле

Если же мы имеем только два параллельно соединенных проводника

параллельное соединение двух резисторов

То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.

сопротивление двух резисторов, включенных параллельно формула

Напряжение при параллельном соединении проводников

Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.

резисторы в параллель

Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn

напряжение при параллельном соединении проводников

Сила тока при параллельном соединении проводников

Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.

Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.

делитель тока

Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что

Если бы у нас еще были резисторы, соединенные параллельно, то для них

В этом случае, сила тока в цепи будет равна:

формула делителя тока

Задача

Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.

задача на делитель тока

Решение

Воспользуемся формулами, которые приводили выше.

Если бы у нас еще были резисторы, соединенные параллельно, то для них

Далее, воспользуемся формулой

формула делителя тока

чтобы найти силу тока, которая течет в цепи

2-ой способ найти I

Чтобы найти Rобщее мы должны воспользоваться формулой

Последовательное и параллельное соединение

Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.

I=U/Rобщее = 10/1,25=8 Ампер.

Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.

Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.

Подробное объяснение на видео:

Похожие статьи по теме “последовательное и параллельное соединение”

Источник

Как уменьшить сопротивление койла

Применение токоограничивающего резистора для светодиода


Резистор применяют для ограничения силы тока

Для декоративного украшения, обеспечения хорошей видимости в затемненном коридоре и решения других практических задач используют светодиоды. Они намного экономичнее по сравнению с классическими лампами накаливания. Высокая прочность предотвращает заражение окружающей среды вредными химическими соединениями, что не исключено после повреждения колбы газоразрядного источника света.

С учетом односторонней проводимости полупроводникового перехода понятна необходимость подключения светодиода к аккумуляторной батарее, другому источнику питания постоянного тока. Напряжение стандартной бытовой сети выпрямляют, снижают до номинального уровня. Резистором ограничивают силу тока.

Особенности работы и расчеты


Использование резистора при проверке светодиода

Несмотря на существенные преимущества, внимательные пользователи рекомендуют обращать внимание на существенные недостатки светодиодных приборов:

  • полупроводниковые технологии определяют нелинейные вольт-амперные характеристики (ВАХ);
  • повышение напряжения выше определенного порога сопровождается деградацией p-n перехода;
  • на определенном уровне (при прямом или обратном включении) резкое увеличение силы тока повреждает изделие.

Особое значение имеет собственное небольшое сопротивление в рабочем режиме. Относительно небольшое изменение основных параметров источника питания способно повредить полупроводниковый переход. По этой причине в цепь добавляют токоограничительный резистор.

Дополнительный пассивный элемент увеличивает потребление энергии. По этой причине рекомендуется применять такие решения в комбинации со светодиодами небольшой мощности, либо для создания устройств с небольшими рабочими циклами.

Математический расчет


Таблица зависимости напряжения светодиода от его цвета

В простейшей цепи к источнику постоянного тока (I) с определенным напряжением (Uи) на выходных клеммах подключают последовательно токоограничивающий резистор (R) и светодиод. Рассчитать электрическое сопротивление можно с применением известной формулы закона Ома (I = U/R).

Также пригодится второй постулат Кирхгофа. В данном примере он определяет следующее равенство: Uи = Ur + Uc, где Ur (Uc) – напряжение на резисторе (светодиоде) соответственно. Простым преобразованием этих выражений можно получить базовые зависимости:

  • Uи = I*R + I*Rc;
  • R = (Uи – Uc)/ I.

Здесь Rc обозначает дифференциальное сопротивление полупроводникового прибора, которое изменяется по нелинейному закону в зависимости от напряжения и тока. На обратной части вольт-амперной характеристики можно выделить область запирания. Существенное увеличение Rc на этом участке предотвращает движение электронов (Iобр = 0). Однако при последующем увеличении напряжения на определенном уровне (Uобр-м) возникает пробой p-n перехода.


