Меню

Пламя проводит электрический ток

Элементы Пельтье или бесплатное электричество от костра

При помощи простых приспособлений можно использовать теплопотери от нагревания воздуха или жидкостей. В этой статье мы расскажем, как использовать бросовую энергию печей, котлов и открытого огня, преобразовав её в постоянный электрический ток небольшой силы.

Элементы Пельтье или бесплатное электричество от костра

Любой химический процесс проходит с выделением разного рода энергии. Такой мощный источник, как горение использовался во все времена. Его можно назвать первичным источником тепла и света. Горят практически все вещества на Земле, выделяя при этом тепло и свет в разных количествах. Преобразовать тепловую энергию в электрическую — дело несложное, если под рукой есть рабочая паротурбина, подобная тем, что установлены на ТЭЦ. Это громоздкое и сложное устройство, которому вряд ли найдётся место в котельной загородного дома. Мы попробуем извлечь пользу из выделения тепла при печном отоплении или нагревании воды.

Эффект Пельтье — это явление перепада температур при взаимодействии термопар двух различных типов проводников (p-типа и n-типа) при прохождении через них постоянного тока. Эффект Зеебека — следствие эффекта Пельтье, когда при нагревании одной из термопар образуется электрический ток. Мы не будем подробно описывать термодинамику процесса — эту сложную для восприятия информацию можно легко найти в справочной литературе. Нас интересует результат и варианты его практического использования.

Конструкция термоэлектрического модуля

Термоэлектрический модуль (ТЭМ) состоит из множества термопар, соединённых между собой медной пластиной. Поле термопар вклеивается между двух керамических пластин. Собрать такой модуль возможно только в заводских условиях. Но скомпоновать несколько ТЭМ для собственных нужд получится и дома. Элементы Пельтье-Зеебека имеются в свободной продаже в специализированных магазинах (и на сайтах) по продаже технологического оборудования.

Собираем ТЭМ на 5 В

  • модуль Пельтье TEC1–12705 (40×40) — 2 шт.;
  • повышающий преобразователь постоянного напряжения ЕК-1674;
  • лист дюралюминия толщиной 3 мм;
  • ёмкость для воды с идеально ровным дном (ковш);
  • термоклей;
  • паяльник.

Элементы Пельтье или бесплатное электричество от костра

Вырезаем из листа дюралюминия две одинаковые пластины, размерами чуть более двух модулей, лежащих рядом. Укрепляем термоклеем пластины на модулях с обеих сторон. Фиксируем (термоклеем) получившийся «сэндвич» на дно ковша. Такую конструкцию уже можно ставить на огонь, но мы получим на выходе бесполезные 1,5 В. Для улучшения характеристик нам и нужен повышающий преобразователь, который мы впаиваем в цепь. Он повысит напряжение до 5 В, а этого уже достаточно для зарядки мобильного телефона.

Элементы Пельтье или бесплатное электричество от костра

Внимание! Преобразователь имеет размеры 1,5х1,5 см. При отсутствии профессиональных навыков доверьте пайку специалисту.

Разность температур в нашей конструкции получается за счёт нагрева одной стороны (от печи или пламени) и охлаждения другой (вода в ковше). Разумеется, чем больше разница, тем эффективнее работа модуля. Поэтому, для работы в режиме микрогенератора понадобится сравнительно низкая температура воды в ковше (её лучше периодически заменять). Для выработки заветных 5 В достаточно поставить конструкцию на стакан с горящей свечой.

Пропорционально комбинируя большее количество модулей, мы получим более эффективную систему выработки энергии. Соответственно, увеличивая конструкцию, пропорционально увеличиваем теплообменник. При этом охлаждаемая поверхность должна быть полностью покрыта ёмкостью с водой (самый простой и доступный вариант).

Всё так просто, что сразу возникает желание собрать побольше модулей в одну систему и вырабатывать 220 В из костра. А потом подключить масляный обогреватель или кондиционер. Такая простая система имеет свои недостатки, и главный из них — низкий КПД. Обычно этот показатель не превышает 5%. Это обуславливает сравнительно малую силу тока 0,5 — 0,8 А и очень малую мощность — до 4 Вт.

