Меню

Расчет токов с общей базой

Усилительный каскад с общей базой

Последний тип схемы усилителя на биполярном транзисторе (рисунок ниже), который мы должны изучить, это схема с общей базой. Эта конфигурация сложнее двух предыдущих и менее распространена из-за своих странных рабочих характеристик.

Усилитель с общей базой Усилитель с общей базой (стрелками показаны направления движения потоков электронов)

Она называется схемой с общей базой, поскольку (игнорируя источники питания постоянного напряжения) источник сигнала и нагрузка делят между собой вывод базы как общую точку (рисунок ниже).

Усилитель с общей базой: вход между эмиттером и базой, выход между коллектором и базой Усилитель с общей базой: вход между эмиттером и базой, выход между коллектором и базой

Возможно, наиболее яркой характеристикой этого типа включения транзистора является то, что источник входного сигнала обеспечивать полный ток эмиттера транзистора, о чём свидетельствуют толстые стрелки на первой иллюстрации. Как известно, ток эмиттера больше, чем любой другой ток в транзисторе, так как является суммой токов базы и коллектора. В последних двух типах усилительных каскадов источник сигнала был подключен к выводу базы транзистора, таким образом, работая на минимально возможном токе.

Поскольку в этой схеме входной ток превышает все другие токи, включая выходной ток, коэффициент усиления по току на самом деле меньше 1 (обратите внимание, как Rнагр подключен к коллектору, тем самым пропуская через себя немного меньший ток, чем источник сигнала). Другими словами, эта схема ослабляет ток, а не усиливает его. В схемах с общим эмиттером и общим коллектором из всех параметров транзистора с усилением тесно был связан β. В схеме с общей базой нам нужен другой основной параметр транзистора: отношение тока коллектора к току эмиттера, который представляет собой дробное число, всегда меньше 1. Это дробное значение для любого транзистора называется коэффициентом α (альфа).

Поскольку данная схема, очевидно, не может повысить ток сигнала, было бы разумным ожидать, что она увеличит напряжение сигнала. Моделирование SPICE схемы на рисунке ниже подтвердит это предположение.

Схема с общей базой для SPICE анализа по постоянному току Схема с общей базой для SPICE анализа по постоянному току Усилитель с общей базой: график зависимости выходного напряжения от входного напряжения Усилитель с общей базой: график зависимости выходного напряжения от входного напряжения

Обратите внимание, что выходное напряжение изменяется практически от нуля (отсечка) до 15,75 вольт (насыщение), при этом входное напряжение меняется от 0,6 вольта до 1,2 вольта. Фактически, график выходного напряжения не показывает роста примерно до 0,7 вольта на входе и прекращает расти (выпрямляется) примерно при 1,12 вольта на входе. Это показывает довольно большой коэффициент усиления по напряжению с интервалом выходных напряжений 15,75 вольт и интервалом входных напряжений всего 0,42 вольт: коэффициент усиления составляет 37,5 раз, или 31,48 дБ. Также обратите внимание на то, как при насыщении выходное напряжение (измеренное на Rнагр) на самом деле превышает напряжение источника питания (15 вольт) из-за эффекта последовательного добавления источника входного напряжения.

Второй SPICE анализ модифицированной схемы (рисунок ниже) с источником сигнала переменного напряжения (и постоянным напряжением смещения) говорит о том же: о высоком коэффициенте усиления по напряжению.

Схема с общей базой для SPICE анализа по переменному току Схема с общей базой для SPICE анализа по переменному току

Как вы можете видеть, входной и выходной сигналы на рисунке ниже синфазны друг с другом. Это говорит о том, что усилитель с общей базой является неинвертирующим.

Усилительный каскад с общей базой: осциллограммы входного и выходного напряжений Усилительный каскад с общей базой: осциллограммы входного и выходного напряжений

SPICE анализ по переменному току в таблице ниже на одной частоте 2 кГц предоставляет данные о входном и выходном напряжениях для расчета коэффициента усиления.

