Меню

Расчет тока заряда конденсатора постоянным током

Зарядка конденсатора от источника постоянной ЭДС

Рассмотренный в предыдущем разделе процесс зарядки конденсатора посредством перенесения заряда с одной обкладки на другую имеет исключительно теор етический интерес, как метод расчета энерги и конденсатора. Реально конденсаторы заряжают, подключая их к источнику ЭДС, например, к гальванической батарее.

Пусть конденсатор емкостью C подключен к источнику, ЭДС которого равна e (Рис. 145). Полное электрическое сопротивление цепи (включающее и внутренне сопротивление источника) обо значим R . При замыкании ключа в цепи пойдет электрический ток, благодаря которому на обкладках конденсатора будет накапливаться электрический заряд. По закону Ома сумма напряжений на конденсаторе </p data-lazy-src=

</p data-lazy-src=

Схематически зависимости заряда конденсатора и силы тока в цепи от времени показаны на рис. 146. Для оценки времени зарядки конденсатора можно принять, что заряд возрастает до максимального значения с постоянной скоростью, равной силе тока в начальный момент времени. В этом случае

</p data-lazy-src=

I_i R Delta q_i = I^2_i R Delta t_i = delta Q»/> — количество теплоты, выделившееся на резисторе, при протекании

порции заряда Delta q i .

Таким образом, закон сохранения энерги и, выражаемый уравнением баланса (6) для малого промежутка времени оказывается выполненным, следовательно, он будет выполнен и для всего процесса зарядки. Просуммируем выражение (5) по всем промежуткам времени зарядки, в результате чего получим:

</p data-lazy-src=

Эта сумма же может быть вычислена графически. Формула (1) задает зависимость напряжения на резисторе U R = I R от заряда конденсатора. Эта зависимость линейна, ее график (Рис. 147) является отрезком прямой линии. За малый промежуток времени через резистор протечет малый заряд Delta q i , при этом выделится количество теплоты </p data-lazy-src=

Таким образом, энергетический баланс полностью сходится и для всего процесса целиком: работа, совершенная источником равна сумме энерги и конденсатора и количества выделившейся теплоты A = W C + Q . Схематически преобразование энерги и в этом процессе показано на рис. 148.

Интересно заметить, что количество теплоты, выделяющееся при зарядке, не зависит о сопротивления цепи и в точности равно энерги и конденсатора. То есть, половина энерги и источника переходит в энерги ю электрического поля, а вторая в тепловую энерги ю, выделяющуюся в цепи: природа требует своеобразный пятидесятипроцентный налог в виде тепловых потерь, не зависимо от сопротивления цепи и емкости конденсатора [1] .

Примечания


  1. ^ Но эти параметры цепи определяют время процесса.

Об авторе:
Этот материал взят из источника в свободном доступе интернета. Вся грамматика источника сохранена.

Источник



Конденсатор в цепи постоянного тока

Калькуляторы рассчитывают параметры разрядки и зарядки конденсатора от источника постоянной ЭДС через сопротивление.

Калькуляторы рассчитывают параметры разрядки и зарядки конденсатора от источника постоянной ЭДС через сопротивление. Формулы, по которым идет расчет, приведены под калькуляторами.

Заряд конденсатора от источника постоянной ЭДС

Разряд конденсатора через сопротивление

Понять приводимые ниже формулы поможет картинка, изображающая электрическую схему заряда конденсатора от источника постоянной ЭДС (батареи):

capacitor.jpg

Итак, при замыкании ключа К в цепи пойдет электрический ток, который будет приводить к заряду конденсатора.
По закону Ома сумма напряжений на конденсаторе и резисторе равна ЭДС источника, таким образом:
\epsilon=IR+\frac<q data-lazy-src=