Обзор и устройство современных счётчиков электроэнергии
За последнее время на смену индукционным счётчикам электроэнергии пришли электронные. В данных счётчиках счётный механизм приводится во вращение не с помощью катушек напряжения и тока, а с помощью специализированной электроники. Кроме того, средством счёта и отображения показаний может являться микроконтроллер и цифровой дисплей соответственно. Всё это позволило сократить габаритные размеры приборов, а также, снизить их стоимость.
В состав практически любого электронного счётчика входит одна или несколько специализированных вычислительных микросхем, выполняющие основные функции по преобразованию и измерению. На вход такой микросхемы поступает информация о напряжении и силе тока с соответствующих датчиков в аналоговом виде. Внутри микросхемы данная информация оцифровывается и преобразуется определённым образом. В результате, на выходе микросхемы формируются импульсные сигналы, частота которых пропорциональна текущей потребляемой мощности нагрузки, подключенной к счётчику. Импульсы поступают на счётный механизм, который представляет собой электромагнит, согласованный с зубчатыми передачами на колёсики с цифрами. В случае с более дорогостоящими счётчиками с цифровым дисплеем применяется дополнительный микроконтроллер. Он подключается к вышесказанной микросхеме и к цифровому дисплею по определённому интерфейсу, ведёт накопление результата измерения электроэнергии в энергонезависимую память, а также, обеспечивает дополнительный функционал прибора.
Рассмотрим несколько подобных микросхем и моделей счётчиков, которые мне попадались под руку.
Ниже на рисунке в разобранном виде изображён один из наиболее дешёвых и популярных однофазных счётчиков «НЕВА 103». Как видно из рисунка, устройство счётчика довольно простое. Основная плата состоит из специализированной микросхемы, её обвески и узла стабилизатора питания на основе балластового конденсатора. На дополнительной плате размещён светодиод, индицирующий потребляемую нагрузку. В данном случае – 3200 импульсов на 1 кВт*ч. Также есть возможность снимать импульсы с зелёного клеммника, расположенного вверху счётчика. Счётный механизм состоит из семи колёсиков с цифрами, редуктора и электромагнита. На нём отображается посчитанная электроэнергия с точностью до десятых кВт*ч. Как видно из рисунка, редуктор имеет передаточное отношение 200:1. По моим замечаниям, это означает «200 импульсов на 1 кВт*ч». То есть, 200 импульсов, поданных на электромагнит, поспособствуют прокрутке последнего красного колёсика на 1 полный оборот. Это соотношение кратно соотношению для светодиодного индикатора, что весьма не случайно. Редуктор с электромагнитом размещён в металлической коробке под двумя экранами с целью защиты от вмешательства внешним магнитным полем.
В данной модели счётчика применяется микросхема ADE7754. Рассмотрим её структуру.
На пины 5 и 6 поступает аналоговый сигнал с токового шунта, который расположен на первой и второй клеммах счётчика (на фотографии в этом месте видно повреждение). На пины 8 и 7 поступает аналоговый сигнал, пропорциональный напряжению в сети. Через пины 16 и 15 есть возможность устанавливать усиление внутреннего операционного усилителя, отвечающий за ток. Оба сигнала с помощью узлов АЦП преобразуются в цифровой вид и, проходя определённую коррекцию и фильтрацию, поступают на умножитель. Умножитель перемножает эти два сигнала, в результате чего, согласно законам физики, на его выходе получается информация о текущей потребляемой мощности. Данный сигнал поступает на специализированный преобразователь, который формирует готовые импульсы на счётное устройство (пины 23 и 24) и на контрольный светодиод и счётный выход (пин 22). Через пины 12, 13 и 14 конфигурируются частотные множители и режимы вышеперечисленных импульсов.
Стандартная схема обвески практически представляет собой схему рассматриваемого счётчика.
Общий минусовой провод соединён с нулём 220В. Фаза поступает на пин 8 через делитель на резисторах, служащий для снижения уровня измеряемого напряжения. Сигнал с шунта поступает на соответствующие входы микросхемы также через резисторы. В данной схеме, предназначенной для теста, конфигурационные пины 12-14 подключены к логической единице. В зависимости от модели счётчика, они могут иметь разную конфигурацию. В данном кратком обзоре эта информация не столь важна. Светодиодный индикатор подключен к соответствующему пину последовательно вместе с оптической развязкой, на другой стороне которой подключается клеммник для снятия счётной информации (К7 и К8).
