Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Счетчик Гейгера своими руками на основе ESP8266
Как самостоятельно сделать счетчик Гейгера
Счетчик Гейгера – это прибор, используемый для обнаружения и измерения ионизирующего излучения. Это один из самых известных в мире приборов для обнаружения излучения, так как он может использоваться для обнаружения ионизирующего излучения, такого как альфа-частицы, бета-частицы и гамма-лучи, и обычно используется в качестве портативного прибора для радиационного обследования, предупреждая своих пользователей знакомым щелкающим шумом, когда они входят в область опасных уровней окружающей радиации. Счетчик обнаруживает ионизирующее излучение с помощью эффекта ионизации, создаваемого в трубке Гейгера-Мюллера, который, как вы, наверное, догадались, вероятно, и названа в честь немецкого физика.
Несмотря на то, что в области счетчиков Гейгера в Интернете дается немало информации, сегодняшний пример покажет разработку, в которой объединяется ESP8266 с сенсорным дисплеем для создания уникального устройства с пользовательским графическим интерфейсом, с помощью которого информация отображается очень удобным способом.
Принцип работы счетчика Гейгера прост. Тонкостенная трубка с газом низкого давления внутри (называемая трубкой Гейгера-Мюллера) находится под напряжением между двумя электродами. Создаваемого электрического поля недостаточно, чтобы вызвать пробой диэлектрика, поэтому ток не протекает через трубку. Это происходит до тех пор, пока частица или фотон ионизирующего излучения не пройдет через него. Таким образом, когда проходит бета или гамма-излучение, оно может ионизировать некоторые молекулы газа внутри, создавая свободные электроны и положительные ионы. Эти частицы начинают двигаться из-за наличия электрического поля, и электроны на самом деле набирают достаточную скорость, чтобы в конечном итоге они ионизировали другие молекулы, создавая каскад заряженных частиц, которые на мгновение проводят электричество. Этот короткий импульс тока может быть обнаружен с помощью подключенной электронной схемы, а затем использован для создания щелкающего звука или, в нашем случае, подается на микроконтроллер для выполнения вычислений и отображения показаний.
Этот проект основан на трубке Гейгера SBM-20, поскольку ее легко найти в интернете, например, на eBay или Aliexpress, и она очень чувствительна к бета- и гамма-излучению. В качестве дисплея возьмем экран 2.8 дюйма с интерфейсом SPI. Также нам потребуется повышающий преобразователь на 4,2 В и различные пассивные компоненты.
Схема счетчика Гейгера
Схема подключения счетчика Гейгера на основе ESP8266 показана далее.
Вы можете собрать все на макетной плате, а можете сделать специальную плату для самодельного счетчика Гейгера (Gerber-файлы печатной платы).
Для тех, кто хотел бы воспроизвести проект на макете, ниже приведено изображение, показывающее, как проект выглядит при реализации на макетной плате.
Этот проект – один из тех, которые заслуживают дополнительных усилий, поэтому, чтобы счетчик Гейгера выглядел аккуратно и имел привлекательный вид, был разработан корпус, улучшающий не только внешний вид устройства, но и функциональные элементы. STL-файлы корпуса можно найти на thingiverse.com/thing:3793869.
Корпус был разработан с учетом гибкости. Он был разбит на различные части, которые можно соединить вместе с помощью винтов с потайной головкой М3, за исключением корпуса датчика, который необходимо будет приклеить или «сварить» (расплавив пластик паяльником).
Код программы счетчика Гейгера
Теперь, когда у вас есть готовая версия устройства или печатная плата устройства, мы можем загрузить на него код. Мы будем использовать Platform.io для программирования ESP8266, и для его настройки потребуется немало усилий. Поэтому, если вы впервые используете ESP8266, вам нужно будет пройти через процесс установки поддержки плат ESP8266 в Arduino IDE, а также настроить Platform.io в VScode для написания кода Arduino.
