Сила и плотность тока. Линии тока
Сила тока I для тока, протекающего через некоторую площадь сечения проводника S эквивалентна производной заряда q по времени t и количественно характеризует электрический ток.
Таким образом выходит, что сила тока — это поток заряженных частиц через некоторую поверхность S .
Электрический ток является процессом движения как отрицательных, так и положительных зарядов.
Перенос заряда одного знака в определенную сторону равен переносу заряда, обладающего противоположным знаком, в обратном направлении. В ситуации, когда ток образуется зарядами и положительного, и отрицательного знаков ( d q + и d q − ), справедливым будет заключение о том, что сила тока равна следующему выражению:
I = d q + d t + d q — d t .
В качестве положительного определяют направление движения положительных зарядов. Ток может быть постоянным, когда ни сила тока, ни его направление не претерпевают изменений с течением времени, или, наоборот, переменным. При условии постоянства, формула силы тока может выражаться в следующем виде:
где сила тока определена в качестве заряда, который пересекает некоторую поверхность S в единицу времени. В системе С И роль основной единицы измерения силы тока играет Ампер ( А ) .
Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью
Выделим в проводнике, в котором протекает ток, малый объем d V случайной формы. С помощью следующего обозначения » open=» υ определим среднюю скорость движения носителей зарядов в проводнике. Пускай n 0 представляет собой концентрацию носителей заряда. На поверхности проводника выберем пренебрежительно малую площадку d S , которая расположена ортогонально скорости » open=» υ (рис. 1 ).
Проиллюстрируем на поверхности площадки d S очень короткий прямой цилиндр, имеющий высоту » open=» υ d t . Весь массив частиц, которые располагались внутри такого цилиндра за время d t пересекут плоскость d S и перенесут через нее, в направлении скорости » open=» υ , заряд, выражающийся в виде следующего выражения:
d q = n 0 q e » open=» υ d S d t ,
где q e = 1 , 6 · 10 — 19 К л является зарядом электрона, другими словами отдельной частицы или же носителя тока. Разделим приведенную формулу на d S d t и получим:
где j представляет собой модуль плотности электрического тока.
j = n 0 q e » open=» υ ,
где j является модулем плотности электрического тока в проводнике, в котором заряд переносится электронами. В случае, если ток появляется как результат движения нескольких типов зарядов, то формула плотности тока может быть определена в виде следующего выражения:
j = ∑ n i q i » open=» υ i i ,
где i представляет собой носитель заряда. Плотность тока — это векторная величина. Снова обратим внимание на рисунок 1 . Пускай n → представляет собой единичный перпендикуляр к плоскости d S . В случае, если частицы, переносящие заряд, являются положительными, то переносимый ими заряд в направлении нормали больше нуля. В общем случае переносимый в единицу времени элементарный заряд может быть записана в следующем виде:
d q d t = j → n → d S = j n d S .
Формула приведенная выше справедлива также в том случае, когда плоскость площадки d S неортогональная по отношению к вектору плотности тока. По той причине, что составляющая вектора j → , направленная под прямым углом к нормали, через сечение d S электричества не переносит. Исходя из всего вышесказанного, плотность тока в проводнике окончательно запишем, применяя формулу j = n 0 q e » open=» υ в таком виде:
j → = — n 0 q e » open=» υ → .
Таким образом, плотность тока эквивалентна количеству электричества, другими словами заряду, который протекает за одну секунду через единицу сечения проводника. В отношении однородного цилиндрического проводника справедливым будет записать, что:
где S играет роль площади сечения проводника. Плотность постоянного тока равна по всей площади сечения проводника. Для двух разных сечений проводника ( S 1 , S 2 ) с постоянным током справедливо следующее равенство:
j 1 j 2 = S 2 S 1 .
Основываясь на законе Ома для плотности токов можно записать такое выражение:
где λ обозначает коэффициент удельной электропроводности. Определив плотность тока, мы имеем возможность выразить силу тока в следующем виде:
где интегрирование происходит по всей поверхности S любого сечения проводника. Единица плотности тока A м 2 .
