Меню

Полный ток трехфазного короткого замыкания

Расчет трехфазного КЗ.

Введение.

Расчет токов короткого замыкания необходим для выбора и проверки электрооборудования по условиям короткого замыкания (КЗ); для выбора уставок и оценки возможного действия релейной защиты и автоматики; для определения влияния токов нулевой последовательности линий электропередачи на линии связи; для выбора заземляющих устройств.

При расчетах токов КЗ допускается не учитывать:

1) сдвиг по фазе ЭДС и изменение частоты вращения роторов синхронных генераторов, компенсаторов и электродвигателей, если продолжительность КЗ не превышает 0,5 с;

2) ток намагничивания трансформаторов и автотрансформаторов;

3) насыщение магнитных систем электрических машин;

4) поперечную емкость воздушных линий электропередачи напряжением 110­–220 кВ, если их длина не превышает 200 км, и напряжением 330–500 кВ, если их длина не превышает 150 км.

Расчет периодической составляющей тока КЗ допускается производить, не учитывая активные сопротивления элементов электроэнергетической системы, если результирующее эквивалентное сопротивление относительно точки КЗ не превышает 30% результирующего эквивалентного индуктивного сопротивления.

Расчет трехфазного КЗ.

1. На основании заданной расчетной схемы составить схему замещения и рассчитать ее параметры в относительных единицах приближенным методом. Для этого задаться базисной мощностью (Sб). Базисную мощность принимают произвольно, так, чтобы получались величины, удобные для расчета, обычно число, кратное номинальной мощности источника или 100 МВА, 1000 МВА.

Расчетные схемы элементов, схемы замещения и формулы для расчета параметров схем замещения в таблице 1. Здесь Uср – среднее номинальное напряжение в месте установки данного элемента. Шкала средних номинальных напряжений: 3,15; 6,3; 10,5; 13,8; 15,75; 18; 20; 24; 37; 115; 154; 230; 340; 515 кВ.

2. Расчет начального значения периодической составляющей тока КЗ (IП0).

Схема замещения эквивалентируется (сворачивается) к точке КЗ. Методы эквивалентных преобразований схем приведены в приложении 1.

где – среднее (по шкале) напряжение в точке КЗ.

Таблица 1 – Схемы и параметры схем элементов электроэнергетической системы

Наименование элемента Схемы Параметры схемы
расчетная замещения расчетной замещения
Генератор Sном(МВА), Uном(кВ), cos jном, , Та (с)
Синхрон-ный компенсатор Sном(МВА), Uном(кВ), cos jном, , Та (с)
Недовозбуждение
Перевозбуждение
Эквивалентная (обобщенная) нагрузка Uном(кВ), Sном (МВА)
продолжение таблицы 1
Синхрон-ный двигатель Sном(МВА), Uном(кВ), cos jном, Та (с), или I* пуск , М*пуск
Асинхрон-ный двигатель Рном(кВ), Uном(кВ), cos jном, I* пуск , h (%)
Двухобмо-точный трансформатор (автотрансформатор) Uном ВН(кВ), Uном НН(кВ), Sном (МВА) (%) (кВт)
продолжение таблицы 1
Эквива-лентный источник (система) Uном(кВ), SКЗ (МВА) или
Iном. отк (кА), или
Трехобмо-точный трансформатор (автотрансформатор) Uном ВН(кВ), Uном CН(кВ), Uном CН(кВ), Sном (МВА), (кВт)
продолжение таблицы 1
Двухобмо-точный трансформатор с обмоткой низкого напряжения расщепленной на две части Uном ВН(кВ), Uном НН(кВ), Sном (МВА) (%) (кВт)
—²— при параллельной работе обмоток низкого напряжения Uном ВН(кВ), Uном НН(кВ), Sном (МВА) (%) (кВт)
продолжение таблицы 1
Реактор Uном(кВ), Iном(кА), (Ом) (кВт)
Сдвоен-ный реактор Uном(кВ), Iном(кА), (Ом) (кВт)
Линия электропередачи

3. Расчет ударного тока КЗ.

Ударным током короткого замыкания ( ) называют максимальное мгновенное значение полного тока КЗ при наиболее неблагоприятных условиях. Он наступает приблизительно через полпериода, что при f =50 Гц составляет около 0,01 сек. с момента возникновения короткого замыкания.

где – ударный коэффициент, который показывает превышение ударного тока над амплитудой периодической составляющей.

где – постоянная времени цепи короткого замыкания (постоянная времени затухания апериодической составляющей тока КЗ).

