Меню

Почему нет тока насыщения

При определенном значении напряжения / Uнас / анодный ток принимает максимальное значение, возможное при данной температуре катода и называемое током насыщения

ЛАБОРАТОРНАЯ РАБОТА N 212.

СНЯТИЕ АНОДНОЙ ХАРАКТЕРИСТИКИ ДВУХЭЛЕКТРОДНОЙ ЭЛЕКТРОННОЙ ЛАМПЫ.

Теория.

1. Принцип действия электронных ламп.

Электроны удерживаются внутри металла. • Значит, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Это говорит о том, что в поверхностном слое металла существует электрическое поле. Для вырывания электрона из металла нужно совершить работу А, называемую работой выхода;

где е — заряд электрона, U- поверхностная разность потенциалов.

Происхождение сил, действующих на электроны и направленных внутрь металла, можно объяснить двумя причинами. Первая заключается в индукционном действии удаленного из металла электрона, который вызывает на поверхности металла индуцированный заряд противоположного знака. Поэтому между электроном и металлом возникают кулоновские силы притяжения.

Вторая причина заключается в том, что некоторые из свободных электронов в результате теплового движения могут выйти за поверхность металла, образуя электронное облако, которое препятствует дальнейшему выходу электронов.

При комнатных температурах лишь ничтожная часть электронов внутри металла имеет достаточный запас кинетической энергии, чтобы вырваться наружу. По мере повышения температуры число быстрых электронов возрастает, благодаря чему возрастает и число электронов, вырвавшихся из металла. При достаточно высокой температуре наступает заметное испускание электронов металлом. Это явление носит название ТЕРМОЭЛЕКТРОННОЙ ЭМИССИИ. Термоэлектронная эмиссия лежит в основе устройства ламп. Устройство простейшей электронной лампы, содержащей всего два электрода /диод/, показано на рис.1. В стеклянный баллон, из которого выкачан воздух, до давления порядка 10 -8 мм рт.ст. впаяно два металлических электрода: катод К в виде тонкой нити и анод.А, выполненный обычно в форме цилиндра.

При постоянной температуре катода величина

анодного тока зависит от анодного напряжения.

характеристикой двухэлектродной лампы /диода/. Характеристика эта нелинейная и, следовательно, электронная лампа представляет собой пример проводника, не подчиняющегося закону Ома. С увеличением анодного напряжения ток возрастает в соответствии с законом Богуславского — Ленгмюра / закон «трех вто­рых»:

где: В — постоянная, зависящая от формы, размеров и относительного расположения катода и анода, а так­же от температуры катода.

При определенном значении напряжения / Uнас / анодный ток принимает максимальное значение, возможное при данной температуре катода и называемое током насыщения.

Ток насыщения Iн численно равен заряду всех электронов, испускаемых катодом в единицу времени, т.е. Iнас =eN

где: е — заряд электрона, N — число электронов, испускаемых катодом в одну секунду.

Поэтому увеличение анодного напряжения после достижения тока насыщения не связано с изменением анодного тока.

Величина тока насыщения зависит от температуры катода и рабо­ты выхода электрона из него. Зависимость эта выражается законом Ричардсона — Дешмана:

где: iн — плотность тока насыщения,

S — площадь поверхности катода,

с — эмиссионная постоянная катода,

К — постоянная Больцмана,

Т — температура катода,

А — работа выхода электронов из катода,

е — основание натурального логарифма

В современных лампах широко применяются так называемые ОКСИД-НЫЕ КАТОДЫ. Оксидный катод содержит металлическую подложку

/ керн/, на которую нанесен слой окислов щелочноземельных металлов / ВаО, Sг0, СаО / или их смесь. Для придания катоду высокой эмиссионной способности его подвергают дополнительной обработке / активированию /, состоящей в том, что через электронную лампу при температуре катода 1000°С в течение некоторого времени про­пускают ток. При активировании катода на его поверхности возникает одноатомный слой положительных ионов щелочноземельного металла, ко­торый сильно понижает работу выхода электронов и этим увеличивает эмиссионную способность катода.

Структура оксидного катода.

Современные оксидные катоды отличаются высокими качествами. Их рабочая температура равна 800 — 900°С а иногда и ниже.

Плотность тока насыщения достигает величины 10 4 А/м 2 . В тоже

время рабочая температура чистого вольфрамового катода около 2200 0 С, а плотность тока насыщения не превышает 10 3 А/м 2 .

