Меню

Принцип работы электросчетчика реактивной энергии

Реактивная энергия

1.17. Закон сохранения импульса. Реактивное движение

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, то такая система называется замкнутой.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса. Он является следствием из второго и третьего законов Ньютона.

Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через и По третьему закону Ньютона Если эти тела взаимодействуют в течение времени t, то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны: Применим к этим телам второй закон Ньютона:

где и – импульсы тел в начальный момент времени, и – импульсы тел в конце взаимодействия. Из этих соотношений следует:

Это равенство означает, что в результате взаимодействия двух тел их суммарный импульс не изменился. Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, т. е. векторную сумму импульсов всех тел, входящих в эту систему.

Рис. 1.17.1 иллюстрирует закон сохранения импульса на примере нецентрального соударения двух шаров разных масс, один из которых до соударения находился в состоянии покоя.

Рисунок 1.17.1.
Нецентральное соударение шаров разных масс: 1 – импульсы до соударения; 2 – импульсы после соударения; 3 – диаграмма импульсов

Изображенные на рис. 1.17.1 вектора импульсов шаров до и после соударения можно спроектировать на координатные оси OX и OY. Закон сохранения импульса выполняется и для проекций векторов на каждую ось. В частности, из диаграммы импульсов (рис. 1.17.1) следует, что проекции векторов и импульсов обоих шаров после соударения на ось OY должны быть одинаковы по модулю и иметь разные знаки, чтобы их сумма равнялась нулю.

Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны. Примером может служить реактивное движение.

При стрельбе из орудия возникает отдача – снаряд движется вперед, а орудие – откатывается назад. Снаряд и орудие – два взаимодействующих тела. Скорость, которую приобретает орудие при отдаче, зависит только от скорости снаряда и отношения масс (рис. 1.17.2). Если скорости орудия и снаряда обозначить через и а их массы через M и m, то на основании закона сохранения импульса можно записать в проекциях на ось OX

Рисунок 1.17.2.
Отдача при выстреле из орудия

На принципе отдачи основано реактивное движение. В ракете при сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла с большой скоростью относительно ракеты. Обозначим массу выброшенных газов через m, а массу ракеты после истечения газов через M. Тогда для замкнутой системы «ракета + газы» на основании закона сохранения импульса (по аналогии с задачей о выстреле из орудия) можно записать:

где V – скорость ракеты после истечения газов. В данном случае предполагается, что начальная скорость ракеты равнялась нулю.

Полученная формула для скорости ракеты справедлива лишь при условии, что вся масса сгоревшего топлива выбрасывается из ракеты одновременно. На самом деле истечение происходит постепенно в течение всего времени ускоренного движения ракеты. Каждая последующая порция газа выбрасывается из ракеты, которая уже приобрела некоторую скорость.

Для получения точной формулы процесс истечения газа из сопла ракеты нужно рассмотреть более детально. Пусть ракета в момент времени t имеет массу M и движется со скоростью (рис. 1.17.3 (1)). В течение малого промежутка времени Δt из ракеты будет выброшена некоторая порция газа с относительной скоростью Ракета в момент t + Δt будет иметь скорость а ее масса станет равной M + ΔM, где ΔM 0. Скорость газов в инерциальной системе OX будет равна Применим закон сохранения импульса. В момент времени t + Δt импульс ракеты равен а импульс испущенных газов равен В момент времени t импульс всей системы был равен Предполагая систему «ракета + газы» замкнутой, можно записать:

Величиной можно пренебречь, так как |ΔM| 0, относительная скорость газов скорость газов в инерциальной системе

Величина есть расход топлива в единицу времени. Величина называется реактивной силой тяги Реактивная сила тяги действует на ракету со стороны истекающих газов, она направлена в сторону, противоположную относительной скорости. Соотношение

выражает второй закон Ньютона для тела переменной массы. Если газы выбрасываются из сопла ракеты строго назад (рис. 1.17.3), то в скалярной форме это соотношение принимает вид:

где u – модуль относительной скорости. С помощью математической операции интегрирования из этого соотношения можно получить формулу для конечной скорости υ ракеты:

где – отношение начальной и конечной масс ракеты. Эта формула называется формулой Циолковского. Из нее следует, что конечная скорость ракеты может превышать относительную скорость истечения газов. Следовательно, ракета может быть разогнана до больших скоростей, необходимых для космических полетов. Но это может быть достигнуто только путем расхода значительной массы топлива, составляющей большую долю первоначальной массы ракеты. Например, для достижения первой космической скорости υ = υ1 = 7,9·103 м/с при u = 3·103 м/с (скорости истечения газов при сгорании топлива бывают порядка 2–4 км/с) стартовая масса одноступенчатой ракеты должна примерно в 14 раз превышать конечную массу. Для достижения конечной скорости υ = 4u отношение должно быть равно 50.