где – соответственно эквивалентные индуктивное и активное сопротивление схемы замещения;

– угловая скорость ( , где =50 гц).

Расчетные выражения для определения активных сопротивлений элементов схемы замещения приведены в таблице 2.

Если точка КЗ делит схему на радиальные не зависимые друг от друга ветви, то ударный ток можно определять, как сумму ударных токов отдельных ветвей.

При приближенных расчетах обычно можно не рассчитывать , а воспользоваться средними значениями ударных коэффициентов ( ) и постоянной времени затухания апериодической составляющей тока КЗ ( ) для характерных цепей, примыкающих к точке КЗ, приведенными на рисунке 1 и в таблице 3.

Таблица 2 – Расчетные выражения для определения активных сопротивлений элементов схемы замещения при приближенном учете коэффициентов трансформации трансформаторов.

Наименование элемента Параметры элемента (относительные единицы)
Генератор (синхронный компенсатор), синхронный двигатель
Продолжение таблицы 2
Асинхронный двигатель ( – номинальное скольжение электродвигателя, %)
Эквивалентный источник (система)
Эквивалентная нагрузка
Двухобмоточные трансформаторы (автотрансформаторы)
Трехобмоточные трансформаторы (автотрансформаторы)
Двухобмоточный трансформатор с обмоткой НН, расщепленной на две части
Двухобмоточный трансформатор с обмоткой НН, расщепленной на две части, при параллельной работе обмоток НН
Реактор
Сдвоенный реактор
Воздушная линия, кабельная линия

Примечание: – номинальные мощности элементов (МВА); – базисная мощность (МВА); – потери короткого замыкания (МВт); – потери на фазу (МВт); – среднее (по шкале) напряжение в месте установки данного элемента (кВ)

Рисунок 1 – Кривые для определения ударных коэффициентов и постоянных времени затухания апериодической составляющей тока КЗ при коротком замыкании за трансформатором собственных нужд.

Таблица 3 – Средние значения ударного коэффициента Куд и постоянной времени Та для характерных ветвей, примыкающих к точке КЗ.

Место КЗ Куд Та (с)
Турбогенератор мощностью 12–60 МВт 1,94 -1,955 0,16-0,25
Турбогенератор мощностью 100–1000 МВт 1,975-1,98 0,4-0,54
Ветвь генератор–трансформатор 1,9-1,95 0,1-0,2
Система, связанная с шинами, где рассматривается КЗ, воздушными линиями, напряжением 35 кВ 110-150 кВ 220-330 кВ 500-750 кВ 1,608 1,608-1,717 1,717-1,78 1,85-1,895 0,02 0,02-0,03 0,03-0,04 0,04-0,05
Сборные шины повышенного напряжения станций с трансформаторами мощностью 80 МВА в единице и выше 1,85-1,935 0,06-0,15
до 80 МВА в единице 1,82-1,904 0,05-0,1
За линейным реактором на электростанции 1.9 0,1
За линейным реактором на подстанции 1.85 0,06
Ветвь асинхронного двигателя 1,6 0,02
За кабельной линией 6-10 кВ 1,4 0,01
За трансформатором мощностью 1000 кВА 1,6 0,02
РУ повышенного напряжения подстанции 1,8 0,05
РУ вторичного напряжения подстанции 1,85 0,06

4. Расчет апериодической составляющей тока КЗ в момент времени .

Значения определены при расчете ударного тока.

5. Расчет периодической составляющей тока КЗ в момент времени .

Рисунок 2 – Типовые кривые для определения затухания периодической составляющей тока КЗ.

Расчет выполняется методом типовых кривых. Типовые кривые для генераторов приведены на рисунке 2.

Значение периодической составляющей тока КЗ для заданного момента времени t :

– периодическая составляющая тока КЗ от системы. Причем за систему в этом случае можно принять все источники, для которых КЗ является удаленным. Это генераторы, отделенные от точки КЗ реактором, двумя трансформаторами или трансформатором с расщепленной обмоткой низшего напряжения.

– периодическая составляющая тока КЗ от генератора (при КЗ на выводах генератора) или от блока генератор-трансформатор (при КЗ на стороне ВН блока) определяется по типовым кривым в следующем порядке:

а) определяется приведенное значение номинального тока генератора:

где – среднее (по шкале) напряжение в точке КЗ.