Расчет сопротивления резистора для светодиода при 5 В

Так как драйвер обеспечивает питание постоянным током, особо внимательно нужно изучить соответствующее «прямое» включение. Особенности ВАХ:

  • на первом участке до Uн плавно уменьшается сопротивление и соответствующим образом увеличивается ток;
  • от Uн до Uм – рабочая зона (излучение в световом диапазоне);
  • далее – резкое уменьшение сопротивление провоцирует экспоненциальный рост силы тока с последующим выходом изделия из строя.

Расчет светодиодов выполняют на основе значения рабочего напряжения Uc. Этот параметр производители указывают в сопроводительной документации. Для вычисления электрического сопротивления подходящего токоограничивающего резистора применяют формулу: R = (Uи – Uc)/ I.

Графический расчет


Вольтамперная характеристика светодиодов

Если взять ВАХ, можно применить графическую методику. Исходную графическую и цифровую информацию берут из паспорта, либо на официальном сайте производителя. Алгоритм действий (пример):

  • по исходным данным номинальный ток светодиода (In) составляет 25 мА;
  • от соответствующей точки (1) на вертикальной оси ординат проводят пунктир до пересечения с кривой ВАХ (2);
  • отмечают напряжение источника питания (Uи = 5,5 V) на оси абсцисс (3);
  • проводят линию через точки (2) и (3);
  • пересечение с осью ординат покажет значение максимально допустимого тока (Im = 60 мА).


Расчет сопротивления резистора для обеспечения диоду тока величиной 100 мА при напряжении источника питания – 5 вольт

Далее по классической формуле не сложно рассчитать, какой резистор нужен для светодиода в этом случае: R = Uи /Im = 5,5/ 0,06 ≈ 91,7. В серийном ряду надо выбрать ближайший номинал с небольшим запасом – 100 Ом. Это решение несколько уменьшит КПД. Но в щадящем режиме функциональные компоненты будут меньше греться. Соответствующим образом снизятся нагрузки на полупроводниковый переход. Следует рассчитывать на увеличение длительности срока службы источника света.

Для корректного выбора резистора надо знать мощность (P). Стандартные значения (Вт): 0,125; 0,25; 0,5; 1; 2; 5. Вычисления можно сделать по любым известным параметрам с применением формул: P = Im2 * R = Ur2 / R. Если взять исходные данные рассматриваемого примера: P = 0,06 * 0,06 * 100 = 0, 36 Вт. С учетом типового модельного ряда выбирать надо резистор сопротивлением 100 Ом с мощностью рассеивания 0,5 Вт.

Допуски по точности электрического сопротивления резисторов составляют от 0,001 до 30% от номинала. В маркировке по международным стандартам соответствующие классы обозначают латинскими буквами (D – 0,5%; G – 2%; J – 5%).

Как правильно найти и посчитать формулой сопротивление цепи

Сперва следует разобрать понятия и формулы. Индуктивный тип считается так: XL= ωL, где L – индуктивность цепи, а ω – круговая частота переменного тока, равная 2πf (f – частота переменного тока). Чем больше частота сети, тем большим R для нее становится какая-либо катушка индуктивности.

Вам это будет интересно Как рассчитать сопротивление цепи

Емкостный тип можно рассчитать по формуле: Xc = 1/ ωC, где С – емкость радиоэлемента. Здесь все наоборот. Если происходит увеличение частоты, то сопротивляемость конденсатора напряжению уменьшается. Из этого исходит то, что для сети постоянного тока конденсатор – бесконечно большое R.


Высчитать характеристику можно и с помощи других величин

Но не только вид сопротивления и радиоэлементы, обеспечивающие его, влияют на общее значение цепи. Особую роль играет также и способ соединения элементов в электроцепь. Существует два варианта:

  • Последовательный;
  • Параллельный.

В последовательном подключении

Это самый простой тип для практического и теоретического рассмотрения. В нем элементы резисторного типа соединяются, очевидно, последовательно, образуя подобие «змейки» после чего электрическая цепь замыкается. Посчитать общее значение в таком случае довольно просто: требуется последовательно сложить все значения, выдаваемые каждым из резисторов. Например, если подключено 5 резисторов по 5 Ом каждый, то общий параметр будет равен 5 на 5 – 25 Ом.