Модель. Реактивное движение

Значительное снижение стартовой массы ракеты может быть достигнуто при использовании многоступенчатых ракет, когда ступени ракеты отделяются по мере выгорания топлива. Из процесса последующего разгона ракеты исключаются массы контейнеров, в которых находилось топливо, отработавшие двигатели, системы управления и т. д. Именно по пути создания экономичных многоступенчатых ракет развивается современное ракетостроение.

Разница между активным и реактивным счетчиком. Счетчик, активной, реактивной мощности

Рис. 1. Часть диска индукционного двухпоточного прибора. Для измерения расхода электроэнергии в цепях переменного тока промышленной частоты применяются счетчики индукционного типа. Принцип действия этих счетчиков основан на взаимодействии магнитных потоков с индуктированными токами в подвижной части прибора. Подвижная часть выполнена в виде алюминиевого диска, укрепленного на оси. Если алюминиевый диск находится между двумя полюсами электромагнитов Л и В, по катушкам которых протекает переменный ток, то магнитные потоки Фд и Фв пронизывают этот диск и индуктируют в нем токи 1А и /в (рис. 1). Ток 1А, взаимодействуя с магнитным потоком Фв, создает некоторое усилие. Второе усилие получается от взаимодействия тока 1В с магнитным потоком ФА. Образующийся в результате вращающий момент пропорционален величинам этих двух потоков и зависит от угла сдвига между ними. На рис. 2 показаны устройство и схема включения однофазного индукционного счетчика. Счетчик состоит из двух электромагнитов 5 и 8, алюминиевого диска 1, укрепленного на оси 2, подпятника 3 и подшипника 4, которые служат опорами оси, постоянного тормозного магнита 7 и счетного механизма, связанного с осью зубчатой передачей (на рисунке не показан). Обмотка электромагнита 5 включена в цепь параллельно, и его сердечник пронизывает магнитный поток Фи, пропорциональный напряжению сети U. Обмотка электромагнита 8 включена последовательно с нагрузкой, и его сердечник пронизывает магнитный поток СР*, пропорциональный току нагрузки I. Оба магнитных по тока индуктируют в алюминиевом диске вихревые токи, которые, взаимодействуя с магнитными потоками, создают вращающий момент М, пропорциональный произведению этих потоков. Для того чтобы счетчик измерял расход активной энергии, необходимо выполнить условие пропорциональности вращающего момента активной мощности, т. е. М = K1IU cos ф = к1Р, где К1 — коэффициент пропорциональности; ф — угол сдвига между током и напряжением. Рис. 2. Схема устройства идукционного счетчика. Пропорциональность вращающего момента току нагрузки и напряжению сети обеспечивается, как было сказано выше. Пропорциональность вращающего момента cos ф обеспечивается созданием определенного угла сдвига между магнитными потоками. Для этой цели магнитный поток параллельного электромагнита расщепляется на два: рабочий и вспомогательный. Рабочий поток пересекает диск и замыкается. через противополюс, расположенный под диском. Вспомогательный поток замыкается через средний и боковые стержни электромагнита, не пересекая диска. Для дополнительной подгонки угла сдвига служит регулятор 6. Он состоит из нескольких витков медной проволоки, намотанных на магнитопровод электромагнита 8 и замкнутых на петлю из никелиновой проволоки. Петля снабжена винтовым зажимом, перемещением которого и производится регулировка. Под действием вращающего момента диск счетчика придет во вращение. При этом возникает тормозной момент, действующий на диск счетчика. Этот момент создается взаимодействием потока Фт тормозного магнита с вихревыми токами, индуктированными в диске его полем. Так как поток тормозного магнита неизменен, то этот момент пропорционален только частоте вращения диска. Кроме того, два тормозных момента создаются потоками параллельного и последовательного электромагнитов. Для того чтобы результирующий тормозной момент, равный сумме трех указанных, как можно меньше зависел от потока Фг-, тормозной момент постоянного магнита выбирается значительно большим тормозного момента последовательного электромагнита. При этом можно с достаточной точностью считать, что результирующий тормозной момент пропорционален только частоте вращения диска п, т. е. Мт = к2п, где к2- коэффициент пропорциональности. При установившейся частоте вращения диска М=МТ, а следовательно, к\Р = КчП, откудап, т. е. угловая скорость диска пропорциональна мощности Р цепи, а частота вращения диска пропорциональна израсходованной энергии. Следовательно, числом оборотов диска счетчика можно измерять израсходованную энергию. Комплекс деталей, состоящий из магнитопроводов и обмоток параллельной и последовательной цепи, называют вращающим элементом счетчика. Счетный механизм представляет собой счетчик оборотов. Получивший преимущественное применение для электрических счетчиков роликовый счетный механизм (рис. 3) состоит в основном из зубчатой передачи, нескольких роликов с нанесенными на них цифрами от О до 9 и прикрывающего передачу и ролики алюминиевого щитка с вырезанными в нем окошками для отсчета измеряемой величины. Вращение подвижной части счетчика через систему шестерен передается счетному механизму. Полному обороту первого ролика соответствует поворот следующего за ним (справа налево) ролика только на одну десятую часть оборота. Третий ролик уже сделает одну десятую часть оборота при полном обороте второго и т. д. Чаще всего в роликовых счетных механизмах имеется пять роликов. В зависимости от числа шестерен и их передаточных чисел единице, зарегистрированной счетным механизмом энергии, будет соответствовать определенная частота вращения подвижной части счетчика. Частота вращения подвижной части, которая вызывает изменение счетного механизма на единицу измеряемой величины, называется передаточным числом счетчика. Передаточное число обычно указывается на щитке счетчика. Например: 1 квт-ч — 450 об. диска. Число часов работы счетчика при нормальной нагрузке, необходимое для полной смены всех цифр, называется емкостью счетного механизма.