Источник
Электрический ток и его плотность
Электрическим током называют направленное движение свободно заряженных частиц под действием электрического поля.
Как правило движение зарядов происходит в некоторой среде (веществе или вакууме), являющейся проводником для электрического тока. Движущимися в среде заряженными частицами могут быть электроны (в металлах, полупроводниках) или ионы (в жидкостях и газах).
Рис. 1 Электрический ток
Для возникновения и протекания электрического тока в любой токопроводящей среде необходимо выполнение двух условий:
- Наличие в среде свободных носителей заряда;
- Наличие электрического поля.
Для поддержания электрического поля, например в проводнике, к его концам необходимо подключить какой-либо источник электрической энергии (батарейку или аккумулятор). Поле в проводнике создается зарядами, которые накопились на электродах источника тока под действием сил (химических, механических и т.д.).
За направление тока условно принято принимать направление движения положительных зарядов. Следовательно, условно принятое направление тока обратно направлению движения электронов – основных отрицательных электрических носителей заряда в металлах и полупроводниках.
Понять явление электрического тока достаточно сложно так как его невозможно увидеть глазами. Для лучшего понимания процессов в электронике проведем аналогию между электрическим током в проводнике и водой в тонкой трубочке. В трубочке есть вода (носители заряда в проводнике), но она неподвижна, если трубочка лежит на горизонтальной поверхности и уровень высот ее концов (значения потенциалов электрического поля) одинаковый. Если трубочку наклонить так, что один конец станет выше другого (появится разность потенциалов), вода потечет по трубочке (электроны придут в движение).
Способность вещества проводить электрический ток под действием электрического поля называется электропроводностью. Каждому веществу соответствует определенная степень электропроводности. Ее значение зависит от концентрации в веществе носителей заряда – чем она выше, тем больше электропроводность. В зависимости от электропроводности все вещества делятся на три большие группы: проводники, полупроводники и диэлектрики.
Электрический ток может менять направление и величину во времени (переменный ток) или оставаться неизменным (постоянный) (рисунок 2).
Рис. 2. Постоянный и переменный электрические токи
Количественной мерой электрического тока служит сила тока I, которая определяется числом электронов (зарядов) q, проходящих через импровизированное поперечное сечение проводника в единицу времени t (рисунок 3).
Рис. 3. Сила тока в проводнике
Для постоянного тока представленное выше выражение можно записать в виде
Ток в системе СИ измеряется в амперах, [А]. Току в 1 А соответствует ток, при котором через поперечное сечение за 1 секунду проходит электрический заряд, равный 1 Кл.
Плотность электрического тока
Под плотностью тока j понимается физическая величина, равная отношению тока I к площади поперечного сечения S проводника. При равномерном распределении тока по поперечному сечению проводника.
J = I/S
Плотность тока в системе СИ измеряется в амперах на миллиметр квадратный, [А/мм 2 ].
Рассмотрим плотность тока в проводнике с разным поперечным сечением. Например, соединены два проводника с различными сечениями: первый толстый провод с большим поперечным сечением S1 второй тонкий провод с сечением S2. К концам которых приложено постоянное напряжение (рисунок 5) в следствии чего через них протекает постоянный ток с одинаковой силой тока.
Рис.5 Плотность тока в проводниках с различными сечениями.
Предположим, что сила тока через поперечное сечение толстого проводника S1 и тонкого провода S2 различная. Из этого предположения вытекает, что за каждую единицу времени через сечения S1 и S2 протекают различные значения электрического заряда. Следовательно, в объёме провода, расположенного между двумя указанными сечениям происходит непрерывное скапливание зарядов, и напряженность электрического поля изменялась бы, чего не может быть, так как при изменении электрического поля ток был бы непостоянен. В проводах с различным сечением при одном и том же токе плотность тока обратно пропорциональна площади поперечного сечения.
Плотность тока — векторная величина.