Скетч для этого проекта сильно зависит от библиотек Adafruit_ILI9341 и Adafruit GFX. Библиотека ILI9341 позволяет нам напрямую взаимодействовать с дисплеем, поскольку он использовался для создания пользовательского интерфейса для дисплея. Мы создадим два основных интерфейса, один будет домашней страницей, а другой – меню настроек. На главной странице будет отображаться важная информация, такая как мощность дозы, количество импульсов в минуту и общая накопленная доза с момента включения устройства, в то время как меню настроек, с другой стороны, позволит пользователям устанавливать такие параметры, как единицы дозы, оповещение, порог и калибровочный коэффициент, который связывает СРМ с мощностью дозы. Все настройки сохраняются в EEPROM, что гарантирует, что данные не будут потеряны при отключении питания от устройства.
Чтобы помочь нам получить доступ к EEPROM, мы будем использовать библиотеку EEPROM, созданную для ESP8266. Это одна из библиотек, которые автоматически устанавливаются при добавлении ссылки на плату ESP8266 в Arduino IDE. Код проекта довольно длинный, но обеспечивает всю функциональность, необходимую счетчику Гейгера.
Подключите ESP8266 к компьютеру и загрузите на него код. Теперь вы должны увидеть, как на экране появляется домашняя страница, как показано на рисунке ниже.
Чтобы опробовать устройство, было проведено несколько тестов. Например, небольшая кучка урановой руды регистрируется как умеренно радиоактивная при более чем 350 CPM.
Торированная мантия фонаря заставляла счетчик регистрировать излучение более, чем 1500 CPM, если ее удерживать очень близко к трубке.
Счетчик Гейгера потребляет около 180 мА при напряжении 3,7 В, поэтому батарея емкостью 2000 мАч должна работать около 11 часов без подзарядки.
Источник
Счетчик Гейгера — это просто
В связи с экологическими последствиями деятельности человека, связанной с атомной энергетикой, а также промышленностью (в том числе военной), использующую радиоактивные вещества как компонент или основу своей продукции изучение основ радиационной безопасности и радиационной дозиметрии становится сегодня достаточно актуальной темой. Помимо природных источников ионизирующего излучения с каждым годом все больше и больше появляется мест, загрязненных радиацией впоследствии человеческой деятельности. Таким образом, чтобы сохранить свое здоровье и здоровье своих близких необходимо знать степень зараженности той или иной местности или предметов и пищи. В этом может помочь дозиметр – прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени.
Прежде чем приступать к изготовлению (или же покупке) данного устройства необходимо иметь представление о природе измеряемого параметра. Ионизирующее излучение (радиация) – это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество. Разделяется на несколько видов. Альфа-излучение представляет собой поток альфа частиц – ядер гелия-4, альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги, поэтому опасность представляет в основном при попадании внутрь организма. Бета-излучение – это поток электронов, возникающих при бета-распаде, для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров. Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом, для защиты эффективны тяжелые элементы (свинец и т.п.) слоем в несколько сантиметров. Проникающая способность всех видов ионизирующего излучения зависит от энергии.
Для регистрации ионизирующего излучения в основном используются счетчики Гейгера-Мюллера. Это простое и эффективное устройство обычно представляет собой цилиндр металлический или стеклянный металлизированный изнутри и тонкой металлической нити, натянутой по оси этого цилиндра, сам цилиндр наполняется разреженным газом. Принцип работы основан на ударной ионизации. При попадании на стенки счетчика ионизирующего излучения выбивают из него электроны, электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, приводящая к размножению первичных носителей. При достаточно большой напряженности поля энергии этих ионов становится достаточной, чтобы порождать вторичные лавины, способные поддерживать самостоятельный разряд, в результате чего ток через счетчик резко возрастает.
Не все счетчики Гейгера могут регистрировать все виды ионизирующего излучения. В основном они чувствительны к одному излучению – альфа, бета или гамма-излучению, но часто так же в некоторой степени могут регистрировать и другое излучение. Так, например, счетчик Гейгера СИ-8Б предназначен для регистрации мягкого бета-излучения (да, в зависимости от энергии частиц излучение может разделяться на мягкое и жесткое), однако данный датчик так же в некоторой степени чувствителен к альфа-излучению и к гамма-излучению.
Однако, приближаясь все-таки к конструкции статьи, наша задача сделать максимально простой, естественно портативный, счетчик Гейгера или вернее сказать дозиметр. Для изготовления этого устройства мне удалось раздобыть только СБМ-20. Этот счетчик Гейгера предназначен для регистрации жесткого бета- и гамма излучения. Как и большинство других счетчиков, СБМ-20 работает при напряжении 400 вольт.