Читайте также:  Электронные газовые счетчики производители

Рис. 3. Роликовый счетный механизм. Для учета электроэнергии в трехфазных трехпроводных цепях (без нулевого провода) применяются двухэлементные счетчики. Трехфазный двухэлементный счетчик состоит как бы из двух помещенных в один корпус однофазных счетчиков, вращающие элементы которых воздействуют на одну общую подвижную часть, соединенную со счетным механизмом (рис. 4). При этом вращающие моменты, созданные каждым элементом, складываются. Счетчик включен по схеме двух ваттметров (схема Арона). Результирующий вращающий момент пропорционален активной мощности трехфазной цепи.

Для учета электроэнергии в четырехпроводных цепях (с нулевым проводом) применяются трехэлементные счетчики. Такие счетчики имеют три элемента, воздействующие либо на три диска (например, в счетчике СА4-ТЧ), либо на два диска (например, в счетчике СА4-И672М). Рис. 5. Схема счетчика реактивной энергии СРЗ-И44. Счетчики реактивной энергии по принципу действия и конструкции сходны со счетчиками активной энергии. Рис. 4. Схема устройства трехфазного двухэлементного двухдискового счетчика. Отличие их состоит в том, что суммарный вращающий момент пропорционален синусу угла между током и напряжением. На рис. 5 приведена схема счетчика типа СРЗ, предназначенного для учета реактивной энергии в трехпроводной сети. Как видно из схемы, на параллельные обмотки подаются напряжения «чужих» фаз. В цепь параллельных обмоток включены добавочные сопротивления. Угол сдвига между рабочими магнитными потоками параллельной и последовательной цепей составляет 60°. В эксплуатационном отношении счетчики со сдвигом в 60° удобны тем, что схема их включения не. отличается от схемы включения счетчика активной энергии. В счетчиках реактивной энергии типа СР4-ИТР параллельные обмотки включены так же, как и в счетчике типа СРЗ, но без добавочных сопротивлений (сдвиг 90°). Каждый из последовательных электромагнитов имеет по две обмотки; основную и дополнительную. Дополнительная обмотка намотана в направлении, противоположном основной (рис. 6). Счетчики этого типа применяются как в трехпроводных, так и в четырехпроводных цепях трехфазного тока. Существуют также трехэлементные счетчики реактивной энергии (СР4-И676) со сдвигом фаз потоков в 90°.