— при КЗ на выводах генератора

— при КЗ на стороне ВН блока

6.2 Если исходная расчетная схема содержит произвольное число источников энергии, для которых расчетное КЗ является удаленным, а также генератор, который при КЗ оказывается связанным с точкой КЗ по радиальной схеме и это КЗ для него является близким (КЗ на выводах генератора, точка К2), интеграл Джоуля в амперах в квадрате на секунду, следует определять по формуле

Интеграл Джоуля от периодической составляющей тока КЗ ( )в амперах в квадрате на секунду следует определять по формуле

где начальное значение периодической составляющей тока КЗ от удаленных источников энергии, А;

Читайте также:  Олег газманов удар током

— начальное действующее значение периодической составляющей тока КЗ от генератора , А;

— относительный интеграл от периодической составляющей тока КЗ;

тер — относительный интеграл Джоуля;

– продолжительность протекания тока КЗ.

Значения тер.г и при разных удаленностях расчетной точки КЗ от генераторов могут быть определены по кривым на рисунках 3,4.

При определении интеграла Джоуля от апериодической составляющей тока КЗ необходимо учитывать, что численные значения постоянных времени затухания апериодических составляющих токов от генератора ( ) в секундах и от удаленных источников энергии ( )в секундах обычно значительно отличаются друг от друга. Поэтому интеграл Джоуля следует определять по выражению

7. Построение осциллограммы.

При построении осциллограммы принимаем .

Мгновенное значение тока КЗ в любой момент времени от начала КЗ

где – амплитудное значение периодической составляющей тока КЗ;

– угол сдвига тока в цепи КЗ относительно напряжения источника той же фазы;

– апериодическая составляющая тока КЗ в начальный момент времени;

– постоянная времени затухания апериодической составляющей тока КЗ (см. п. 4).

Строится периодическая составляющая тока КЗ, причем ;

строится апериодическая составляющая тока КЗ;

осциллограмма полного тока КЗ получается графическим суммированием периодической и апериодической составляющей.

Пример осциллограммы приведен на рисунке 5.

Рисунок 5 – Осциллограмма полного тока и его составляющих при трехфазном КЗ

Источник



Ток короткого замыкания однофазных и трехфазных сетей

В электрических сетях периодически возникают различные аварийные ситуации. Среди них, наибольшую опасность представляет ток короткого замыкания, формула которого используется при расчетах и проектировании. Последствия аварийного режима достаточно серьезные – выходят из строя сами сети, а также подключенные приборы и оборудование. Все это причиняет большой материальный ущерб. Проводимые расчеты, в том числе и на ударный ток КЗ требуются, в первую очередь, для того, чтобы обеспечить надежную защиту на электрифицированном объекте.

  1. Расчет токов короткого замыкания
  2. Изменения тока в процессе короткого замыкания
  3. Короткие замыкания в однофазных сетях
  4. Расчет токов КЗ для трехфазных сетей
  5. Ток КЗ в сетях с неограниченной мощностью

Расчет токов короткого замыкания

Для выполнения подобного расчета тока привлекаются квалифицированные специалисты. Они не только разрабатывают теоретическую сторону, но и отвечают за последующую эксплуатацию представленных схем. Здесь слишком много специфических особенностей, поэтому начинающие электрики должны хорошо представлять себе не только саму природу электричества, но и свойства проводников, диэлектриков, особенности изоляции и другие важные вопросы.

Ток короткого замыкания однофазных и трехфазных сетей

Результаты рассчитанные в домашних условиях, должны обязательно проверяться специалистами. Все расчеты, касающиеся короткого замыкания, выполняются с использованием специальных формул.

Трёхфазное короткое замыкание в электрических сетях до 1000В определяется с учетом следующих особенностей:

  • Трехфазная система по умолчанию является симметричной.
  • Трансформаторное питание считается неизменным, сравнимым с его номиналом.
  • Возникновение короткого замыкания считается в момент максимального значения силы тока.
  • Значение ЭДС принимается для источников питания, расположенных на большом расстоянии от места КЗ.

Кроме того, определяя параметры короткого замыкания, следует правильно вычислить общее сопротивление проводников, с привязкой к единому значению мощности. Обычные формулы могут привести к ошибкам из-за разных номинальных напряжений на отдельных участках в момент КЗ. Базовая мощность существенно упрощает расчеты и повышает их точность.

Изменения тока в процессе короткого замыкания

За период КЗ ток подвергается различным изменениям. В самом начале он увеличивается, далее – затухает до определенного значения, а потом автоматический регулятор возбуждения доводит его до стабильной величины.