Из этого же семейства микросхем существуют похожие аналоги для трёхфазных измерений. Вероятнее всего, они встраиваются в дешёвые трёхфазные счётчики. В качестве примера на рисунке ниже представлена структура одной из таких микросхем, а именно ADE7752.
Вместо двух узлов АЦП, здесь применено их 6: по 2 на каждую фазу. Минусовые входы ОУ напряжения объединены вместе и выводятся на пин 13 (ноль). Каждая из трёх фаз подключается к своему плюсовому входу ОУ (пины 14, 15, 16). Сигналы с токовых шунтов по каждой фазе подключаются по аналогии с предыдущим примером. По каждой из трёх фаз с помощью трёх умножителей выделяется сигнал, характеризующий текущую мощность. Эти сигналы, кроме фильтров, проходят через дополнительные узлы, которые активируются через пин 17 и служат для включения операции математического модуля. Затем эти три сигнала суммируются, получая, таким образом, суммарную потребляемую мощность по всем фазам. В зависимости от двоичной конфигурации пина 17, сумматор суммирует либо абсолютные значения трёх сигналов, либо их модули. Это необходимо для тех или иных тонкостей измерения электроэнергии, подробности которых здесь не рассматриваются. Данный сигнал поступает на преобразователь, аналогичный предыдущему примеру с однофазным измерителем. Его интерфейс также практически аналогичен.
Стоит отметить, что вышеописанные микросхемы служат для измерения активной энергии. Более дорогие счётчики способны измерять как активную, так и реактивную энергию. Рассмотрим, например, микросхему ADE7754. Как видно из рисунка ниже, её структура намного сложнее структуры микросхем из предыдущих примеров.
Микросхема измеряет активную и реактивную трёхфазную электроэнергию, имеет SPI интерфейс для подключения микроконтроллера и выход CF (пин 1) для внешней регистрации активной электроэнергии. Вся остальная информация с микросхемы считывается микроконтроллером через интерфейс. Через него же осуществляется конфигурация микросхемы, в частности, установка многочисленных констант, отражённых на структурной схеме. Как следствие, данная микросхема, в отличие от предыдущих двух примеров, не является автономной, и для построения счётчика на базе этой микросхемы требуется микроконтроллер. Можно зрительно в структурной схеме пронаблюдать узлы, отвечающие по отдельности за измерение активной и реактивной энергии. Здесь всё гораздо сложнее, чем в предыдущих двух примерах.
В качестве примера рассмотрим ещё один интересный прибор: трёхфазный счётчик «Энергомера ЦЭ6803В Р32». Как видно из фотографии ниже, данный счётчик ещё не эксплуатировался. Он мне достался в неопломбированном виде с небольшими механическими повреждениями снаружи. При всё при этом он находился полностью в рабочем состоянии.
Как можно заметить, глядя на основную плату, прибор состоит из трёх одинаковых узлов (справа), цепей питания и микроконтроллера. С нижней стороны основной платы расположены три одинаковых модуля на отдельных платах по одному на каждый узел. Данные модули представляют собой микросхемы AD71056 с минимальной необходимой обвеской. Эта микросхема является однофазным измерителем электроэнергии.
Модули запаяны вертикально на основную плату. Витыми проводами к данным модулям подключаются токовые шунты.
За пару часов удалось срисовать электрическую схему прибора. Рассмотрим её более детально.
Справа на общей схеме изображена схема однофазного модуля, о котором говорилось выше. Микросхема D1 этого модуля AD71056 по назначению похожа на микросхему ADE7755, которая рассматривалась ранее. На четвёртый контакт модуля поступает питание 5В, на третий – сигнал напряжения. Со второго контакта снимается информация в виде импульсов о потребляемой мощности через выход CF микросхемы D1. Сигнал с токовых шунтов поступает через контакты X1 и X2. Конфигурационные входы микросхемы SCF, S1 и S0 в данном случае расположены на пинах 8-10 и сконфигурированы в «0,1,1».
Каждый из трёх таких модулей обслуживает соответственно каждую фазу. Сигнал для измерения напряжения поступает на модуль через цепочку из четырёх резисторов и берётся с нулевой клеммы («N»). При этом стоит обратить внимание, что общим проводом для каждого модуля является соответствующая ему фаза. А вот, общий провод всей схемы соединён с нулевой клеммой. Данное хитрое решение по обеспечению питанием каждого узла схемы расписано ниже.