Рис. 6. Схема счетчика реактивной энергии СР4-ИТР. Эти счетчики являются наиболее рекомендуемыми для учета реактивной энергии в четырехпроводных цепях. По способу включения в сеть счетчики разделяют на счетчики прямого включения (прямоточные), которые включаются без измерительных трансформаторов, и счетчики, включаемые через измерительные трансформаторы. Последние в свою очередь можно разделить на включаемые через измерительные трансформаторы с определенными коэффициентами трансформации и универсальные, т. е. включаемые через любые измерительные трансформаторы. Об определении расхода электроэнергии по показаниям счетчиков различных типов будет сказано ниже. На щитках некоторых счетчиков имеется надпись «со стопором» или «обратный ход застопорен». Диск таких счетчиков может вращаться только в направлении, указанном стрелкой. Допустимая погрешность счетчика определяет его класс точности. Для расчетного учета электроэнергии класс точности счетчиков прямого включения (без измерительных трансформаторов) должен быть для активной энергии не ниже 2,5, а для реактивной энергии не ниже 3. Для счетчиков, включенных через измерительные трансформаторы, класс точности должен быть для активной энергии не ниже 2,0, а для реактивной энергии-не ниже 3. Для присоединений большой мощности (10 Мет и выше) рекомендуется применять счетчики класса точности 1 и выше. Укажем на расшифровку букв в обозначении типа счетчика: С — счетчик; А — активной энергии; Р — реактивной энергии; 3 или 4 — для трехпроводной или четырехпроводной сети; У-универсальный; И — индукционной измерительной системы; П — прямоточный; М — модернизированный. Пример: СА4У-И672М 5а 380в — счетчик активной энергии для включения в четырехпроводную сеть с линейным напряжением 380 в через любые трансформаторы тока.

Всю теорию объяснить не могу, т.к. это долго, да и объяснять «на пальцах» сложно. Попробуйте разобраться сами, гугл и википедия вам в помощь. На конкретные вопросы, если возникнут, я отвечу.

Одно могу сказать, потребление и генерация реактивки — понятия, можно сказать, условные. И счётчик крутит так, как ему положено. Если включить в сеть, например, идеальную ёмкость, то ток через неё потечёт, и весьма конкретный, и амперметр его покажет. Только сдвинут он будет на 90 градусов от напряжения. А счётчик активной энергии крутиться не будет.

Понятие т.н. «реактивной мощности» вводится для цепей переменного тока с тем, чтобы оценить сколько мощности «гоняется» почти бесцельно от источника к нагрузке и обратно (при этом в итоге передачи энергии не происходит, на выходе нуль без палочки). Реактивная мощность создается, если нагрузка потребляет ток, сдвинутый по фазе относительно приложенного напряжения, что характерно, например, для нагрузок типа двигатель (ток отстает от напряжения) или конденсатор (ток опережает напряжение).

На самом деле ни потреблять ни генерировать реактивную мощность невозможно — физически это вообще не мощность, а лишь мера бесцельного (с точки зрения передачи энергии) перекачивания энергии туда-сюда с нулевым результатом. Однако поскольку реактивная мощность явление вредное и большинство нагрузок имеет индуктивный характер, то условились индуктивный (отстающий) ток считать как некое «потребление реактивной мощности» — с тем, чтобы говорить о фильтро-компенсирующих устройствах как о неких устройствах, «генерирующих» реактивную мощность.

Реактивная мощность вредна для электросети, т.к. а). реактивный ток не переносит энергию, б). реактивный ток, тем не менее, загружает ЛЭП, трансформаторы и защитно-коммутационные аппараты — т.е. если с реактивной мощностью не бороться, то возможна глупая ситуация, когда ЛЭП не передавая вообще никакой энергии будет перегружена и перегрета из-за большого реактивного тока.

Читайте также:  Сорвать пломбы с счетчика электричества

Поэтому с реактивной мощностью «борются» (вернее ее компенсируют), помимо прочего, путем установки ФКУ, «генерирующих» реактивную мощность, которую тут же потребляют двигатели и прочие катушки индуктивности. Т.о. в результате работы ФКУ сеть не видит реактивного тока нагрузки.