AC анализ схемы с общей базой на частоте 2 кГц: список соединений и выходные данные

Значения напряжений из второго анализа (таблица выше) показывают коэффициент усиления по напряжению 42,74 (4,274 В / 0.1 В), или 32,617 дБ:

Вот еще один вид схемы с общей базой (рисунок ниже), на которой видны фазы и смещения по постоянному напряжению для разны сигналов в только что промоделированной схеме.

Соотношения фаз и смещений в усилителе на NPN транзисторе с общей базой Соотношения фаз и смещений в усилителе на NPN транзисторе с общей базой

То же самое для PNP транзистора (рисунок ниже).

Соотношения фаз и смещений в усилителе на PNP транзисторе с общей базой Соотношения фаз и смещений в усилителе на PNP транзисторе с общей базой

Для схемы усилителя с общей базой определить заранее коэффициент усиления по напряжению довольно сложно, что связано с аппроксимацией поведения транзистора, которое трудно измерить напрямую. В отличие от других типов усилительных схема, где коэффициент усиления по напряжению либо устанавливается соотношением двух резисторов (в схеме с общим эмиттером), либо фиксировался на неизменном значении (схема с общим коллектором), коэффициент усиления по напряжению в схеме с общей базой зависит во многом от величины напряжения смещения входного сигнала. Как выясняется, внутреннее сопротивление транзистора между эмиттером и базой играет важную роль в определении коэффициента усиления по напряжению, и это сопротивление изменяется в зависимости от величины тока, протекающего через эмиттер.

Читайте также:  Рассчитать токи в ветвях схемы методом законов кирхгофа

Хотя это явление трудно объяснить, его довольно легко продемонстрировать с помощью компьютерного моделирования. Я собираюсь запустить несколько SPICE моделирований схемы усилителя с общей базой (предыдущий рисунок), слегка изменив постоянное напряжение смещения ( vbias в коде ниже), оставив теми же амплитуду входного сигнала переменного напряжения и все остальные параметры схемы. Когда в разных моделированиях коэффициент усиления по напряжению будет меняться, это будет заметно по разным амплитудам выходного напряжения.

Несмотря на то, что эти анализы будут проводиться в режиме “ transfer function ” (коэффициент передачи), каждый из них был сначала проверен в режиме временного анализа (построен график напряжения в зависимости от времени), чтобы гарантировать, что вся синусоида сигнала была воспроизведена точно, а не «обрезана» из-за неправильного смещения. Смотрите » *.tran 0.02m 0.78m » в коде ниже, это «закомментирование» оператора временного анализа. Вычисление коэффициента усиления не может основываться на сигналах искаженной формы. SPICE может для нас рассчитать коэффициент усиления небольшого сигнала постоянного напряжения с помощью оператора » *.tf v(4) vin «. Выходное напряжение – это v(4) , а входное напряжение – это vin .

Командная строка spice -b filename.cir благодаря оператору .tf выводит следующие данные: transfer_function (коэффициент передачи), output_impedance (выходное сопротивление) и input_impedance (входное сопротивление). Сокращенный вывод команды, запущенной для напряжений смещения vbias 0.85, 0.90, 0.95, 1.00 вольт, приведен ниже

Вывод SPICE: коэффициент передачи схемы с общей базой:

Тенденция в списке выше должна быть очевидна. С увеличением постоянного напряжения смещения также увеличивается и коэффициент усиления по напряжению ( transfer_function ). Мы видим, что коэффициент усиления по напряжению увеличивается, потому что каждео последующее моделирование ( vbias = 0.85, 0.8753, 0.90, 0.95, 1.00 В) дает больший коэффициент усиления ( transfer_function = 37.6, 39.4 40.8, 42.7, 44.0) соответственно. Эти изменения во многом обусловлены незначительными изменениями напряжения смещения.