При очень кратковременных токах / импульсы тока длительностью 10 -6 —

10 -5 сек / оксидные катоды способны давать плотность тока насыщения до 10 6

Для накаливания катода через керн пропускают постоянный ток / «катоды прямого накала»/ или нагревают его при помощи вспомогательной металлической спирали /»подогревные катоды»/. Сопротивление катода очень велико и при работе лампы /когда су­ществует анодный ток/ он дополнительно подогревается анодным током. Это увеличивает его термоэлектронную эмиссию и одновременно способствует разрушению оксидного слоя. Поэтому в лампе с оксидным катодом резки тока на­сыщения осуществить не удается,

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Ознакомиться с установкой для снятия анодных характерис­тик лампы 6Х2П.

Питание электрической цепи лампы осуществляется напряжением городской сети / 220 Вольт/ через трансформатор / Тр /.

Rа — потенциометр, позволяющий менять анодное напряжение,

Vа — вольтметр для измерения анодного напряжения,

mА — миллиамперметр для измерения анодного тока

2. Замкнуть цепь накала катода выключателем К1, и с помощью потенциометра Rн установить напряжение накала Uн = 2,2 В. Замкнуть анодную цепь выключателем К2 и установить с помощью потенциометра Е- анодное напряжение и- =0.

Выждать 2-3 минуты, это необходимо для нагрева катода лампы.

3. Снять анодную характеристику, последовательно увеличивая анодное напряжение на 1 Вольт. Анодное напряжение довести до 10 Вольт.

Читайте также:  Ток в ноге причины

4. Произвести подобные измерения при напряжении накала 2,4 В и 2,6 Вольта.

5. Построить анодные характеристики, т.е. графики:

Iа = f ( Ua) при Uн= 2,4 Вольта

Все три графика выполнить на одном листе бумаги.

Таблица для записи результатов измерений

Uн =2,2В Uн =2,4В Uн =2,4В
Uа Uа Uа
— — — — — —

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что называется работой выхода из металла? Чем она обусловлена?

2. В чем состоит явление термоэлектронной эмиссии?

3. Что называется анодной характеристикой лампы? Объясните ее.

4. Что выражает собой ток насыщения и от чего он зависит?

5. Опишите оксидный катод.

ЛИТЕРАТУРА.

1. Б.М. Яворский и др., изд.1964 год, стр. 139, 147 — 149.

2. А. В. Кортнев и др., Практикум по физике, изд. 1963 год, стр. 272 — 274.

3. С.Г. Калашников, Электричество, изд. 1964 год, стр.378 -384.

Источник



Фотоэффект. Фотоны

В 1887 году Г. Герцем был открыт фотоэлектрический эффект, а продолжить его исследования довелось А.Г. Столетову. Ф. Леонард в 1900 году серьезно занялся данным проектом. К тому времени был открыт электрон. Это говорило о том, что фотоэффект состоял в вырывании электронов из вещества под действием падающего на него света.

Данное исследование законов Столетова изображено на рисунке 5 . 2 . 1 .

Рисунок 5 . 2 . 1 . Схема экспериментальной установки для изучения фотоэффекта.

В лабораторных условиях применили стеклянный вакуумный баллон с двумя металлическими электродами с очищенной поверхностью. К ним прикладывали напряжение U с возможностью изменения полярности с помощью ключа. Катод освещали монохроматическим светом с длиной волны λ через кварцевое окошко. Так как световой поток оставался неизменным, то зависимость силы тока I от напряжения ослабевала. Рисунок 5 . 2 . 2 . наглядно демонстрирует кривые зависимости при интенсивном свете, попадающем на катод.

Рисунок 5 . 2 . 2 . Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. I н 1 и I н 2 – токи насыщения, U з – запирающий потенциал.

По графику видно, что при подаче большого напряжения фототок анода А достигает насыщения, потому как при вырывании светом из катода они в состоянии достичь его.

Ток насыщения. Закономерности фотоэффекта

Ток насыщения I н прямо пропорционален интенсивности падающего света.

При наличии отрицательного напряжения на аноде, электрическое поле, находящееся между катодом и анодом, тормозится электронами. К аноду могут добраться электроны, у которых кинетическая энергия превышает значение | e U | . При наличии напряжения меньше, чем – U з , происходит прекращение фототока. После измерения – U з определяется максимальная кинетическая энергия фотоэлектронов:

m υ 2 2 m a x = e U 3 .