Для энергетиков предприятий и крупных торговых центров сомнений в существовании реактивной энергии нет. Ежемесячные счета и вполне реальные деньги, которые уходят на оплату реактивной электроэнергии

, убеждают в реальности ее существования. Но некоторые электротехники всерьез, с математическими выкладками, доказывают, что данный тип электроэнергии фикция, что разделение электрической энергии на активную и реактивную составляющие искусственно.

Давайте попробуем и мы разобраться в этом вопросе, тем более, что на незнании отличий разных видов электроэнергии спекулируют создатели . Обещая огромные проценты , они сознательно или по незнанию подменяют один вид электрической энергии другим.

Начнем с понятий активной и реактивной электроэнергии.

Не вдаваясь в дебри формул электротехники, можно определить
активную энергию как ту, которая совершает работу:нагревает пищу на электроплитах, освещает ваше помещение, охлаждает воздух с помощью кондиционера.А реактивная электроэнергия создает необходимые условия для совершения подобной работы.
Не будет реактивной энергии, и двигатели не смогут вращаться, холодильник не будет работать. В ваше помещение не поступит напряжение величиной 220 Вольт, так как ни один силовой трансформатор не работает без потребления реактивной электроэнергии.

Если на осциллографе одновременно наблюдать сигналы тока и напряжения, то две эти синусоиды всегда имеют сдвиг относительно друг друга на величину, называемую фазовым углом

. Вот этот сдвиг и характеризует вклад реактивной энергии в полную энергию, потребляемую нагрузкой. Измеряя только ток в нагрузке, выделить реактивную часть энергии невозможно.

Учитывая, что реактивная энергия не совершает работы, ее можно вырабатывать на месте потребления. Для этого служат конденсаторы. Дело в том, что катушки и конденсаторы потребляют различные виды реактивной энергии: индуктивную и емкостную соответственно.

Они сдвигают кривую тока по отношению к напряжению в противоположные стороны.

В силу этих обстоятельств конденсатор можно считать потребителем емкостной энергии или генератором индуктивной.

Для двигателя, потребляющего индуктивную энергию, конденсатор, расположенный рядом, может стать ее источником. Такая обратимость возможна только для реактивных элементов схемы, не совершающих работу. Для активной энергии подобная обратимость не существует: ее генерация связана с затратами топлива. Ведь прежде чем совершить работу, нужно затратить энергию.

В бытовых условиях за реактивную энергию электропередающие организации плату не изымают, и бытовой счетчик считает только активную составляющую электрической энергии. Совершенно другая ситуация на крупных предприятиях: большое количество электродвигателей, сварочных аппаратов и трансформаторов, для работы которых требуется реактивная энергия, создают дополнительную нагрузку на линии электропередач. При этом растет ток и тепловые потери уже активной энергии.

В этих случаях потребление реактивной энергии учитывается счетчиком и отдельно оплачивается. Стоимость реактивной электроэнергии меньше стоимости активной, но при больших объемах ее потребления платежи могут быть очень значительными. Кроме этого, за потребление реактивной энергии сверх оговоренных значений, накладываются штрафы. Поэтому экономически выгодно для подобных предприятий становится выработка подобной энергии на месте ее потребления.

Для этого применяются или отдельные конденсаторы, или автоматические установки компенсации, которые отслеживают объемы потребления и подключают или отключают конденсаторные батареи. Современные системы компенсации

позволяют значительно уменьшить потребление реактивной энергии из внешней сети.

Возвращаясь к вопросу в заголовке статьи, можно ответить на него утвердительно. Реактивная энергия существует. Без нее невозможна работа электроустановок, в которых создается магнитное поле. Не совершая видимой работы, она, тем не менее, является необходимым условием для выполнения работ, совершаемой активной электрической энергией.

Многие слышали о реактивной электрической энергии. Учитывая сложность понимания этого термина, сначала необходимо детально разобрать отличия между активной и реактивной энергиями . Приступить необходимо с осознания того факта, что реактивная энергия проявляет себя только в сетях переменного тока. В цепях, где течёт постоянный ток, реактивной энергии не существует. Это обусловлено самой природой её появления.