Рис. 4. Графическая интерпретация плотности тока j
Направление вектора совпадает с направлением положительно заряженных зарядов и, следовательно, с направлением самого тока I.
Если концентрация носителей тока равна n, каждый носитель имеет заряд e и скорость его движения в проводнике равна v (рисунок 3), то за время dt через поперечное сечение S проводника переносится заряд
В этом случае величину силы тока I можно представить в виде зависимости
а плотность тока
Сила тока через произвольную поверхность определяется через поток вектора плотности тока, как интеграл по произвольной (в общем случае) поверхности S (рисунок 6)
Рис. 6. Сила тока через произвольную поверхность S
От величины плотности тока зависит важный показатель – качество электропередачи. Фактически этот показатель зависит от степени нагрузки проводника (хотя и не только от нее). В зависимости от значения плотности тока принято выбирать сечение проводов – это связано с наличием у проводников сопротивления, в результате которого происходит нагрев жил проводника вплоть до его расплавления и выхода из строя.
Источник
Закон Джоуля-Ленца: определение, формулы
Почему нагреваются проводники
Электрический ток — это упорядоченное движение заряженных частиц. В проводниках этими частицами выступают отрицательно заряженные электроны. Воздействие электрического поля сообщает электронам дополнительную кинетическую энергию. В процессе движения они сталкиваются с атомами (или молекулами) проводника, отдавая часть приобретенной энергии. По этой причине начинает увеличиваться внутренняя энергия вещества, что приводит к повышению температуры и выделению тепла.
Рис. 1. Электрический ток в проводнике нагревает проводник
Если взять обычную лампочку накаливания и подключить ее к источнику напряжения через реостат (переменное сопротивление), то можно наблюдать тепловой эффект от протекания тока. Постепенно увеличивая ток, мы можем сначала на ощупь почувствовать, что стеклянная колба лампочки постепенно начнет нагреваться, а затем увидим, как начинает светиться раскаленная нить накаливания.
Заметим, что в этом эксперименте подводящие провода сильно не нагреваются и не светятся. Это происходит потому, что сопротивление нити накаливания намного больше сопротивления подводящих проводов .
Токовая нагрузка на кабель: как рассчитать сечение
Суммарная величина тока, движущегося по проводнику, зависит от нескольких характеристик: длина, ширина, удельное сопротивление и температура. Повышение температуры сопровождается снижением тока. Любая справочная информация, которую вы обнаружите в таблицах ПУЭ, обычно приводится для комнатной температуры 18 градусов Цельсия.
Помимо электрического тока нужно знать материал для проводника и напряжение. Самый простой расчет сечения кабеля по допустимому току: поделить его значение на 10. Если при изучении таблицы вы не обнаружите нужного значения, то ищите ближайшую, чуть большую величину. Такой вариант возможен для медных проводов, а допустимый ток составляет 40 А или меньше.
Допустимые токовые нагрузки на кабель
При расчете токовой нагрузки в сети с постоянным током ориентируются по одножильному кабелю. Напряжение такого тока составляет 12 В. Расчет нагрузки провода, через который подключается лампочка на 0,1 кВт (к примеру, в передней фаре машины), выглядит так:
После этого нетрудно рассчитать сопротивление:
В таблице найдите удельное сопротивление меди, из которой производятся жилы современных проводников. Также предположите, что длина кабеля составляет 2 м. Воспользуйтесь формулой, указанной в разделах выше, чтобы получить площадь сечения подходящего провода:
- S = (ρ*L)/R = (1,68*10-8*2)/1,44 = 1,2 кв. мм.
Выбор сечения кабеля для сетей постоянного тока
Изучая ПУЭ, можно отыскать бессчетное количество таблиц, в которых определена токовая нагрузка для сетей переменного тока с одно- и трехфазными цепями. Поэтому выполнять такие сложные расчеты необязательно.
Таблица токов, в которой можно найти тип бытового прибора, его приблизительные значения мощности, также указывает и интервал возможного потребляемого тока.