Основные характеристики счетчика Гейгера-Мюллера СБМ-20 (таблица из справочника):
Данный счетчик обладает относительно невысокими показателями точности измерения ионизирующего излучения, но достаточными для определения превышения допустимой для человека дозы излучения. СБМ-20 применяется во многих бытовых дозиметрах в настоящее время. Для улучшения показателей часто используется сразу несколько трубок. А для увеличения точности измерения гамма-излучения дозиметры оснащаются фильтрами бета-излучения, в этом случае дозиметр регистрирует только гамма-излучение, но зато достаточно точно.
При измерении дозы радиации необходимо учитывать некоторые факторы, которые могут быть важны. Даже при полном отсутствии источников ионизирующего излучения счетчик Гейгера будет давать некоторое количество импульсов. Это так называемый собственный фон счетчика. Сюда так же относится несколько факторов: радиоактивное загрязнение материалов самого счетчика, спонтанная эмиссия электронов из катода счетчика и космическое излучение. Все это дает некоторое количество «лишних» импульсов в единицу времени.
Итак, схема простого дозиметра на основе счетчика Гейгера СБМ-20:
Схему собираю на макетной плате:
Схема не содержит дефицитных деталей (кроме, естественно, самого счетчика) и не содержит программируемых элементов (микроконтроллеров), что позволит собрать схему в течении короткого времени без особого труда. Однако такой дозиметр не содержит шкалы, и определять дозу радиации необходимо на слух по количеству щелчков. Такой вот классический вариант. Схема состоит из преобразователя напряжения 9 вольт – 400 вольт.
На микросхеме NE555 выполнен мультивибратор, частота работы которого составляет примерно 14 кГц. Для увеличения частоты работы можно уменьшить номинал резистора R1 примерно до 2,7 кОм. Это будет полезно, если выбранный вами дроссель (а может и изготовленный) будет издавать писк – при увеличении частоты работы писк исчезнет. Дроссель L1 необходим номиналом 1000 – 4000 мкГн. Быстрее всего можно найти подходящий дроссель в сгоревшей энергосберегающей лампочке. Такой дроссель и применен в схеме, на фото выше он намотан на сердечнике, которые обычно используют для изготовления импульсных трансформаторов. Транзистор T1 можно использовать любой другой полевой n-канальный с напряжением сток-исток не менее 400 вольт, а лучше больше. Такой преобразователь даст всего несколько миллиампер тока при напряжении 400 вольт, но для работы счетчика Гейгера этого хватит с головой несколько раз. После отключения питания от схемы на заряженном конденсаторе C3 схема будет работать еще примерно секунд 20-30, учитывая его небольшую емкость. Супрессор VD2 ограничивает напряжение на уровне 400 вольт. Конденсатор C3 необходимо использовать на напряжение не менее 400 — 450 вольт.
Далее схема состоит из непосредственно самого счетчика Гейгера RO1 и цепи «озвучивания» импульсов счетчика.
В качестве Ls1 можно использовать любой пьезодинамик или динамик. При отсутствии ионизирующего излучения ток через резисторы R2 – R4 не протекает (на фото на макетной плате пять резисторов, но общее их сопротивление соответствует схеме). Как только на счетчик Гейгера попадет соответствующая частица внутри датчика происходит ионизация газа и его сопротивление резко уменьшается вследствие чего возникает импульс тока. Конденсатор С4 отсекает постоянную часть и пропускает на динамик только импульс тока. Слышим щелчок.
В моем случае в качестве источника питания используется две аккумуляторных батареи от старых телефонов (две, так как необходимое питание должно быть более 5,5 вольт для запуска работы схемы в силу примененной элементной базы).