Каждая из трёх фаз поступает на стабилитроны VD4, VD5 и VD6 соответственно, затем на балластовые RC цепи R1C1, R2C2 и R3C3, затем – на стабилитроны VD1, VD2 и VD3, которые соединены своими анодами с нулём. С первых трёх стабилитронов снимается напряжение питания для каждого модуля U3, U2 и U1 соответственно, выпрямляется диодами VD10, VD11 и VD12. Микросхемы-регуляторы D1-D3 служат для получения напряжения питания 5В. Со стабилитронов VD1-VD3 снимается напряжение питания общей схемы, выпрямляется диодами VD7-VD9, собирается в одну точку и поступает на регулятор D4, откуда снимается 5В.
Общую схему составляет микроконтроллер (МК) D5 PIC16F720. Очевидно, он служит для сбора и обработки информации о текущей потребляемой мощности, поступающей с каждого модуля в виде импульсов. Эти сигналы поступают с модулей U3, U2 и U1 на пины МК RA2, RA4 и RA5 через оптические развязки V1, V2 и V3 соответственно. В результате на пинах RC1 и RC2 МК формирует импульсы для механического счётного устройства M1. Оно аналогично устройству, рассматриваемому ранее, и также имеет соотношение 200:1. Сопротивление катушки высокое и составляет порядка 500 Ом, что позволяет подключать её непосредственно к МК без дополнительных транзисторных цепей. На пине RC0 МК формирует импульсы для светодиодного индикатора HL2 и для внешнего импульсного выхода на разъёме XT1. Последний реализуется через оптическую развязку V4 и транзистор VT1. В данной модели счётчика соотношение составляет 400 импульсов на 1 кВт*ч. На практике при испытании данного счётчика (после небольшого ремонта) было замечено, что электромагнитная катушка счётного механизма срабатывает синхронно со вспышкой светодиода HL2, но через раз (в два раза реже). Это подтверждает соответствие соотношений 400:1 для индикатора и 200:1 для счётного механизма, о чём говорилось ранее.
Слева на плате расположено место для 10-пинового разъёма XS1, который служит для перепрошивки, а также, для UART интерфейса МК.
Таким образом, трёхфазный счётчик «Энергомера ЦЭ6803В Р32» состоит из трёх однофазных измерительных микросхем и микроконтроллера, обрабатывающий информацию с них.
В заключение стоит отметить, что существует ряд моделей счётчиков куда более сложней по своей функциональности. К примеру, счётчики с удалённым контролем показаний по электролинии, или даже через модуль мобильной связи. В данной статье я рассмотрел только простейшие модели и основные принципы построения их электрических схем. Заранее приношу извинения за возможно неправильную терминологию в тексте, ибо я старался излагать простым языком.
Источник
Что такое активная и реактивная электроэнергия на счетчике
С одной стороны, работу тока можно легко посчитать, зная силу тока, напряжение и сопротивление нагрузки. До боли знакомые формулы из курса школьной физики выглядят так.
И здесь нет ни слова про реактивную составляющую.
С другой стороны, ряд физических процессов на самом деле накладывают свои особенности на эти расчёты. Речь идёт о реактивной энергии. Проблемы с пониманием реактивных процессов приходят вместе со счетами за электроэнергию в крупных предприятиях, ведь в бытовых сетях мы платим только за активную энергию (размеры потребления реактивной энергии настолько малы, что ими просто пренебрегают).
Чтобы понять суть физических процессов начнём с определений.
Активная электроэнергия – это полностью преобразуемая энергия, поступающая в цепь от источника питания. Преобразование может происходить в тепло или в другой вид энергии, но суть остаётся одна – принятая энергия не возвращается обратно в источник.
Пример работы активной энергии: ток, проходя через элемент сопротивления, часть энергии преобразует в нагрев. Эта совершённая работа тока и является активной.
Реактивная электроэнергия – это энергия, возвращаемая обратно источнику тока. То есть ранее полученный и учтённый счётчиком ток, не совершив работы, возвращается. Помимо прочего ток совершает скачок (на короткое время нагрузка сильно возрастает).
Тут без примеров сложно понять процесс.