Потребляемые мощность и ток электроприборами
Название электроприбора | Мощность, кВт | Величина тока, А |
Стиральная машина | 2 – 2,5 | 9,0 – 11,4 |
Электроплита | 4,5 – 8,5 | 20,5 – 38,6 |
Микроволновая печь | 0,9 – 1,3 | 4,1 – 5,9 |
Холодильник, морозильник | 0,2 – 0,8 | 0,9 – 3,6 |
Электрочайник | 1,8 – 2,0 | 8,4 – 9,0 |
Утюг | 0,9 – 1,7 | 4,1 – 7,7 |
Пылесос | 0,7 – 1,4 | 3,1 – 6,4 |
Телевизор | 0,12 – 0,18 | 0,6 – 0,8 |
Осветительные приборы | 0,02 – 0,150 | 0,1 – 0,6 |
Однофазная схема электроснабжения дома на 220 В
Если под рукой нет таблицы, но известен потребляемый ток, то вычислить сечение можно в два этапа, используя формулы:
- Находят сопротивление материала при данном значении тока. Это можно сделать из формулы Закона Ома I = U/R. Выразив отсюда R, получают R = U/I.
- Вычисляют площадь сечения, используя значение удельного сопротивления для конкретного материала. Применяют формулу:
- ρ – удельное сопротивление;
- L – длина проводника;
- S – площадь сечения.
Удельное сопротивление для меди ρ = 1,68*10-8 Ом*м, для алюминия – 2,82*10-8 Ом*м.
I = P/U = 50/12 = 4,15 А.
R = U/I = 12/4,15 = 2,9 Ом.
Зная удельное сопротивление меди и, приняв за максимальную длину провода L = 2 м, подставляют всё известное в формулу.
S = (ρ*L)/R = (1,68*10-8*2)/2,9 = 1,9 мм2.
В ПУЭ есть множество таблиц, по которым можно определить токовую нагрузку однофазных и трёхфазных цепей переменного тока. Не обязательно производить математические вычисления. Достаточно оперировать известными параметрами и правильно определить сечение провода или кабеля.
Плюсы и минусы от нагрева электрическим током
- Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
- Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца. И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.
Рис. 2. Бытовые нагревательные приборы: чайник, утюг, фен, электроплита.
Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.
Расчет допустимой силы тока по нагреву жил
Если выбран проводник подходящего сечения, это исключит падение напряжения и перегревы линии. Таким образом, от сечения зависит то, насколько оптимальным и экономичным будет режим работы электрической сети. Казалось бы, можно просто взять и установить кабель огромного сечения. Но стоимость медных проводников пропорциональна их сечению, и разница при монтаже электропроводки уже в одной комнате может насчитывать несколько тысяч рублей.
Для выбора сечения провода нужно учитывать два важных критерия — допустимые нагрев и потерю напряжения. Получив два значения площади сечения проводника при использовании разных формул, выбирайте большую величину, округлив ее до стандартной. Особенно чувствительны к потере напряжения воздушные линии электропередач.
Допустимые температуры нагрева токопроводящих жил кабелей
Iд — допустимая нагрузка на кабель (ток по нагреву). Эта величина соответствует току, в течение долгого времени протекающего по проводнику. В процессе этого появляется установленные, длительно допустимая температура (Tд). Расчетная сила тока (Iр) должна соответствовать допустимой (Iд), и для ее определения нужно воспользоваться формулой:
- Iр=(1000*Pн*kз)/√(3*Uн*hд*cos j),
- Pн — номинальная мощность, кВт;
- Kз — коэффициент загрузки (0,85-0,9);
- Uн — номинальное напряжение оборудования;
- hд — КПД оборудования;
- cos j — коэффициент мощности оборудования (0,85-0,92).
Даже если брать во внимание одинаковые токовые величины, тепловая отдача будет разной в зависимости от температуры окружающей среды. Чем ниже температура, тем эффективнее теплоотдача.