Переменный ток поступает к потребителю от генерирующих мощностей через ряд понижающих трансформаторов, конструкция которых предусматривает разделение обмоток высокого и низкого напряжения. То есть, в трансформаторе нет прямого физического контакта между обмотками, а ток, тем не менее, течёт. Объяснение этому довольно простое. Электрическая энергия передаётся через воздух, являющийся хорошим диэлектриком, с помощью электромагнитного поля. Его составляющая — переменное магнитное поле, появляющееся в одной из обмоток трансформатора, постоянно пересекает другую обмотку, не имеющей с первой прямого электрического контакта, наводя в её витках электродвижущую силу.

КПД современных трансформаторов очень велик, поэтому потери электроэнергии составляют незначительную величину и вся мощность переменного тока, протекающего в первичной обмотке, переходит в цепь вторичной обмотки. Такая же картина повторяется в конденсаторе. Только за счёт электрического поля. И индуктивность, и емкость порождают реактивную энергию, периодически возвращая источнику переменного тока часть энергии. Запасание и возврат энергии (реактивной её части) мешают течению активной энергии, которая и выполняет всю полезную работу в сетях — она преобразуется в механическую, тепловую и иные виды работы.

Для компенсации противодействия реактивной энергии потребители, у которых много индуктивной нагрузки применяют специально устанавливаемые емкости (конденсаторы). Это позволяет минимизировать негативное влияние появляющейся реактивной энергии. Как уже отмечено, реактивная мощность оказывает существенное влияние на величину потерь электрической энергии в сети. Помимо этого, большой объём реактивной энергии может снизить уровень электромагнитной совместимости оборудования. Из-за этого величину этой негативной энергии необходимо постоянно контролировать и лучший способ для этого – организация её учёта.

Промышленные предприятия (где, в основном, озабочены проблемой реактивной энергии) часто ставят отдельные приборы учёта для реактивной и активной энергии. Счётчики реактивной энергии ведут её учёт в трёхфазных сетях по двум составляющим (индуктивной и емкостной) в вольт-амперах реактивных часов. Как правило, счётчик реактивной энергии — это аналого-цифровое устройство, преобразующее мощность в аналоговый сигнал, который потом превращается в частоту следования электрических импульсов, сложение которых позволяет судить о величине потребляемой энергии. Конструкция счётчика предусматривает пластмассовый корпус, в котором установлены три трансформатора тока и печатная плата с блоком учёта. На внешней стороне прибора размещены светодиоды и (или) жидкокристаллический экран.

Учитывая растущую конкуренцию, промышленные предприятия всё чаще устанавливают универсальные приборы учёта электрической энергии, способные измерять количество активной и реактивной энергии. Кроме того, что приборы совмещают в себе функции двух и более устройств, потребитель снижает затраты на обслуживание системы учёта (вместо двух счётчиков содержится один) и может сэкономить на цене покупки. Эти устройства на базе микропроцессоров способны измерять мгновенные значения напряжений и токов и вычислять реактивную и активную мощности. Прибор фиксирует уровень потребления энергии и отражает информацию на дисплее тремя сменяющимися кадрами (объём активной энергии, индуктивная составляющая реактивной энергии и её ёмкостная составляющая). Новые модели могут учитывать энергию в двух направлениях, предавать полученные данные по инфракрасному цифровому каналу, лучше защищены от воздействия магнитных полей и от хищений энергии. Высокая точность измерений и малое энергопотребление также выгодно отличают их от предшественников.

Антенна
Триколор тв личный кабинет проверить баланс

Электрооборудование
Как работает двигатель внутреннего сгорания

Источник

Счётчик реактивной энергии

Многие слышали о реактивной электрической энергии. Учитывая сложность понимания этого термина, сначала необходимо детально разобрать отличия между активной и реактивной энергиями. Приступить необходимо с осознания того факта, что реактивная энергия проявляет себя только в сетях переменного тока. В цепях, где течёт постоянный ток, реактивной энергии не существует. Это обусловлено самой природой её появления.