Период времени, требуемый для изменения параметров тока короткого замыкания – ТКЗ, получил название переходного процесса. По окончании этого промежутка и до момента, когда КЗ будет отключено, наблюдается стабильный аварийный режим. Величина тока в различные промежутки времени необходима при выборе уставок для защитной аппаратуры, проверке динамической и термической устойчивости электрооборудования.

В каждой сети подключены нагрузки с установленными индуктивными сопротивлениями. Они препятствуют мгновенным изменениям тока, поэтому его величина меняется не скачкообразно, а нарастает постепенно, в соответствии с законом физики. Анализ и расчет тока в переходный период значительно упрощается, если его условно разделить на две составные части – апериодическую и периодическую.

  1. Первая – апериодическая часть ia – обладает постоянным знаком, появляется в момент КЗ и довольно быстро понижается до нулевой отметки.
  2. Вторая часть – периодическая составляющая тока КЗ Inmo – в первый момент времени представляет собой начальный ток короткого замыкания. Именно он используется при выборе уставок и проверке чувствительности защитных устройств. Данная сила тока короткого замыкания получила название сверхпереходного тока, поскольку при его расчетах схема замещения дополняется сверхпереходными ЭДС и сопротивлением генератора.

По завершении переходного периода периодический ток считается установившимся. Величина полного тока включает в себя апериодическую и периодическую составляющие на любом отрезке переходного периода. Показатель его максимального мгновенного значения представляет собой ударный ток короткого замыкания, определяемый при проверке динамической устойчивости электрооборудования.

Короткие замыкания в однофазных сетях

При выполнении расчетов энергосистем однофазного тока допускаются вычисления, производимые в упрощенной форме. Приборы и оборудование в таких сетях не потребляют большого количества электроэнергии, поэтому надежная защита может быть обеспечена обычным автоматическим выключателем, рассчитанным на ток срабатывания 25 ампер.

Ток однофазного короткого замыкания вычисляется в следующем порядке:

  • Определение параметров трансформатора или реактора, питающих сеть, в том числе их электродвижущей силы.
  • Устанавливаются технические характеристики проводников, используемых в сети.
  • Разветвленную электрическую схему необходимо упростить, разбив на отдельные участки.
  • Вычисление полного сопротивления между фазой и нулем.
  • Определения полных сопротивлений трансформатора или других питающих устройств, если такие данные отсутствуют в технической документации.
  • Все полученные значения вставляются в формулу.

В каждом случае сила тока короткого замыкания и формула, по которой рассчитывается однофазный процесс, показана на рисунке.

В ней Uf является фазным напряжением, Zt – сопротивлением трансформатора в момент КЗ. Zc будет сопротивлением между фазой и нулем, а Ik – однофазным током КЗ.

Использование данной формулы позволяет определить ток однофазного КЗ и его параметры в соответствующих цепях с величиной погрешности в пределах 10%. Полученных данных вполне достаточно, чтобы рассчитать правильную и эффективную защиту сети. Основной проблемой при получении исходных данных считается определение величины Zc.

При наличии данных о параметрах проводников и значениях переходных сопротивлений, определить сопротивление между фазой и нулем вполне возможно по формуле:

Здесь rf и rn являются, соответственно, активными сопротивлениями фазного и нулевого проводов, измеряемыми в Омах, ra представляет собой сумму активных сопротивлений контактов в цепочке фаза-ноль (Ом), xf” и xn” – внутренние индуктивные сопротивления фазного и нулевого проводов (Ом), x’ – является внешним индуктивным сопротивлением в цепочке фаза-ноль (Ом).

Полученное значение подставляется в предыдущую формулу, после чего определение тока КЗ уже не составит особого труда. Главное – соблюдать правильную последовательность действий при выполнении расчетов.

Расчет токов КЗ для трехфазных сетей

Для того чтобы определить ток трехфазного короткого замыкания в соответствующих сетях, следует обязательно учитывать специфику возникновения и развития этого процесса. Прежде всего, это индуктивность, возникающая в замкнутом проводнике, из-за чего ток трехфазного КЗ изменяется не мгновенно, а нарастает постепенно в соответствии с определенными законами.

Точность производимых вычислений зависит в первую очередь от расчетов основных величин, вставляемых в формулу. С этой целью используются дополнительные формулы или специальное программное обеспечение, выполняющее сложнейшие вычислительные операции за очень короткое время.