Последние три строки в списке соединений выше (справа) показывают коэффициент усиления по току I(v1)/Iin = 0,99 (последние две строки выглядят неправильными). Это имеет смысл для β=100; α= β/(β+1), α=0.99=100/(100-1). Это сочетание низкого коэффициента усиления по току (всегда меньше 1) и несколько непредсказуемого коэффициента усиления по напряжению говорит не в пользу схемы с общей базой, оставляя ей лишь несколько вариантов практических применений.

Эти несколько приложений включают в себя радиочастотные усилители. База, посаженная на корпус, помогает защитить входной сигнал на эмиттере от входного сигнала на коллекторе, предотвращая нестабильность в радиочастотных усилителях. Схема с общей базой может использоваться на более высоких частотах, чем схемы с общим эмиттером и общим коллектором. Смотрите раздел «Радиочастотный усилитель мощности 750 мВт класса C с общей базой» в главе 9. Более сложную схему можно увидеть в разделе «Усилитель малых сигналов класса A с общей базой и высоким коэффициентом усиления» в главе 9.

Источник



Усилительный каскад с общей базой (ОБ).

date image2015-07-21
views image7064

facebook icon vkontakte icon twitter icon odnoklasniki icon

Схема усилительного каскада с общей базой представлена на рис.2.

Внешнее отличие от схемы с ОЭ заключается в том, что база транзистора через блокировочный конденсатор большой емкости Сб по переменному току соединена с общим проводом, а входной сигнал подается на эмиттер транзистора. Режим по постоянному току (рабочая точка) задается как и в схеме с ОЭ с помощью резисторов R1, R2, Rэ. Назначение конденсаторов С1, С2 такое же, как и в каскаде ОЭ. Нагрузка для переменного тока, как и в случае каскада с ОЭ, образуется параллельным сопротивлением Rк Rн:

При определении усиления каскада учтем, что входное напряжение совпадает с напряжением эмиттер – база:

а выходное напряжение, создаваемое коллекторным током на сопротивлении , составляет

Усиление каскада с ОБ по напряжению равно усилению каскада с ОЭ, однако при включении транзистора по схеме ОБ фазы входного и выходного каскада совпадают.

Коэффициент усиления по току приблизительно равен 1, так как Iк Iэ (входной ток — Iэ,выходной Iк).

Рис.2. усилительный каскад с ОБ

Входным током каскада является ток эмиттера, который в (h21+1) раз больше базового тока. Поэтому входное сопротивление схемы с общей базой мало. Без учета сопротивления резистора Rэ оно равно

Ввиду малости входного сопротивления каскад с ОБ используются, в основном, как нагрузка каскада с малым выходным сопротивлением (каскадов с ОЭ или ОК).

Читайте также:  Чем мерить напряжение тока

Основными достоинствами каскада с ОБ являются хорошие частотные свойства. При включении транзистора по схеме с ОБ граничная частота возрастает в h21 раз по сравнению с каскадом с ОЭ. Также из – за того, что база транзистора в включении с ОБ соединена с общей точкой, то исключается паразитная обратная связь через емкость p-n перехода база – коллектор.

Каскад ОБ широко применяется в усилителях и генераторах дециметровых и сантиметровых волн.

Основные свойства усилителя по схеме с общей базой:

1) коэффициент усиления равен абсолютному значению коэффициента усиления каскада с ОЭ при равных условиях;

2) коэффициент усиления тока близок к единице;

3) входная проводимость практически равна крутизне транзистора;

4) выходная проводимость зависит от условий на входе и максимальна в режиме короткого замыкания на входе.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ОСНОВНЫХАРАМЕТРОВ

ТРАНЗИСТОРНЫХ КАСКАДОВ ПО СХЕМАМ С ОЭ, ОК, ОБ

Сравнительный анализ свойств усилителей по схемам с ОЭ, ОК и ОБ приведен в таблице 1.

1.Усилители с ОЭ и ОБ имеют равные по модулю коэффициенты усиления напряжения, а схема с ОК 0 .

3. Из всех усилителей схема с ОК обладает наибольшим входным сопротивлением, а схема с ОБ – наименьшим.

4. Схема усилителя с ОК имеет самое малое из всех схем выходное сопротивление.