Самый наглядный – работа конденсатора. Сам по себе конденсатор не преобразует электроэнергию в полезную работу, он её накапливает и отдаёт. Конечно, если часть энергии всё-таки уходит на нагрев элемента, то её можно считать активной. Реактивная же выглядит так:
1. При питании ёмкости переменным напряжением, вместе с увеличением U растёт и заряд конденсатора.
2. В момент начала падения напряжения (второй четвертьпериод на синусоиде) напряжение на конденсаторе оказывается выше, чем у источника. И поэтому конденсатор начинает разряжаться, отдавая энергию обратно в цепь питания (ток течёт в обратном направлении).
3. В следующих двух четвертьпериодах ситуация полностью повторяется, то только напряжение меняется на противоположное.
Ввиду того, что сам конденсатор работы не совершает, принимаемое напряжение достигает своего максимального амплитудного значения (то есть в √2=1,414 раза больше действующего 220В, или 220·1,414=311В).
При работе с индуктивными элементами (катушки, трансформаторы, электродвигатели и т.п.) ситуация аналогична. График показателей можно увидеть на изображении ниже.
Рис. 2. Графики показателей
Ввиду того, что современные бытовые приборы состоят из множества разных элементов с «реактивным» эффектом питания и без него, то реактивный ток, протекая в обратном направлении, совершает вполне реальную работу по нагреву активных элементов. Таким образом, реактивная мощность цепи – по сути выражается в побочных потерях и скачках напряжения.
Очень сложно отделить один показатель мощности от другого при расчётах. А система качественного и эффективного учёта стоит дорого, что, собственно, и привело к отказу от измерения объёма потребления реактивных токов в быту.
В крупных коммерческих объектах наоборот, объем потребления реактивной энергии намного больше (из-за обилия силовой техники, снабжаемой мощными электродвигателями, трансформаторами и другими элементами, порождающими реактивный ток), поэтому для них вводится раздельный учёт.
Как считается активная и реактивная электроэнергия
Большинство производителей счётчиков электроэнергии для предприятий реализуют простой алгоритм.
Здесь из полной мощности S отнимается активная мощность P (в облегчённом для понимания виде).
Таким образом, производителю не обязательно организовывать полностью раздельный учёт.
Что такое cosϕ (косинус фи)
Ввиду того, что большой объем фактически паразитных реактивных токов нагружает сети поставщика электроэнергии, последние стимулируют потребителей снижать реактивную мощность.
Для числового выражения соотношения активной и реактивной мощностей применяется специальный коэффициент – косинус фи.
Вычисляется он по формуле.
Где полная мощность – это сумма активной и реактивной.
Чем ближе показатель к единице, тем меньше паразитной нагрузки на сеть.
Такой же коэффициент указывается на шильдиках электроинструмента, оснащённого двигателями. В этом случае cosϕ используется для оценки пиковой потребляемой мощности. Например, номинальная мощность прибора составляет 600 Вт, а cosϕ = 0,7 (средний показатель для подавляющего большинства электроинструмента), тогда пиковая мощность, необходимая для старта электродвигателя будет считаться как Pномин / cosϕ, = 600 Вт / 0,7 = 857 ВА (реактивная мощность выражается в вольт-амперах).
Применение компенсаторов реактивной мощности
Чтобы стимулировать потребителей эксплуатировать электросеть без реактивной нагрузки, поставщики электроэнергии вводят дополнительный оплачиваемый тариф на реактивную мощность, но оплату взимают только если среднемесячное потребление превысит определённый коэффициент, например, при соотношении полной и активной мощностей составит свыше 0,9, счёт на оплату реактивной мощности не выставляется.
Для того, чтобы снизить расходы, предприятия ставят специальное оборудование – компенсаторы. Они могут быть двух видов (в соответствии с принципом работы):
Мнения читателей
Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:
Источник
Счетчик измеряет активную мощность
Как измерить потребляемую мощность и проверить счётчик
Как измерить потребляемую мощность и проверить счётчик
Знать мощность требуется во многих случаях. Например: Для расчёта требуемых сечений кабеля электропроводки.
Для определения расхода электроэнергии (потребляемая мощность). Остановимся на потребляемой мощности подробней.