Если же расчеты в трехфазных сетях выполняются ручным способом, в таких случаях нужные результаты про ток КЗ формула, приведенная ниже, позволяет определить с достаточно точными показателями:

  • Iкз = Uc/(√3рез) = Uc /(√3*(Хсист + Хвн)), в которой Хвн является сопротивлением между шинами и точкой КЗ, Хсист – это сопротивление во всей системе относительно шин источника напряжения, Uc – напряжение на шинах в данной системе.
Читайте также:  Ток это материя или вещество

При отсутствии какого-то из показателей, его значение определяется с использованием дополнительных формул или программ. Если же расчеты трехфазного КЗ производятся для сложных сетей с большим количеством разветвлений, в этом случае основная схема преобразуется в схему замещения, где присутствует лишь один источник электроэнергии и одно сопротивление.

Сам процесс упрощения производится в следующем порядке:

  • Складываются все показатели сопротивлений, подключенных параллельно в данной цепи.
  • Далее суммируются все сопротивления, подключенные последовательно.
  • Результирующее сопротивление Хрез определяется как сумма всех подключенных параллельных и последовательных сопротивлений.

Расчеты токов двухфазного короткого замыкания выполняются с учетом отсутствия у них симметричности. У них нет нуля, а присутствую токи, протекающие в прямом и обратном направлении. Таким образом, ток двухфазного КЗ рассчитывается последовательно, по отдельным формулам, используемым для каждого показателя.

Ток КЗ в сетях с неограниченной мощностью

Довольно часто мощность источника электроэнергии значительно превышает величину суммарной мощности всех подключенных потребителей. В таких случаях при решении задачи, как найти значение короткого замыкания, величина напряжения считается условно неизменной.

Наличие подобных условий приводит к бесконечному показателю мощности, а сопротивление проводников принимает нулевое значение. Они используются для расчета только в тех случаях, когда место короткого замыкания располагается на большом расстоянии от источника напряжения, а величина результирующего сопротивления цепи многократно превышает показатели сопротивления всей системы.

В сетях с неограниченной мощностью, вычислить ток короткого замыкания позволяет следующая формула: Ik = Ib/Xрез, в которой Ib является базисным током, а Xрез – результирующим сопротивлением сети. При наличии исходных данных, очень быстро найдем достаточно точный конечный результат.

Как рассчитать ток короткого замыкания

Опыт короткого замыкания трансформатора

Ударный ток короткого замыкания

Режим короткого замыкания

Апериодическая составляющая тока короткого замыкания

Источник

—>ЭлектрО —>

ТРЕХФАЗНОЕ КОРОТКОЕ ЗАМЫКАНИЕ

Для того чтобы ознакомиться с сущностью процесса КЗ, оста­новимся на наиболее простом с точки зрения понимания проис­ходящих при КЗ процессов повреждении – трехфазном КЗ (рис. 1).

Трехфазное КЗ является симметричным, так как при нем не на­рушается симметрия токов и напряжений (предполагается равен­ство сопротивлений трех фаз цепи короткого замыкания). По срав­нению с режимом нагрузки при КЗ токи в фазах увеличиваются, а фазные и междуфазные напряжения уменьшаются. Чем меньше сопротивление цепи КЗ ( r к , ωL к ), тем больше ток КЗ и больше посадки напряжения в сети. При трехфазном КЗ система остается уравновешенной, так как геометрические суммы токов и напряжений в любом месте цепи КЗ остаются равными нулю. Угол сдвига фаз между током и напряжением (угол φ) при КЗ определяется соотношением индуктивного и активного сопротивлений цепи КЗ. При относительно малом значении активного сопротивления цепи КЗ, что имеет место в установках напряжением выше 1000 В, угол φ Приближается к 90º, т.е. ток КЗ является либо чисто индуктивным, либо обладает значительной индуктивной составляющей.

Короткое замыкание (см. рис. 1) делит цепь на две части: пра­вую с сопротивлениями r 1 и ωL 1 = x 1 и левую, содержащую источ­ник питания и сопротивления цепи КЗ r к и ωL к = x к .

Известно, что в цепях, содержащих индуктивность, не может быть мгновенного изменения тока. Всякое изменение сопротивле­ния цепи вызывает переходный процесс, в течение которого ток в цепи изменяется до некоторого установившегося значения.

Процессы в обеих частях рассматриваемой нами схемы при трехфазном КЗ протекают независимо.