5. Коэффициенты усиления по току схем с ОЭ и ОК примерно одинаковы, а схемы с ОБ не превышает единицы.

Источник

Расчет тока базы транзистора

Для того, чтобы правильнее понять процедуру расчета, необходимо понимать каких видов и типов бывают транзисторы и в каких режимах они могут работать.

Типы транзисторов и режимы работы

Различают два основных класса триодов (транзисторов):

1. Биполярные (управляются током на база-эмиттерном переходе, конструктивно имеют два различных перехода p-n и n-p, то есть могут быть n-p-n или p-n-p типа);

2. Униполярные или полевые (управляются напряжением на база-эмиттерном переходе, конструктивно состоят из двух однотипных переходов p-n или n-p, выделяют два типа полевых транзисторов – с изолированным затвором и с затвором из p-n-перехода).

Здесь для понимания обозначений:

  • p-n – дырочно-электронный (основной носитель – пустые места в кристаллической решетке, понимаемые под положительным зарядом),
  • n-p – электронно-дырочный переход (основной носитель – электроны).

Чтобы исключить путаницу, вводы и выводы различных классов транзисторов называются по-разному:

  • В биполярных – база, эмиттер, коллектор;
  • В полевых – исток, сток, затвор.

Так как речь идет о расчете тока базы, то далее рассмотрим режимы работы только полевых транзисторов:

1. Активный режим (напряжение эмиттер-база > 0, напряжение коллектор-база Инверсивный (обратная ситуация для активного режима, равносилен стандартной логике работы p-n-p транзисторов),

3. Насыщение (когда оба перехода эмиттер-база и база-коллектор открыты, между эмиттером и коллектором течет ток – ток насыщения),

4. Отсечка (напряжение коллектор-база Барьерный (база соединяется с коллектором, транзистор работает как диод).

Напряжения на эмиттере, базе, коллекторе

Смещение перехода база-эмиттер для типа n-р-n

Смещение перехода база-коллектор для типа n-р-n

Источник

Схема с общей базой (каскад с общей базой)

Усилитель представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.

Рисунок 1 Структурная схема включения усилителя

Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общей базой — это усилитель, где база транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с ОБ приведена на рисунке 2.

Рисунок 2 Функциональная схема включения транзистора с общей базой

На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. Для питания транзистора в схеме с общей базой может подойти любая из рассмотренных нами схем: схема с фиксированным током базы, схема с фиксированным напряжением на базе, схема с коллекторной стабилизацией или схема с эмиттерной стабилизацией. Расчет резисторов, входящих в эти схемы не зависит от схемы включения транзистора и для схемы с общей базой проводится точно так же как и для схемы с общим эмиттером. На рисунке 3 показана принципиальная схема каскада на биполярном npn-транзисторе, выполненного по схеме с ОБ.

Читайте также:  Лэп потери постоянного тока

Рисунок 3 Принципиальная схема включения транзистора с общей базой

В усилительном каскаде, изображенном на рисунке 3, используется схема эмиттерной стабилизации тока коллектора, обладающая наилучшими характеристиками по стабильности режима транзистора. В ряде случаев достаточно коллекторной стабилизации. Схема каскада усиления с коллекторной стабилизацией и схемой включения транзистора с общей базой приведена на рисунке 4.

Рисунок 4 Принципиальная схема включения транзистора с ОБ (коллекторная стабилизация режима)

Отличительной особенностью схемы с общей базой является малое входное сопротивление. Входным сопротивлением этого усилительного каскада является эмиттерное сопротивление транзистора. Его можно определить по следующей формуле:

При токе эмиттера 5 мА входное сопротивление каскада с общей базой составит 5 Ом. Это накладывает определенные ограничения на применение данной схемы. Сопротивление источника сигнала должно быть малым. Это может быть полезным для реализации высокочастотных усилителей. Часто приходится использовать на входе схемы с ОБ трансформатор сопротивления. Это может быть как обычный широкополосный трансформатор, так и фильтр с различными входным и выходным сопротивлением.