Читайте также:  Как электросчетчик снижение показания схема

Переменный ток поступает к потребителю от генерирующих мощностей через ряд понижающих трансформаторов, конструкция которых предусматривает разделение обмоток высокого и низкого напряжения. То есть, в трансформаторе нет прямого физического контакта между обмотками, а ток, тем не менее, течёт. Объяснение этому довольно простое. Электрическая энергия передаётся через воздух, являющийся хорошим диэлектриком, с помощью электромагнитного поля. Его составляющая — переменное магнитное поле, появляющееся в одной из обмоток трансформатора, постоянно пересекает другую обмотку, не имеющей с первой прямого электрического контакта, наводя в её витках электродвижущую силу.

КПД современных трансформаторов очень велик, поэтому потери электроэнергии составляют незначительную величину и вся мощность переменного тока, протекающего в первичной обмотке, переходит в цепь вторичной обмотки. Такая же картина повторяется в конденсаторе. Только за счёт электрического поля. И индуктивность, и емкость порождают реактивную энергию, периодически возвращая источнику переменного тока часть энергии. Запасание и возврат энергии (реактивной её части) мешают течению активной энергии, которая и выполняет всю полезную работу в сетях — она преобразуется в механическую, тепловую и иные виды работы.

Для компенсации противодействия реактивной энергии потребители, у которых много индуктивной нагрузки применяют специально устанавливаемые емкости (конденсаторы). Это позволяет минимизировать негативное влияние появляющейся реактивной энергии. Как уже отмечено, реактивная мощность оказывает существенное влияние на величину потерь электрической энергии в сети. Помимо этого, большой объём реактивной энергии может снизить уровень электромагнитной совместимости оборудования. Из-за этого величину этой негативной энергии необходимо постоянно контролировать и лучший способ для этого – организация её учёта.

Промышленные предприятия (где, в основном, озабочены проблемой реактивной энергии) часто ставят отдельные приборы учёта для реактивной и активной энергии. Счётчики реактивной энергии ведут её учёт в трёхфазных сетях по двум составляющим (индуктивной и емкостной) в вольт-амперах реактивных часов. Как правило, счётчик реактивной энергии — это аналого-цифровое устройство, преобразующее мощность в аналоговый сигнал, который потом превращается в частоту следования электрических импульсов, сложение которых позволяет судить о величине потребляемой энергии. Конструкция счётчика предусматривает пластмассовый корпус, в котором установлены три трансформатора тока и печатная плата с блоком учёта. На внешней стороне прибора размещены светодиоды и (или) жидкокристаллический экран.

Учитывая растущую конкуренцию, промышленные предприятия всё чаще устанавливают универсальные приборы учёта электрической энергии, способные измерять количество активной и реактивной энергии. Кроме того, что приборы совмещают в себе функции двух и более устройств, потребитель снижает затраты на обслуживание системы учёта (вместо двух счётчиков содержится один) и может сэкономить на цене покупки. Эти устройства на базе микропроцессоров способны измерять мгновенные значения напряжений и токов и вычислять реактивную и активную мощности. Прибор фиксирует уровень потребления энергии и отражает информацию на дисплее тремя сменяющимися кадрами (объём активной энергии, индуктивная составляющая реактивной энергии и её ёмкостная составляющая). Новые модели могут учитывать энергию в двух направлениях, предавать полученные данные по инфракрасному цифровому каналу, лучше защищены от воздействия магнитных полей и от хищений энергии. Высокая точность измерений и малое энергопотребление также выгодно отличают их от предшественников.

Источник



Что такое активная и реактивная электроэнергия на счетчике

С одной стороны, работу тока можно легко посчитать, зная силу тока, напряжение и сопротивление нагрузки. До боли знакомые формулы из курса школьной физики выглядят так.

И здесь нет ни слова про реактивную составляющую.

С другой стороны, ряд физических процессов на самом деле накладывают свои особенности на эти расчёты. Речь идёт о реактивной энергии. Проблемы с пониманием реактивных процессов приходят вместе со счетами за электроэнергию в крупных предприятиях, ведь в бытовых сетях мы платим только за активную энергию (размеры потребления реактивной энергии настолько малы, что ими просто пренебрегают).

Чтобы понять суть физических процессов начнём с определений.

Активная электроэнергия – это полностью преобразуемая энергия, поступающая в цепь от источника питания. Преобразование может происходить в тепло или в другой вид энергии, но суть остаётся одна – принятая энергия не возвращается обратно в источник.