Для насоса или лампы накаливания это ничтожно мало, но вполне достаточно для:

  • зарядки аккумуляторов вплоть до мотоциклетных (в вариантах, пропорциональных требованиям);
  • работы светодиодных (LED) ламп;
  • радиоприёмника.

В зимнее время система, помещённая на источник тепла, находящийся на улице, будет работать максимально эффективно.

Затраты на материалы для сборки термоэлектрического микрогенератора на 5 В:

Наименование Цена, руб. Примечание
Модуль Пельтье TEC1–12705 (40×40)* — 2 шт. 600 Цена за 2 шт.
Повышающий преобразователь постоянного напряжения ЕК-1674 320
Дюралюминий 300 Лист для варианта с ковшом
Термоклей Radial 150 2 мл
Ковш 100 Новый
Итого на материалы 1470

*- данная модель элемента выбрана из соображений цены. Ассортимент ТЭМ у фирм-поставщиков довольно широк, что позволяет подобрать более производительные (до 8 В) модели (они ощутимо дороже).

Заводские изделия подобной конструкции только начинают появляться в продаже. Серийное производство ведётся мелкими партиями, да и ассортимент невелик. Стоимость такого «ковшика» стартует с 2500 руб.

Элементы Пельтье или бесплатное электричество от костра

Заводской термогенератор — устройство, основанное на эффекте Пельтье-Зеебека, которое можно закрепить прямо на разогретую поверхность. От конструкции, описанной выше, его отличает заводское исполнение (а значит, надёжность), отсутствие жидкостного теплообменника (вместо него — рёбра для воздушного охлаждения) и более высокая цена.

Читайте также:  Определите сопротивление спирали электроплитки сила тока в которой 4а при напряжении 220в

Элементы Пельтье или бесплатное электричество от костра

Стандартный «походный» термогенератор имеет следующие характеристики:

Напряжение 13,5 В
Сила тока 0,16 А
Мощность 2,2 Вт
Вес 1,6–2 кг
Кабель в бронерукаве Да
Защита от перегрева Да
Набор стандартных разъемов Да
Размеры (примерно) 150х150х200 мм
Цена От 7000 руб.

Как видно из таблицы, заводская надёжность и утилитарность обходится недёшево. При этом нельзя сказать, что он функционально превосходит самодельный вариант с ковшом. Впечатляющие 13,5 В ускорят зарядку мобильника, но для этого будет нужно носить с собой 2 кг веса в походе, а это непозволительная роскошь (с учётом размеров прибора). Ну и, конечно, цена заставляет задуматься. На эту сумму можно собрать уже не «термоковшик», а «термокастрюлю» и спокойно заряжать ноутбук. И ещё один нюанс — прибор всё равно требует закрепления на металлической пластине в случае использования открытого огня.

В целом это приятное и удобное дополнение для тех, у кого нет проблем с деньгами и свободным местом в багажнике.

Энергопечь

На сегодняшний день энергопечь — апофеоз применения ТЭМ в быту. Это заводское изделие, по сути дела топка-«буржуйка», для любого вида твёрдого топлива с интегрированным теплоэлектрическим модулем. Идеальный вариант для охотничьих домиков, дач, отдалённых зимовок и вообще любого вида жизни вдали от цивилизации. Рассчитана на автономное использование (без периферических теплоотводов), имеет только очаг и дымоход. Предусматривает приготовление пищи. На эту печь устанавливают самые мощные элементы Пельтье-Зеебека.

Элементы Пельтье или бесплатное электричество от костра

Выходная мощность 25–50 Вт
Выходное напряжение 12 В
Объём топки 30–60 литров
Вес 30–60 кг
Тепловая мощность 4–6 кВт
Стабилизатор Да
Заводские разъёмы Да
Защита от перегрева Да
Цена 23000–40000 руб.

Хотя печь и переносная, безусловно, это «супертяжёлая весовая категория» среди бытовых приборов. Однако и спектр задач у энергопечи довольно широк — она может заряжать даже автомобильные аккумуляторы, освещать LED лампами целые комнаты. Ей найдётся место в экспедиционном обозе и в охотничьем вездеходе, в техническом помещении и на даче. Иными словами, в этом случае источник тепла у нас всегда с собой, осталось найти топливо.