Из формулы видно, что оно не зависит от интенсивности падающего света. После глубоких исследований стало ясно, что при возрастании запирающего потенциала происходит линейное увеличение частоты света ν .

Рисунок 5 . 2 . 3 . Зависимость запирающего потенциала U з от частоты ν падающего света.

После многочисленных экспериментов были установлены закономерности формул фотоэффекта:

  1. При увеличении частоты света ν происходит возрастание кинетической энергии, независящей от ее интенсивности.
  2. Наименьшей частотой ν m i n с внешним фотоэффектом называют красную границу фотоэффекта каждого вещества.
  3. Количество фотоэлектронов за 1 с вырывания из катода прямо пропорционально интенсивности света.
  4. Фотоэффект возникает после освещения катода с условием, что ν > ν m i n .

Данные закономерности не соответствовали представлениям классической физики о взаимодействии света с веществом. Исходя из волновых представлений, взаимодействие световой волны с электроном должно действовать по принципу постепенного накапливания энергии. Чтобы он смог вылететь из катода, необходимо иметь достаточное количество энергии, накапливаемой за определенный промежуток времени, не зависящий от интенсивности света.

Появление фотоэлектронов происходит сразу после освещения катода. Данная модель не давала четкого представления нахождения красной границы фотоэффекта. Волновая теория света не могла дать объяснение независимости энергии фотоэлектронов от интенсивности светового потока и пропорциональности максимальной кинетической энергии частоты света. Поэтому электромагнитная теория была не способна объяснить эти изменения.

В 1905 году А. Эйнштейн дает теоретическое объяснение наблюдаемых закономерностей фотоэффекта, основываясь на гипотезе М. Планка.

Постоянная Планка. Уравнение Эйнштейна

Излучение и поглощение света происходит определенными порциями, где она определяется формулой E = h ν , h принято называть постоянной Планка.

Основной шаг в развитии квантовых представлений относится к Эйнштейну:

Свет обладает прерывистой структурой. Электромагнитная волна состоит из порций, называемых, кварками, спустя время которые зафиксировали как фотоны.

После взаимодействия с веществом фотон передает свою энергию h ν одному электрону, одна часть которой рассеивается при столкновениях с атомами, а другая затрачивается на преодоление потенциального барьера на границе металл-вакуум. Для этого ему необходимо совершить работу выхода А , зависящую от свойств материала катода.

Наибольшую кинетическую энергию, вылетевшую из катода фотоэлектроном, определяют законом сохранения энергии:

m ν 2 2 m a x = e U e = h ν — A .

Формула получила название уравнения Эйнштейна для фотоэффекта.

Благодаря ему, закономерности внешнего явления фотоэффекта могут быть объяснены.

Линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта следуют из данного выражения.

Общее количество фотоэлектронов, которые покидают поверхность катода в течение 1 с , пропорционально числу фотонов, падающих на поверхность. Можно сделать вывод, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Читайте также:  Регулятор силы тока для зарядного устройства автомобиля

По уравнению фотоэффекта Эйнштейна тангенс угла наклона прямой, выражающий зависимость запирающего потенциала U з от частоты ν , равняется отношению постоянной Планка h к заряду электрона e :

Формула позволяет вычислить значение постоянной Планка.

Р. Милликенн проводил измерения в 1914 году, после чего смог определить работу выхода А :

A = h ν m i n = h c λ к р ,

где c – скорость света, λ к р – длина волны, которая соответствует красной границе фотоэффекта.

Большинство металлов имеет работу выхода А и составляет несколько электрон-вольт ( 1 э В = 1 , 602 · 10 – 19 Д ж ) .

Квантовая физика использует электрон-вольт как энергетическую единицу измерения. Тогда значение постоянной Планка равняется

h = 4 , 136 · 10 — 15 э В · с .

Наименьшая работа выхода наблюдается у щелочных элементов. Натрий при A = 1 , 9 э В соответствует красной границе фотоэффекта λ к р ≈ 680 н м . Такие соединения применяют для создания катодов в фотоэлементах, используемых для регистрации видимого света.

Законы фотоэффекта говорят о том, что при пропускании и поглощении свет ведет себя подобно потоку частиц, называемых фотонами или световыми квантами.

Энергия фотонов записывается в виде формулы E = h ν .

При движении в вакууме фотон обладает скоростью с , а его масса m = 0 . Общее соотношение теории относительности, связывающее энергию, импульс и массу любой частицы, записывается как E 2 = m 2 c 4 + p 2 c 2 .