Обозначение мощности – английская буква P. Единица измерения – Ватт (W, Вт). 1000 Вт = Киловатт
Единица измерения использованной электроэнергии Киловатт-час. Киловатт-час равен количеству энергии, потребляемой устройством мощностью один киловатт в течение одного часа (мощность, умноженная на время).
Сейчас много бытовой техники. В таблице (опубликована в интернете, со многими данными можно поспорить) приведены ориентировочные данные мощности, количества бытовой техники среднестатистической семьи. Указаны примерное время работы в часах и месячный расход электроэнергии.
ориентировочные данные мощности, количества бытовой техники, время работы в часах и месячный расход электроэнергии.
Конечно данные усреднённые, можно составить подобную таблицу для своей техники. Посчитать по новым данным. Если реальный расход и примерный расчёт на много отличаются, есть повод проверить счётчик.
Как можно измерить мощность в быту? Самый распространённый способ при помощи счётчика электроэнергии.
По современному счётчику электроэнергии можно узнать не только расход электроэнергии. Можно определить ещё несколько видов нужной информации.
Для примера фото шкалы одного современного счётчика:
шкала счётчика
Данный счётчик показывает показания в киловатт*часах по тарифам: 1 – дневной, 2 – ночной, 3 (4) тарифы. В Перми 3 тарифа. В других городах другое количество тарифов (выходные, праздничные дни и тд.) Существуют счётчики учитывающие большее количество тарифов.
Показывает мощность (Р) в Ваттах.
Е – kW*h показания, в случае, если счётчик используется в местности где однотарифный учёт. При многотарифном учёте это является суммой показаний тарифов. Этот показатель мы видим в данный момент на дисплее прибора.
6400 imp/(kW*h) Это передаточный коэффициент — количество импульсов (сколько раз загорается индикатор) в одном Киловатт*часе. Или число оборотов диска (импульсов индикатора) за которое счётчик насчитает один киловатт*час. Для данного счётчика – 6400 импульсов / КВт *час
Не все счётчики измеряют мощность. На всех обязательно указывается:
сколько оборотов сделает диск в одном КВт *час (для электромеханических счётчиков).
Количество импульсов (сколько раз загорается индикатор) в одном Киловатт*час (для электронных счётчиков).
При наличии этих данных и секундомера можно определить мощность.
Есть токоизмерительные клещи? Тогда можно сравнить фактическую мощность и мощность, учитываемую счётчиком. Значит, с точностью достаточной для домашних условий, проверить счётчик.
Измеряем ток
Возникли сомнения в точности счётчика электрической энергии? Уверены в своих силах и имеете навыки работы с приборами? Тогда приступаем к замерам, расчётам и проверке счётчика.
Замеры нужно проводить при включенной активной нагрузке. Например, лампы накаливания (только не энергосберегающие и светодиодные). Можно также включить утюг, бытовой нагреватель или чайник, но они могут нагреться и выключиться в самый не подходящий для нас момент. Реактивная нагрузка (техника с электродвигателями и трансформаторами — холодильник, пылесос, стабилизатор …) внесёт дополнительные погрешности.
Измеряем ток для расчётов
Данные измерений 1,3 А (I = 1.3 Ампера)
Измеряем напряжение для расчётов
Данные измерений 220 В (U = 220 Вольт)
Считаем мощность фактическую: Pф = U*I / 1000 220*1.3 / 1000 = 0.286 КВт (286Вт)
Считаем мощность, учитываемую счётчиком. Воспользуемся следующей формулой:
Pу = (3600*N)/(A*T), = (3600*16) / (6400*30) = 0,3КВт (300 Вт)
где: T – время, за которое произойдёт N импульсов (оборотов), измеряется в секундах;
A – передаточное число счётчика, в нашем случае 6400; N — в нашем случае 16 импульсов за 30 секунд.
Проверим отклонения P = (Pу – Pф) / Pф = (0,3 – 0,286 / 0,286) * 100 = 1.4 %
Результат не должен превышать 10%. Нормальный результат.
Мы конечно не лаборатория. В лаборатории приборы точнее и вовремя поверяются. Наши приборы имеют погрешность, может даже недопустимую. Для «домашнего использования» можно сделать вывод — счётчик нормальный, надо проверять проводку, электроприборы.
Для проверки электроприборов и проводки лучше вызвать специалиста. Причин может быть много. Для определения и устранения основной причины требуется опыт, приборы, знания и умения.
Источник