Правая часть оказывается зашунтированной КЗ, поэтому ток в ней будет поддерживаться лишь до тех пор, пока запасенная в индуктивности L 1 энергия магнитного поля не перейдет в теп­ло, выделяющееся в активном сопротивлении r 1 . Этот ток при активно-индуктивном характере сопротивления цепи не превышает тока нормального режима и, затухая постепенно до нуля, не пред­ставляет опасности для оборудования.

Изменение режима в левой части цепи, содержащей источник питания (генераторы, двигатели, синхронные компенсаторы), при наличии индуктивности L к тоже сопровождается переходным про­цессом, но характер его и длительность перехода к установивше­муся режиму будут различными в зависимости от того, изменяет­ся ЭДС источника во время КЗ или нет.

В соответствии с вышесказанным рассматриваются три случая

а) КЗ в цепи, питающейся от шин энергосистемы неизменно­ го напряжения;

Рис. 1. Трехфазное КЗ в симметричной цепи, питаемой от шин неиз­менного напряжения.

Рис. 2. Кривые изменения тока трехфазного КЗ при максимальном значении апериодической составляющей:

а – в цепи, питаемой от шин неизменного напряжения; б – в цепи синхронного генератора без АВР; в – в цепи синхронного генератора с АВР.

б) КЗ в цепи, питающейся от генератора ограниченной мощ­ности без устройств автоматического регулирования возбуждения (АРВ);

в) КЗ в цепи, питающейся от генератора ограниченной мощ­ности с АРВ.

На рис. 3.3 показаны графики изменения токов трехфазного КЗ для всех трех случаев.

В левой части графиков (см. рис. 2) изображена кривая тока предшествующего нагрузочного режима i н . Пересечение оси то­ков i с осью времени t соответствует моменту возникновения КЗ ( t = 0). В правой части графика показаны кривые токов i к , i п , i а . Кривая тока i к изображает ток КЗ, фактически протекающий по цепи, или полный ток КЗ. Кривые i п и i а соответствуют пе­риодической и апериодической составляющим полного тока i к . В качестве общего положения при составлении графиков было принято, что индуктивное сопротивление цепи КЗ x к = ωL к значительно преобладает над активным r к (хк>> r к ) и периодическая составляющая тока КЗ i п отстает по фазе от ЭДС примерно па 90º.

Часть процесса, которая характеризуется изменением ампли­тудных значений тока КЗ, называется переходным (неустано­вившемся) режимом. В установившемся режиме амплитуды тока КЗ постоянны.

Источник

Короткое замыкание

Что такое короткое замыкание

Короткое замыкание (КЗ, англ. short curcuit) — незапланированное соединение точек цепи с различными потенциалами друг с другом или с другими электрическими цепями через пренебрежимо малое сопротивление. При этом образуется сверхток, значения которого на порядки превышают предусмотренные нормальными условиями работы.

Определение КЗ из “Элементарного учебника физики” Ландсберга

короткое замыкание определение

В результате короткого замыкания выходит из строя электрооборудование, происходят возгорания. О самых разрушительных последствиях коротких замыканий мы регулярно узнаем из новостных рубрик «Чрезвычайные происшествия». Что же именно происходит при КЗ? В результате чего они появляются? Какими могут быть последствия? Давайте рассмотрим подробнее эти и другие вопросы в приведенной ниже статье.

Как образуется короткое замыкание

Как мы помним из учебника физики за 8 класс, закон Ома для участка цепи определяется по формуле:

закон Ома формула

I – сила тока в цепи, А

U – напряжение, В

R – сопротивление, Ом

Давайте рассмотрим вот такую схему

Короткое замыкание

Если мы подключим настольную лампу EL к источнику тока Bat и замкнем ключ SA, то вольфрамовая нить лампы начнет разогреваться под тепловым воздействием тока. В этом случае значительная часть электрической энергии преобразуется в световую и тепловую.

А теперь покончим с лирическими отступлениями и замкнем два провода, которые идут на лампочку, через толстый провод AВ

Короткое замыкание

Что будет дальше, если мы замкнем контакты ключа SA?

короткое замыкание

В результате ток пойдет по укороченному пути, минуя нагрузку. Короткий путь в данном случае и есть провод AB. Сопротивление провода АВ близко к нулю. В результате наша схема преобразуется в делитель тока. Согласно правилу делителя тока, если нагрузки соединены параллельно, то через нагрузку с меньшим сопротивлением побежит большая сила тока, а через нагрузку с большим значением сопротивления – меньшая сила тока. Так как провод АВ обладает почти нулевым сопротивлением, то через него потечет большая сила тока, согласно опять же закону Ома:

Читайте также:  Тест по теме постоянный электрический ток 11 класс с ответами

Короткое замыкание

Как я уже сказал, в режиме КЗ сила тока достигает критических значений, превышающих допустимые для данной цепи.