Отсюда следует, что фотон обладает импульсом, значит:

Можно сделать вывод, что учение о свете вернулось к представлениям о световых частицах – корпускулах. Но это не расценивается как возврат к корпускулярной теории Ньютона. В XX было известно о двойственной природе света. Когда он распространялся, то проявлялись его волновые свойства (интерференция, дифракция, поляризация), при его взаимодействии с веществом – корпускулярные, то есть явление фотоэффекта. Это и получило название корпускулярно-волнового дуализма.

Спустя время, данная теория была подтверждена у других элементарных частиц. Классическая физика не дает наглядную модель сочетаний волновых и корпускулярных свойств микрообъектов. Их движениями управляют законы квантовой механики. В основе этой науки лежит теория абсолютно черного тела, доказанная М. Планком, и квантовая, предложенная Эйнштейном.

Постоянная Планка. Уравнение Эйнштейна

Рисунок 5 . 2 . 4 . Модель фотоэффекта

Источник

При определенном значении напряжения / Uнас / анодный ток принимает максимальное значение, возможное при данной температуре катода и называемое током насыщения.

Ток насыщения Iн численно равен заряду всех электронов, испускаемых катодом в единицу времени, т.е. Iнас =eN

где: е — заряд электрона, N — число электронов, испускаемых катодом в одну секунду.

Поэтому увеличение анодного напряжения после достижения тока насыщения не связано с изменением анодного тока.

Величина тока насыщения зависит от температуры катода и рабо­ты выхода электрона из него. Зависимость эта выражается законом Ричардсона — Дешмана:

где: iн — плотность тока насыщения,

S — площадь поверхности катода,

с — эмиссионная постоянная катода,

К — постоянная Больцмана,

Т — температура катода,

А — работа выхода электронов из катода,

е — основание натурального логарифма

В современных лампах широко применяются так называемые ОКСИД-НЫЕ КАТОДЫ. Оксидный катод содержит металлическую подложку

/ керн/, на которую нанесен слой окислов щелочноземельных металлов / ВаО, Sг0, СаО / или их смесь. Для придания катоду высокой эмиссионной способности его подвергают дополнительной обработке / активированию /, состоящей в том, что через электронную лампу при температуре катода 1000°С в течение некоторого времени про­пускают ток. При активировании катода на его поверхности возникает одноатомный слой положительных ионов щелочноземельного металла, ко­торый сильно понижает работу выхода электронов и этим увеличивает эмиссионную способность катода.

Структура оксидного катода.

Современные оксидные катоды отличаются высокими качествами. Их рабочая температура равна 800 — 900°С а иногда и ниже.

Плотность тока насыщения достигает величины 10 4 А/м 2 . В тоже

время рабочая температура чистого вольфрамового катода около 2200 0 С, а плотность тока насыщения не превышает 10 3 А/м 2 .

При очень кратковременных токах / импульсы тока длительностью 10 -6 —

10 -5 сек / оксидные катоды способны давать плотность тока насыщения до 10 6

Для накаливания катода через керн пропускают постоянный ток / «катоды прямого накала»/ или нагревают его при помощи вспомогательной металлической спирали /»подогревные катоды»/. Сопротивление катода очень велико и при работе лампы /когда су­ществует анодный ток/ он дополнительно подогревается анодным током. Это увеличивает его термоэлектронную эмиссию и одновременно способствует разрушению оксидного слоя. Поэтому в лампе с оксидным катодом резки тока на­сыщения осуществить не удается,

Дата добавления: 2015-08-01 ; просмотров: 697 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Почему существует ток насыщения в вакуумном диоде? (10 декабря 2009)

Вопрос мой. Задаю его, потому что в учебниках не встретил на него ответа.

  • версия для печати
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Комментарии

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Ведь, согласно определению, ток (сила тока) — это скорость изменения зарядов в единицу времени, и непрекращающийся разгон электронов, являющихся носителями зарядов, должен был бы вызвать также непрекращающийся рост тока через диод. На самом же деле ток, начиная с некоторого значения напряжения, перестаёт расти и остаётся неизменным при дальнейшем повышении напряжения.

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии
Читайте также:  Ограничение пускового тока нагрузки

А если увеличивать при этом температуру катода?
Ток насыщения увеличится.

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

e (заряд электрона) и S (площадь сечения потока электронов) — величины постоянные. А что такое n и V?