Поправочные коэффициенты кабеля в зависимости от температуры окружающей среды
Температура отличается в зависимости от региона и времени года, поэтому в ПУЭ можно найти таблицы для конкретных значений. Если температура существенно отличается от расчетной, придется использовать коэффициенты поправки. Базовое значение температуры в помещении или снаружи составляет 25 градусов Цельсия. Если кабель прокладывается под землей, то температура изменяется на 15 градусов Цельсия. Однако именно под землей она остается постоянной.
Несколько базовых понятий
А для чего вообще необходимо рассчитывать сечение проводов? Нельзя ли ограничиться подбором «на глаз»?
Нет, нельзя, так как совсем несложно впасть в две крайности:
- Проводник недостаточного сечения начинает сильно перегреваться. Это ведет к оплавлению изоляции проводки, созданию условий для самовозгорания, для коротких замыканий. Все это становится причиной разрушительных пожаров, часто сопровождающихся человеческими трагедиями.
- Проводники избыточного диаметра, безусловно, такими опасностями не грозят. Но зато они и существенно дороже (особенно если разговор идет о медных кабелях), и не столь удобны в работе. Получаются совершенно неоправданные материальные и трудовые затраты.
Так что руководствоваться следует принципом разумной достаточности. Тем более что произвести необходимые вычисления – по силам каждому, кто хоть немного разбирается в азах математики и физики.
Для начала вспомним некоторые понятия, многим, наверное, и без того хорошо известные. Но просто для того, чтобы в дальнейшем изложении не появилось разночтений.
С этим вопросом часто бывает путаница, в том числе в статьях, опубликованных на интернет-сайтах.
Итак, в качестве проводника в проводах и кабелях может использоваться одна проволока — с точки зрения электрической проводимости — это оптимальный вариант.
Но для достижения гибкости кабельной продукции приходится использовать более сложные конструкции – множество тонких проволочек, обычно скрученных при этом в «косичку». Чем больше таких проволочек – тем более гибким получается проводник.
Однако, это не следует путать с многожильностью провода. Под отдельной жилой подразумевается именно отдельный проводник. Чтобы стало понятнее – смотрим на иллюстрацию.
На картинке ниже – примеры одножильного провода. Просто с левой стороны – жесткий однопроволочный, а с правой – более гибкий многопроволочный вариант.
И слева, и справа — это одножильный провод.
Если провод (кабель) конструктивно совмещает два изолированных друг от друга проводника или больше, он становится двухжильным, трехжильным и т.п. Но он также может оставаться одно- или многопроволочным.
Двухжильный многопроволочный провод
Аналогичная ситуация и с кабелями. По определению, кабель – это конструкция из нескольких изолированных друг от друга проводников, заключенных в общую изолирующую и защитную оболочку. А вот проводники также могут быть одно- или многопроволочными.
Трехжильные силовые кабели – с однопроволочными или многопроволочными жилами
Жесткие однопроволочные изделия хороши для неподвижных участков проводки, например, вмуровываемых в стены. Многопроволочные провода и кабели отлично подходят для тех участков, где бывает нужна подвижность — типичным примером являются шнуры питания бытовой техники и осветительных приборов.
Итак, все последующие расчеты будут вестись для сечения жилы провода или кабеля.
При оценке условий расположения проводов в дальнейшем могут быть варианты, когда придется представлять разницу, например, между тремя одножильными проводами, протянутыми в одной трубе, или одним трехжильным кабелем.
Два взаимосвязанных параметра, которые порой по неопытности путают. Смотрим на схему – по ней все станет понятно.
Слева – диаметр проводника (жилы), измеряется в миллиметрах. Справа – площадь поперечного сечения проводника, измеряется в мм².
Во всех справочника обычно используется параметр сечения, так как именно по этому критерию производится классификация различных марок проводов и кабелей.
Но это хорошо, если известна марка кабеля (провода). Если нет, то сечение остается подсчитать, опираясь на диаметр, который можно измерить штангенциркулем или микрометром.