Пример работы активной энергии: ток, проходя через элемент сопротивления, часть энергии преобразует в нагрев. Эта совершённая работа тока и является активной.

Реактивная электроэнергия – это энергия, возвращаемая обратно источнику тока. То есть ранее полученный и учтённый счётчиком ток, не совершив работы, возвращается. Помимо прочего ток совершает скачок (на короткое время нагрузка сильно возрастает).

Тут без примеров сложно понять процесс.

Самый наглядный – работа конденсатора. Сам по себе конденсатор не преобразует электроэнергию в полезную работу, он её накапливает и отдаёт. Конечно, если часть энергии всё-таки уходит на нагрев элемента, то её можно считать активной. Реактивная же выглядит так:

1. При питании ёмкости переменным напряжением, вместе с увеличением U растёт и заряд конденсатора.

2. В момент начала падения напряжения (второй четвертьпериод на синусоиде) напряжение на конденсаторе оказывается выше, чем у источника. И поэтому конденсатор начинает разряжаться, отдавая энергию обратно в цепь питания (ток течёт в обратном направлении).

3. В следующих двух четвертьпериодах ситуация полностью повторяется, то только напряжение меняется на противоположное.

Ввиду того, что сам конденсатор работы не совершает, принимаемое напряжение достигает своего максимального амплитудного значения (то есть в √2=1,414 раза больше действующего 220В, или 220·1,414=311В).

При работе с индуктивными элементами (катушки, трансформаторы, электродвигатели и т.п.) ситуация аналогична. График показателей можно увидеть на изображении ниже.

Рис. 2. Графики показателей

Ввиду того, что современные бытовые приборы состоят из множества разных элементов с «реактивным» эффектом питания и без него, то реактивный ток, протекая в обратном направлении, совершает вполне реальную работу по нагреву активных элементов. Таким образом, реактивная мощность цепи – по сути выражается в побочных потерях и скачках напряжения.

Очень сложно отделить один показатель мощности от другого при расчётах. А система качественного и эффективного учёта стоит дорого, что, собственно, и привело к отказу от измерения объёма потребления реактивных токов в быту.

В крупных коммерческих объектах наоборот, объем потребления реактивной энергии намного больше (из-за обилия силовой техники, снабжаемой мощными электродвигателями, трансформаторами и другими элементами, порождающими реактивный ток), поэтому для них вводится раздельный учёт.

Как считается активная и реактивная электроэнергия

Большинство производителей счётчиков электроэнергии для предприятий реализуют простой алгоритм.

Здесь из полной мощности S отнимается активная мощность P (в облегчённом для понимания виде).

Таким образом, производителю не обязательно организовывать полностью раздельный учёт.

Что такое cosϕ (косинус фи)

Ввиду того, что большой объем фактически паразитных реактивных токов нагружает сети поставщика электроэнергии, последние стимулируют потребителей снижать реактивную мощность.

Для числового выражения соотношения активной и реактивной мощностей применяется специальный коэффициент – косинус фи.

Вычисляется он по формуле.

Где полная мощность – это сумма активной и реактивной.

Чем ближе показатель к единице, тем меньше паразитной нагрузки на сеть.

Такой же коэффициент указывается на шильдиках электроинструмента, оснащённого двигателями. В этом случае cosϕ используется для оценки пиковой потребляемой мощности. Например, номинальная мощность прибора составляет 600 Вт, а cosϕ = 0,7 (средний показатель для подавляющего большинства электроинструмента), тогда пиковая мощность, необходимая для старта электродвигателя будет считаться как Pномин / cosϕ, = 600 Вт / 0,7 = 857 ВА (реактивная мощность выражается в вольт-амперах).

Применение компенсаторов реактивной мощности

Чтобы стимулировать потребителей эксплуатировать электросеть без реактивной нагрузки, поставщики электроэнергии вводят дополнительный оплачиваемый тариф на реактивную мощность, но оплату взимают только если среднемесячное потребление превысит определённый коэффициент, например, при соотношении полной и активной мощностей составит свыше 0,9, счёт на оплату реактивной мощности не выставляется.

Для того, чтобы снизить расходы, предприятия ставят специальное оборудование – компенсаторы. Они могут быть двух видов (в соответствии с принципом работы):

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Источник