Формула последовательной сети

В параллельном подключении

Немного сложнее все устроено в параллельных сетях. Если при последовательном способе току нужно пройти все резисторы, то тут он вправе выбрать любой. На самом деле он просто будет разделен между ними. Суть в том, что есть характеристика, схожая для всех радиоэлементов, например, величина в 5 Ом означает, что для нахождения общего R необходимо разделить его на количество всех подключенных резисторов: 5/5 = 1 Ом.

Важно! Из-за того, что напряжение на параллельных участках одинаково, а токи складываются, то есть сумма токов в участках равна неразветвленному току, то Rобщ будет высчитываться формуле: 1/R = 1/R1 + 1/R2 + … + 1/Rn.


Формула параллельной сети

Подключение светодиода через резистор


Схема подключения светодиода

С учетом представленных данных можно сделать несколько важных промежуточных выводов:

  • резистивные защитные схемы применяют при маленькой мощности;
  • они не выполняют функции стабилизации;
  • пассивный элемент не способен гасить импульсные броски напряжения.

Приемлемые показатели эффективности можно получить при создании:

  • датчиков;
  • индикаторов;
  • сигнализаторов.

Для маленькой локальной подсветки аквариума такое решение подойдет. Однако вряд ли будет приемлемым длительное потребление большого количества энергии. Отсутствие стабилизации проявляется заметным изменением яркости при увеличении/уменьшении напряжения.

Специалисты рекомендуют при суммарном потреблении больше 1,5-2 Вт использовать источники питания с надежной стабилизацией по току. Эти устройства (диммеры) применяют для подключения групп осветительных приборов и полупроводниковых приборов высокой мощности.

Расчет резистора для светодиода


Программа расчета сопротивления резистора для светодиода

Сделать необходимые вычисления можно в режиме онлайн с помощью специализированного калькулятора. Полноценное использование таких программ предлагается бесплатно.

Однако не всегда имеется доступ к сети Интернет. После изучения достаточно простой методики любой человек сможет оперативно подобрать резистор для светодиода без поиска соответствующего программного обеспечения.

Для наглядной демонстрации алгоритма нужно рассмотреть подключение защитного резистора в цепь питания (5 В) определенного светодиода (Epistar 1W HP).

  • мощность рассеивания, Вт – 1;
  • ток, мА – 350;
  • прямое напряжение (типовое/макс.), В – 2,35/2,6.

Для ограничения тока светодиода с учетом рекомендаций производителя подойдет резистор с электрическим сопротивлением R = (5-2,35)/0,35 = 7,57 Ом. По стандарту E24 ближайшие значения – 7,5 и 8,2 Ом. Если воспользоваться стандартными правилами придется выбрать больше значение, которое отличается от расчетного почти на 8,5%. Дополнительную погрешность создаст 5% допуск серийных недорогих изделий. При таком отклонении трудно получить приемлемые по защитным функциям и потребляемой мощности характеристики цепи.

Первый способ решения проблемы – выбор нескольких резисторов с меньшими номиналами. Далее применяют последовательный, параллельный или комбинированный вариант соединения для получения необходимого эквивалентного сопротивления участка цепи. Второй метод – добавление подстроечного резистора.

В чем измеряется сопротивление резистора

Чтобы ответить на вопрос в чем измеряется сопротивление резистора, нужно обратиться к стандартизации и наукам об измерениях. Международная и общепринятая схема цветовых кодов резисторов была разработана много лет назад как простой и быстрый способ определения омического значения резистора независимо от его размера или состояния. Он состоит из набора отдельных цветных колец или полос в спектральном порядке, представляющих каждую цифру значения резисторов. Сила сопротивления определеяет качество резистора.
Цветовая маркировка резистора всегда считывается по одной полосе за раз, начиная слева направо, с большей полосой допуска ширины, ориентированной на правую сторону, что указывает на ее допуск. Путем сопоставления цвета первой полосы с соответствующим номером в столбце цифр цветовой диаграммы под первой цифрой идентифицируется, и это представляет первую цифру значения сопротивления.