Диаметр жилы (проволоки) поддается обычному измерению. Площадь сечения – только расчёту.
Формулу площади круга должны, наверное, помнить все. Но тем не менее – приведем ее на всякий случай.
Предлагаем ознакомиться: Расчет кабеля по мощности формула
Sc = π × d² / 4 ≈ 3.14 × d² / 4 ≈ 0.785 × d²
Знак «примерно равно» применен только потому, что взято округление числа π до сотых, всем известное значение π≈ 3,14. Но в нашем случае такой точности – более чем достаточно!
Это формула сечения однопроволочного проводника. А если нужно найти сечение неизвестного провода, с многопроволочной жилой?
Тоже ничего сложного. Жила распушается, чтобы появилась возможность подсчитать количество проволочек в «косичке». И останется только микрометром или штангенциркулем промерить диаметр одной проволочки.
Sc = n × π × d² / 4 ≈ n × 3.14 × d² / 4 ≈ 0.785 × n × d²
где n – это количество проволочек в одной жиле.
Источник
Электрический ток. Сила и плотность тока. Основные законы постоянного тока. Законы Ома и Джоуля-Ленца в интегральной и дифференциальной формах. Плотность тока и скорость носителей тока.
I. Любое упорядоченное (направленное) движение электрических зарядов называется ЭЛЕКТРИЧЕСКИМ ТОКОМ. При приложении внешнего электрического поля Е в проводнике начинается движение зарядов, т.е. возникает электрический ток. При этом положительные заряды движутся по полю, а отрицательные — против поля. За направление тока принимают направление движения положительных зарядов. Для возникновения и существования электрического тока необходимо выполнение двух условий :
1. наличие свободных носителей зарядов (т.е. вещество должно быть проводником или полупроводником при высоких температурах),
2.Наличие внешнего электрического поля.
Для количественного описания электрического тока вводится — СИЛА ТОКА – скалярная физическая велична, равная количеству электрического заряда, переносимосму за единицу времени через поперечное сечение проводника S.
— для постоянного тока, и
— для переменного тока.
Ток, сила и направление которого не изменяются со временем, называетсяпостоянным.
ПЛОТНОСТЬ ТОКА — векторная физическая величина, численно равная силе тока, проходящего через единицу площади, перпендикулярной к току:
1. Закон Ома для однородного участка цепи.
Однороднымназывается участок не содержащий ЭДС.
Сила тока на однородном участке цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению цепи
1 Ом – сопротивление такого проводника, в котором при напряжении 1 В течёт ток 1 А.
G — электрическая проводимость. (Сименс).
Сопротивление R проводника зависит от его размеров и формы, а также от материала проводника.
,
где ρ — удельное сопротивление проводника — сопротивление единицы длины проводника.
ℓ — длина проводника; S — площадь поперечного сечения проводника.
2.Закон Ома для неоднородного участка цепи
НЕОДНОРОДНЫМназывается участок цепи, содержащий ЭДС.
— Закон Ома для неоднородного участка цепи в интегральной форме.
3. Закон Ома для замкнутой цепи (для полной цепи).
где где R — сопротивление внешней цепи,
г — сопротивление источника ЭДС, тогда
— Закон Ома для полной цепи
4. Закон Ома в дифференциальной форме.
σ — удельная электропроводность;
— Закон Ома в дифференциальной форме.
Плотность тока прямо пропорциональна напряженности электрического поля Е, Коэффициент пропорциональности σ — удельная электропроводность.