P. S. Кто-то постоянно спрашивает про температуру катода. В данном случае она принимается постоянной. Просьба не уводить вопрос в сторону.

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

1. Если разность потенциалов между электродами равна нулю, то сила анодного тока равна нулю, при условии, что расстояние между электродами достаточно большое (если электроды расположены близко, то незначительный ток будет идти). Вылетевшие из катода электроны образуют электронное облако, создающее поле, тормозящее вновь вылетающие электроны. В результате дальнейшая эмиссия электронов прекращается. Сколько электронов вылетело из металла, столько же в него возвращается под действием обратного поля электронного облака.

2. При создании между электродами поля, ускоряющего электроны, электронное облако рассасывается, и возникает ток. Сила тока возрастает с разностью потенциалов. Сила тока пропорциональна

I = α (ΔU) 3/2 − это формула Богуславского.

Сила тока возрастает быстрее, чем прямо пропорционально. При дальнейшем увеличении разности потенциалов возрастание силы тока начнет задерживаться, так как общее число электронов, испускаемых катодом при постоянной температуре, ограничено.

Когда разность потенциалов достигнет определенного значения, достаточного, чтобы отсасывать от катода все те электроны, которые из него испускаются, дальнейшее возрастание тока прекращается вовсе. При этом достигается ток насыщения.

На основании сказанного можно считать, что сила тока насыщения численно равна заряду всех электронов, испускаемых в единицу времени данным катодом при данной температуре.

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

2. «. дальнейшее возрастание тока прекращается вовсе» — звучит несколько декларативно.

Хотелось бы именно знать, почему это происходит? Ведь все отсосанные электроны тоже летят с разными скоростями к аноду в зависимости от приложенного напряжения, т.е. чем больше напряжение, тем больше их скорость. Согласно же формуле I = e*n*V*S, где V — скорость электронов, ток I линейно зависит от V, т.е. от скорости электронов и никакого насыщения, вроде бы, не должно быть. Во всяком случае, математически это не видно.

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

На движение электронов в лампе сильно влияет отрицательный пространственный заряд, образуемый электронами, находящимися между катодом и анодом. Если предположить, что анод и катод представляют собой бесконечные параллельные плоскости, между которыми нет электронов, то поле между ними, созданное анодным напряжением Uа, однородно и потенциалы точек поля возрастают равномерно от катода к аноду. Так как потенциал катода условно принимают равным нулю, то прямая распределения потенциала между анодом и катодом (прямая 1 на рис. 11.2) проходит через нуль.

Как следует из формулы v = ?(2eU / m), скорость электронов тем больше, чем большую разность потенциалов они проходят. Поэтому по мере приближения к аноду скорость электронов увеличивается. Так как число электронов, проходящих в единицу времени через любое сечение лампы, одно и то же, то с увеличением скорости плотность потока летящих электронов уменьшается. Таким образом, наибольшую плотность отрицательный пространственный заряд имеет у катода. Этот заряд снижает потенциалы тех точек, в которых он находится. У катода, где плотность заряда наибольшая, снижение потенциала также наибольшее (кривая 2 на рис. 11.2). При большой величине тока эмиссии плотность пространственного заряда у катода настолько велика, что потенциалы точек вблизи катода отрицательны (кривая 3 на рис. 11.2).

Если распределение потенциала соответствует кривым 1 или 2, то каждый вылетевший из катода электрон попадет в ускоряющее поле и долетит до анода. В этом случае анодный ток равен току эмиссии катода, поэтому его величина при неизменном токе накала и, следовательно, при неизменном токе эмиссии остается постоянной даже с увеличением анодного напряжения. Такой режим работы лампы называется режимом насыщения, а соответствующий ему анодный ток — током насыщения.

Если потенциалы точек поля у катода отрицательны (кривая 3 на рис. 11.2), то поле тормозит электроны и они образуют вблизи катода электронное облако, т. е. отрицательный пространственный заряд у катода увеличивается. При этом некоторые электроны из облака возвращаются обратно на катод, а на их место с его поверхности поступают другие электроны. Только электроны, обладающие большими скоростями и достаточной энергией, преодолевают действие тормозящего поля и достигают анода. При этом режиме, который называется режимом пространственного заряда, анодный ток меньше тока эмиссии. При увеличении анодного напряжения анодный ток возрастает, так как возрастают потенциалы всех точек между анодом и катодом.

При достаточно большой величине анодного напряжения потенциалы всех точек поля становятся положительными и наступает режим насыщения.

Источник