Опять же, сопоставляя цвет второй полосы с соответствующим номером в столбце цифр цветовой диаграммы, мы получаем вторую цифру значения сопротивления и так далее. Затем цветовой код резистора читается слева направо, как показано ниже:

Это система маркировки. Резисторы бывают разных размеров и значений сопротивления, а чтобы вычислить нужный, и существуют формулы расчета. Резисторы изготавливаются по определенной стандартной сетке, которая подходит для большинства целей. Чтобы не быть голословными, нужно приложить цветовую таблицу.

Вместо последовательных значений сопротивления от 1 Ом (базовая единица измерений) и выше, определенные значения резисторов существуют в определенных пределах допуска. Допуск резистора представляет собой максимальную разницу между его фактическим значением и требуемым значением и обычно выражается как зависимость положительного или отрицательного значения в процентах. Например, резистор с допуском 1 кОм ± 20% может иметь максимальное и минимальное значение сопротивления:

Максимальное значение сопротивления

  • 1 кОм или 1000 Ом + 20% = 1200 Ом

Минимальное значение сопротивления

  • 1 кОм или 1000 Ом – 20% = 800 Ом

Расчет мощности рассеивания


Условные обозначения резисторов на схемах

В любом из вариантов при выборе электрического сопротивления цепи следует устанавливать несколько меньший ток, чтобы продлить срок службы светодиода. Чтобы предотвратить повреждение нагревом, изделие применяют в рекомендованном температурном диапазоне. Для Epistar 1W HP – от -40°C до +80°C. При необходимости – применяют монтаж на специализированном радиаторе «звезда». Это дополнение увеличивает эффективную площадь рассеивания тепла.

Для точного подбора оценивают рассеиваемую мощность резистора: P = I2 * R = (0,35)2 * 7,57 = 0,1225 * 7,57 ≈0,93 Вт. Запас по этому параметру делают не менее 20-25%. Номинала 1 Вт недостаточно, поэтому выбирают следующий номинал в стандартном ряду – 2Вт.

Экономичность собранной схемы проверяют отношением Uc/Uи = 2,35/5 = 0,47 (47%). Итоговый результат показывает, что более половины электроэнергии в данном случае используется впустую. На самом деле показатель еще хуже, так как не вся мощность потребления расходуется светодиодом на излучение в видимой части спектра. Значительная часть – электромагнитные волны ИК диапазона.

От чего зависит сопротивление резистора

Температура и последовательность включения – два главных фактора, которые определяют сопротивление в цепи. Но помимо этих показателей есть и допуски. Как же измерять? В большинстве электрических или электронных цепей большой 20% -ный допуск на один и тот же резистор, как правило, не является проблемой, но если для высокоточных цепей, таких как фильтры, генераторы или усилители и т. д., требуются резисторы с малым допуском, то необходимо использовать резистор с правильным допуском. Так как резистор с допуском 20% обычно не может использоваться для замены типа допуска 2% или даже 1%.

Параллельное соединение


Параллельное соединение светодиодов

В любой точке последовательной цепи сила тока одинаковая. Это упрощает расчет, предотвращает аварийные ситуации. При выходе одного элемента из строя отключаются все светодиоды. Поэтому исключено повреждение повышением напряжения. Отмеченные причины объясняют популярность применения данного способа при создании ленточных светильников, иных конструкций.

Определенные преимущества предоставляет применение параллельного соединения. В этом варианте изделие сохраняет частичную работоспособность при повреждении одной цепи. Такое решение обеспечивает одинаковое напряжение в местах подсоединения к источнику питания каждой ветки.

Параллельное подключение подходит для организации независимых схем управления. На этой технологии основаны принципы работы новогодних гирлянд. Отдельные ветки подключаются к источнику питания по заданному программой алгоритму.

Использовать один резистор для нескольких параллельных диодов нельзя. Тщательный выбор сопротивления объясняется необходимостью точной регулировки тока. В некоторых ситуациях ошибки на 0,1-0,5 А становятся причиной поломок, радикального сокращения ресурса.

Реальные технические характеристики светодиодов значительно отличаются даже в одной товарной партии. По этой причине каждую цепь защищают отдельным резистором.

Источник