Закон Джоуля-Ленца

Согласно закону Джоуля-Ленца, тепловое действие тока прямо пропорционально квадрату силы тока на данном участке электрической цепи

закон джоуля ленца формула

Q – это количество теплоты, которое выделяется на сопротивлении нагрузки Rн . Выражается в Джоулях. 1 Джоуль = 1 Ватт х секунда.

I – сила тока в этой цепи, А

Rн – сопротивление нагрузки, Ом

t – период времени, в течение которого происходит выделение теплоты на нагрузке Rн , секунды

Это означает, что на проводе AB будет выделяться бешеное количество теплоты. Провод резко нагреется от температуры, а потом и сгорит. Все зависит от мощности источника питания.

То есть, если ток при коротком замыкании возрастет в 20 раз, то количество выделяющейся при этом теплоты — примерно в 400 раз! Вот почему бывшая еще мгновение назад мирной электроэнергия превращается в настоящее стихийное бедствие: горит проводка, расплавленный металл проводов поджигает находящиеся рядом предметы, возникают пожары.

Существуют еще запланированные и контролируемые КЗ, а также специальное замыкающее оборудование. Например, сварочные аппараты работают как раз на контролируемом КЗ, где требуется большая сила тока для плавки металла.

короткое замыкание сварочный ток

Основные причины короткого замыкания

Все многообразие причин возникновения коротких замыканий можно свести к следующим:

  • Нарушение изоляции
  • Внешние воздействия
  • Перегрузка сети

Нарушение изоляции вызывается как естественным износом, так и внешним вмешательством. Естественное старение элементов электросети ускоряется за счет длительного теплового воздействия тока (тепловое старение изоляции), агрессивных химических сред.

Внешние воздействия могут быть вызваны грызунами, насекомыми и другими животными. Сюда же относится и человеческий фактор. Это может быть “кривой” электромонтаж, либо несоблюдение техники электробезопасности.

Намного чаще короткое замыкание вызывается перегрузкой сети из-за подключения большого количества потребителей тока. Так, если совокупная мощность одновременно включенных в бытовую сеть электроприборов превышает допустимую нагрузку на проводку, с большой вероятностью произойдет короткое замыкание, так как сила тока в такой цепи начинает превышать допустимое значение. Такое явление можно часто наблюдать в домах со старой проводкой, где провода чаще всего алюминиевые и не рассчитаны на современные мощные электроприборы.

Ток короткого замыкания

Сверхток, образующийся в результате КЗ, называется током короткого замыкания. Как только произошло короткое замыкание в цепи, ток короткого замыкания достигает максимальных значений. После того, как провода начнут греться и плавиться, ток короткого замыкания идет на спад, так как сопротивление проводов в при нагреве возрастает.

Для источников ЭДС ток короткого замыкания может быть вычислен по формуле

ток короткого замыкания

Iкз – это ток короткого замыкания, А

E – ЭДС источника питания, В

Rвнутр. – внутреннее сопротивление источника ЭДС, Ом

Более подробно про ЭДС и внутреннее сопротивление читайте здесь.

Ниже на рисунке как раз изображен такой источник ЭДС в виде автомобильного аккумулятора с замкнутыми клеммами

короткое замыкание источник ЭДС

Внутреннее сопротивление автомобильного аккумулятора может достигать значений в доли Ома. Теперь представьте, какой ток короткого замыкания будет течь через проводник, если закоротить им клеммы аккумулятора. Внутреннее сопротивление аккумулятора зависит от многих факторов. Возьмем среднее значение Rвнутр = 0,1 Ом. Тогда ток короткого замыкания будет равен Iкз =E/Rвнутр. = 12/0,1=120 Ампер. Это очень большое значение.

Виды коротких замыканий

В цепи постоянного тока

В этом случае КЗ бывает, как правило, между напряжением питания, которое чаще всего обозначается как “+”, и общим проводом схемы, который соединяют с “-“. Последствия такого КЗ зависят от мощности источника питания постоянного тока. Если в автомобиле голый плюсовой провод заденет корпус автомобиля, который соединяется с “минусом” аккумулятора, то провода начнут плавится и гореть как спички, при условии если не сработает предохранитель, либо вместо него уже стоит “жучок” – самопальный предохранитель. Ниже на фото вы можете увидеть результат такого КЗ.