По току схема усилительного каскада с общей базой усилением не обладает. Более того, коэффициент передачи этой схемы меньше единицы! Коэффициент усиления по току схемы включения транзистора с общей базой можно определить по следующей формуле:

Коэффициент усиления по напряжению усилительного каскада, собранного по схеме с общей базой совпадает с коэффициентом усиления по напряжению схемы с общим эмиттером. Его можно определить по следующей формуле:

Учитывая, что коэффициент усиления по току h21б схемы с общей базой близок к единице, то коэффициент усиления по напряжению будет равен отношению сопротивления нагрузки Rн к входному сопротивлению этого транзисторного каскада rэ. Отсюда следует вывод: если вы нагрузите усилительный каскад с ОБ, на точно такой же каскад усиления, то коэффициент усиления первого каскада будет равен единице (он не будет усиливать, так как ).

Учитывая, что ток коллектора в схеме с общей базой протекает по сопротивлению R1, включенному параллельно источнику сигнала, получается, что данный усилительный каскад охвачен 100% параллельной отрицательной обратной связью по току. Это приводит к расширению полосы пропускания усилителя. Малое входное сопротивление усилительного каскада не позволяет шунтировать входной сигнал паразитными емкостями печатной платы и других электронных компонентов схемы. Кроме того, малая проходная емкость Cкэ, образованная последовательным включением эмиттерного и коллекторного переходов, уменьшает значение входной паразитной емкости схемы с общей базой. Все эти факторы приводят к исключительной широкополосности амплитудно-частотной характеристики данного каскада.

Схема включения транзистора с общей базой используется обычно в высокочастотных усилителях. Для приведения входного и выходного сопротивления транзистора к стандартному волновому сопротивлению линий передачи 50 Ом обычно используются фильтры нижних или верхних частот. При индуктивном сопротивлении базы и коллектора транзистора в рабочем диапазоне частот усилителя, эти реактивности могут быть включены в состав индуктивности фильтра, как это показано на рисунке 5

Рисунок 5 Принципиальная схема усилительного каскада с транзистором с общей базой (коллекторная стабилизация)

В схеме усилителя, изображенной на рисунке 5, индуктивность L1 служит для обеспечения пути протекания эмиттерного тока, а индуктивность L2 служит для обеспечения пути протекания коллекторного тока, поэтому дополнительных сопротивлений, таких как R1 и R2 в схеме на рисунке 3 не требуется. Резисторы R1 и R2 образуют схему коллекторной стабилизации режима работы. Еще один вариант высокочастотного усилителя, выполненного по схеме с общей базой, приведен на рисунке 6.

Рисунок 6 Принципиальная схема усилительного каскада с транзистором с общей базой (эмиттерная стабилизация)

В настоящее время в СВЧ усилителях в основном используются SiGe, GaAs, GaN МОП-транзисторы, однако их схемы включения практически совпадают со схемами включения биполярных транзисторов. Схеме включения транзистора с общей базой соответствует схема усилительного каскада с общим затвором. В этих схемах для стабилизации режима работы транзистора применяется схема истоковой стабилизации (аналог эмиттерной стабилизации). Схема усилительного каскада с общим затвором приведена на рисунке 7.

Рисунок 7 Принципиальная схема усилительного каскада с транзистором с общим затвором (истоковая стабилизация)

По подобным схемам ряд зарубежных фирм выпускает готовые СВЧ усилители. Границы усилителя показаны на рисунках 6 и 7 пунктирной линией. В качестве примера на рисунке 8 показана схема высокочастотного интегрального усилителя радиочастоты.

Рисунок 8 Принципиальная схема высокочастотного интегрального усилителя радиочастоты

Подобные усилители широко применяются для увеличения уровня сигнала GPS, GSM, WiFi и др. систем связи и беспроводного интернета. В качестве примера подобных усилителей можно назвать усилители радиочастоты фирмы MAXIM, VISHAY или RF Micro Devices.

Дата последнего обновления файла 30.06.2019

Источник