Если в проводнике течет постоянный ток и проводник остается неподвижным, то работа сторонних сил расходуется на его нагревание. Опыт показывает, что в любом проводнике происходит выделение теплоты, равное работе, совершаемой электрическими силами по переносу заряда вдоль проводника. Если на концах участка проводника имеется разность потенциалов , тогда работу по переносу заряда q на этом участке равна
По определению I= q/t. откуда q= I t. Следовательно
Так как работа идет па нагревание проводника, то выделяющаяся в проводнике теплота Q равна работе электростатических сил
| (17.13) |
Соотношение (17.13) выражает закон Джоуля-Ленца в интегральной форме. Введем плотность тепловой мощности , равную энергии выделенной за единицу время прохождения тока в каждой единице объема проводника
где S — поперечное сечение проводника, — его длина. Используя (1.13) и соотношение
, получим
. Но
— плотность тока, а
, тогда
с учетом закона Ома в дифференциальной форме
, окончательно получаем
| (17.14) |
Формула (17.14) выражает закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля.
Подвижность (скорость) носителей тока в твёрдом теле, отношение скорости направленного движения электронов проводимости и дырок (дрейфовой скорости υдр), вызванного электрическим полем, к напряжённости Е этого поля:
У разных типов носителей в одном и том же веществе μ различны, а в анизотропных кристаллахразличны μ каждого типа носителей для разных направлений поля Е. Величина μ определяется процессамирассеяния электронов в кристалле. Рассеяние происходит на заряженных и нейтральных примесныхчастицах и дефектах кристаллической решётки, а также на тепловых колебаниях кристаллической решётки (фононах). Испуская или поглощая фонон, носитель изменяетсвой Квазиимпульс и, следовательно, скорость. Поэтому μ сильно изменяется при изменении температуры.При T ≥ 300 К преобладает рассеяние на фононах, с понижением температуры вероятность этого процессападает и доминирующим становится рассеяние на заряженных примесях или дефектах, вероятностькоторого растет с уменьшением энергии носителей.
Законы Кирхгофа.
Первый закон Кирхгофа.
1) Первый закон (правило) Кирхгофа — алгебраическая сумма токов сходящихся в узле равна нулю.
Ветви — это проводящие участки цепи между узлами.
Узел — это область соединения двух (или трёх) и более ветвей.
Алгебраическая сумма — это значит в неё входят слагаемые со знаком плюс и со знаком минус.
На рисунке ниже показан узел в котором соединяются четыре ветви с токами: I1, I2, I3, I4.
Рисунок 1 — Узел с ветвями
Направления токов показаны стрелочками. От узла направлены токи I1 и I2, к узлу направлены токи I3 и I4. Примем направления к узлу — положительными, а от узла — отрицательными. Запишем, с учётом выбранных положительных и отрицательных направлений токов, уравнение по первому закону Кирхгофа для узла на рисунке 1:
Ток I1 вошел в уравнение (1) со знаком минус так как этот ток направлен от узла (см. рисунок 1).
Ток I2 входит в уравнение (1) со знаком минус по той же причине. Токи I3 и I4 входят в уравнение (1) со знаком плюс так как они направлены к узлу (см. рисунок 1). Вся эта алгебраическая сумма равна нулю.
Токи I1 и I2 можно перенести в правую часть уравнения с противоположным знаком:
Также можно поступить и с любым уравнением записанным по первому закону Кирхгофа.
Учитывая это можно дать другое определение первого закона (правила) Кирхгофа:
2) сумма токов входящих в узел равна сумме токов выходящих из него.
Уравнение (2) можно привести к виду:
перенеся в правую часть уравнения токи I3 и I4 с противоположным знаком.
Уравнение (3) можно привести к виду:
Тоже самое можно проделать с любым уравнением записанным по первому закону Кирхгофа. Это значит что не имеет значения то какое направление (от узла или к узлу) принято за положительное а какое за отрицательное, главное чтобы все одинаковые направления имели один знак а все противоположные другой.
Иногда бывает так что один узел принимается за два и более при невнимательном осмотре схемы что приводит к ошибкам в расчётах. Рассмотрим схему на рисунке 2:
Рисунок 2 — Схема с одним узлом
В этой схеме один узел, для этого узла можно составить уравнение по первому закону Кирхгофа:
Токи в узлах не протекают т.к. узел имеет один потенциал на всем его протяжении и на всей его площади.
Источник