короткое замыкание сгорел автомобиль

В цепи переменного тока

Трехфазное замыкание

короткое замыкание трехфазное

Это когда три фазных провода коротнули между собой.

Трехфазное на землю

короткое замыкание на землю

Здесь все три фазы соединены между собой, да еще и замкнуты на землю

Двухфазное

короткое замыкание двухфазное

В этом случае любые две фазы замкнуты между собой

Двухфазное на землю

короткое замыкание двухфазное на землю

Любые две фазы замкнуты между собой, да еще и замкнуты на землю

Однофазное на землю

короткое замыкание однофазное на землю

Однофазное на ноль

короткое замыкание фаза ноль

Эти две ситуации чаще всего бывают в ваших квартирах и домах, так как к простым потребителям идет два провода: фаза и ноль.

В трехфазных сетях наиболее часто происходит однофазное замыкание на землю – 60-70% всех коротких замыканий. Двухфазные КЗ составляют 20-25%. Двойное замыкание фаз на землю происходит в электросетях с изолированной нейтралью и составляет 10-15% всех случаев. До 3-5% занимают трехфазные КЗ, при которых происходит нарушение изоляции между всеми тремя фазами.

В электрических двигателях короткое замыкание чаще всего возникает между обмотками двигателя и его корпусом.

Последствия короткого замыкания

Во время КЗ температура в зоне контакта возрастает до нескольких тысяч градусов. Помимо воспламенения изоляции, расплавления и механических повреждений выключателей и розеток и возгорания проводки, следствием замыкания может стать выход из строя компьютерного и телекоммуникационного оборудования и линий связи, которые находятся рядом, вследствие сильного электромагнитного воздействия.

Но падение напряжения и выход из строя оборудования — не самое опасное последствие. Нередко короткие замыкания становятся причиной разрушительных пожаров, зачастую с человеческими жертвами и огромными экономическими потерями.

Из-за удаленности и большого сопротивления до места замыкания защитное оборудование может не сработать. Бывают ситуации, когда ток недостаточен для срабатывания защиты и отключения напряжения, но в месте КЗ его вполне хватает для расплавления проводов и возникновения источников возгорания. Поэтому, токи коротких замыканий очень важны для расчетов аварийных режимов работы.

последствия короткого замыкания

Меры, исключающие короткое замыкание

Еще на заре развития электротехники появились плавкие предохранители. Принцип действия подобной защиты очень прост: под влиянием теплового действия тока предохранитель разрушается, тем самым размыкая цепь. Предохранители наиболее часто используются в бытовых электросетях и бытовых электроприборах, электрическом оборудовании транспортных средств и промышленном электрооборудовании до 1000 В. Встречаются они и в цепях с высоковольтным оборудованием.

Вот такие предохранители используются в цепях с малыми токами

стеклянный предохранитель

вот такие плавкие предохранители вы можете увидеть в автомобилях

автомобильный предохранитель

А вот эти большие предохранители используются в промышленности, и они уже рассчитаны на очень большие значения токов

промышленный плавкий предохранитель

Более сложную конструкцию имеют автоматические выключатели, оснащенные электромагнитными и/или тепловыми датчиками. Ниже на фото однофазный автоматический выключатель, а справа – трехфазный

однофазный автомат трехфазный автомат

Их принцип действия основан на размыкании цепи при превышении допустимых значений силы тока.

В быту мы чаще всего сталкиваемся со следующими устройствами защиты электросети:

  • Плавкие предохранители (применяются в том числе в бытовых электроприборах).
  • Автоматические выключатели.
  • Стабилизаторы напряжения.
  • Устройства дифференциального тока.

Все вышеперечисленное защитное оборудование относится к устройствам вторичной защиты, действующим по инерционному принципу. На вводе бытовых электросетей наиболее часто устанавливаются автоматические защитные устройства, действующие по адаптивному принципу. Такие устройства можно увидеть возле счетчиков электроэнергии квартир, коттеджей, офисов.

В высоковольтных сетях защита чаще обеспечивается:

  • Устройствами релейной защиты и другим отключающим оборудованием.
  • Понижающими трансформаторами.
  • Распараллеливанием цепей.
  • Токоограничивающими реакторами.

Большинства коротких замыканий можно избежать, если устранить основные причины их возникновения: своевременно ремонтировать или заменять изношенное оборудование, исключить вредные воздействия человека. Не допускать неправильных действий при монтажных и ремонтных работах, соблюдать СНИПы и правила техники безопасности.

Источник