Итак, схема работает, изредка пощелкивает. Теперь как это использовать. Самый простой вариант – это пощелкивает немного – все хорошо, щелкает часто или вообще непрерывно – плохо. Другой вариант – это примерно подсчитываем количество импульсов за минуту и переводим количество щелчков в мкР/ч. Для этого из справочника необходимо взять значение чувствительности счетчика Гейгера. Однако в разных источника всегда немного разные цифры. В идеальном случае необходимо провести лабораторные замеры для выбранного счетчика Гейгера с эталонными источниками излучения. Так для СБМ-20 значение чувствительности варьируется в пределах от 60 до 78 имп/мкР по разным источникам и справочникам. Так вот, подсчитали количество импульсов за одну минуту, далее это число умножаем на 60 для аппроксимации числа импульсов за один час и все это разделить на чувствительность датчика, то есть на 60 или 78 или что у вас ближе к действительности получается и в итоге получаем значение в мкР/ч. Для более достоверного значения необходимо сделать несколько замеров и посчитать между ними среднеарифметическое значение. Верхний предел безопасного уровня радиации составляет примерно 20 — 25 мкР/ч. Допустимый уровень составляет примерно до 50 мкР/ч. В разных странах цифры могут отличаться.
P.S. На рассмотрение этой темы меня подтолкнула статья о концентрации газа радон, проникающего в помещения, воду и т.д. в различных регионах страны и его источниках.
Источник
САМОДЕЛЬНЫЙ СЧЕТЧИК ГЕЙГЕРА–МЮЛЛЕРА
Счетчик Гейгера–Мюллера — это относительно простой инструмент для измерения ионизирующих излучений. В магазинах эти дозиметры стоят недёшево (от 5000 руб), но если есть сам датчик, то сделать этот измеритель можно с минимальными расходами. Чтобы увеличить чувствительность, представленная здесь конструкция содержит сразу три датчика СТС-5. Это полезно для измерения природных источников с низким уровнем излучения — почва, камни, вода.
Принцип работы счетчика Гейгера–Мюллера заключается в том, что высокое напряжение (обычно 400 В) подаётся на колбу-детектор. Она не проводит электричество, но в течение короткого периода, когда приходит излучение частиц, через неё проскакивает импульс тока. Уровень ионизирующего излучения пропорционален количеству импульсов, обнаруженных за постоянный интервал времени.
Сам счетчик Гейгера–Мюллера (детектор) состоит из двух электродов, а ионизирующая частица создает искровой промежуток между ними. Чтобы уменьшить величину тока, который при этом протекает, высокоомный резистор ставят последовательно с трубкой. Обозначены как R1 на схеме. Обычно он выбирается в диапазоне 1-10 мегаом, допустимые значения указаны в документации к счётчику Гейгера.
Есть разные способы получения данных из детектора, в представленной здесь схеме, резистор последовательно соединен между трубкой и землей, а изменения напряжения на резисторе измеряется с помощью детектора. Этот резистор обозначен как R2 на схеме. Обычно он в диапазоне 10-220 килоом. Аналогично диодам, счетчик Гейгера–Мюллера имеет свою полярность и при подключении в обратном направлении он будет работать неправильно.
Электрическая схема счетчика Гейгера–Мюллера
Здесь микросхема MC34063 — это DC/DC преобразователь, который используется для получения необходимого высокого напряжения из низкого батареечного. Главное его преимущество по сравнению с простой м/с NE555 или аналогичными генераторами заключается в том, что он может контролировать выходное напряжение и подстраивает параметры, чтобы сделать его стабильным (R3, R4, R5, С3). Элементы ОУ IC1A, R8, R9 используются как компаратор, чтобы отфильтровать шумы и сформировать двоичный сигнал (низкий = нет импульса, высокий = импульс проходит).
Внимание! Устройство использует высокое напряжение и может привести к неприятным последствиям при касании к некоторым токонесущим элементам конструкции. Не прикасайтесь к печатной плате или трубке датчика при включении питания.
Запуск и настройка измерителя
Напряжение на С4 должны быть в приемлемом диапазоне для работы Гейгера. Обычно около 400 В — будьте осторожны во время измерений! Если напряжение выходит за диапазон, то элементы С1 (частота преобразователя постоянного тока), и С3, R3, R4, R5 (обратная связь по напряжению преобразователя) могут быть скорректированы.
Следующий момент — наличие или отсутствие импульсов на резисторе R7. Если нет импульсов надо проверить, подключена ли трубка Гейгера–Мюллера в соответствии с её полярностью.
Плата печатная использует компоненты обычные и SMD — вот файлы. Напряжение питания 5 В, потребляемый ток 30 мА. Корпус можно взять любой, например от неисправного мультиметра.
Источник