В своей нише энергопечь незаменима, хотя и немного настораживает заявленный производителем срок службы — 10 лет. Следует отметить, что, как и в термогенераторе, есть возможность профилактической (или аварийной) замены всех деталей вплоть до корпуса.

Термоэлектрические модули — крайне занятные объекты. Помимо описанных методов применения их также используют для кондиционирования воды и воздуха. При этом на такой же элемент подаётся постоянный ток и он работает «в обратную сторону» — охлаждает воздух. Эта технология с успехом применяется в автомобильных кондиционерах и кулерах для воды, в автомобилестроении и при производстве микропроцессоров. Мы опишем эти устройства в следующей статье.

Источник



Большая Энциклопедия Нефти и Газа

Электропроводность — пламя

Электропроводность пламени , содержащего пары отдельных солей металла, возрастала приблизительно пропорционально квадрагному корню из концентрации. [1]

Измеряют электропроводность пламени , в котором распыляют анализируемый раствор. [2]

ЛиЧенйю Электропроводности пламени и изменению ионизационного тока пропорционально количеству органических веществ, поступающих в камеру в единицу времени. [4]

При этом электропроводность пламени резко возрастает и измерительный прибор, присоединенный к электрометрическому усилителю ионных токов, записывает хроматограмму, состоящую из пиков, которые соответствуют последовательному появлению компонентов газовой смеси. [5]

Для блокировки используется электропроводность пламени . Известно, что в зоне пламени молекулы газов, входящих в состав воздуха, ионизируются в таких масштабах, что зона приобретает заметную электропроводность. Электрическое сопротивление между электродами при наличии пламени обычно имеет величину порядка десятков мегом. Особенность данного реле состоит в том, что оно срабатывает при внешнем сопротивлении, имеющем определенные пределы величин, обычно от 0 5 до 250 мгом. [7]

Именно ионы гидроксония обусловливают электропроводность пламени . [8]

Добавление уг-леродосодержащего газа сильно увеличивает электропроводность пламени . [10]

Недостатком системы блокировки с использованием электропроводности пламени ( см. § 2) является необходимость в жаростойкости электрода ( что в ряде случаев сложно) и его достаточно высокой электрической изоляции относительно земли. [11]

Второй, более совершенный способ основан на электропроводности пламени . В трубу по ее длине вводят небольшие искровые разрядники. Последовательно с ними включают другие разрядники со значительно меньшим искровым промежутком, которые располагают вне трубы вблизи фотобумаги, помещенной на движущийся барабан. Перед опытом к каждой паре разрядников подают высокое напряжение с таким расчетом, чтобы не происходило пробоя в большем промежутке. При прохождении пламени, обладающего проводимостью, происходит проскок искры через больший искровой промежуток, одновременно искра проскакивает и через малый промежуток. Последняя искра фиксируется на фотобумаге. При этом получается ряд смещенных по времени отметок, передающих скорость движения пламени в трубе. [12]

Читайте также:  Как рассчитать ток холостого хода трансформатора формула

Ионизационный метод наблюдения за процессом сгорания основан на электропроводности пламени . В камере сгорания помещают ионизационные датчики ( фиг. [13]

Это, в свою очередь, вызывает увеличение электропроводности пламен , содержащих пары щелочных металлов в присутствии кислоты. [14]

В приборе, изображенном на рис. 2.2, изменение электропроводности пламени приводит к изменении управляющего потенциала на базе транзистора и, как следствие, к срабатыванию реле. [15]

Источник

Проектируем электрику вместе

Новые технологии проектирования

Возобновляемые источники энергии

Электрические автомобили

Теплые полы

Безопасность

Электричество

Интересное

Проводимость в в газах

Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. При обычных температурах и атмосферном давлении газы могут содержать некоторое (очень малое) количество свободных электронов.

Когда между двумя точками газовой среды при очень низком давлении прикладывается высокая разность потенциалов, немногие свободные электроны ускоряются и сталкиваются с атомами газа, выбивая еще больше свободных электронов, умножая их количество. Атомы газа становятся положительно заряженными ионами, т. е. газ ионизируется (в газе могут образовываться и отрицательные ионы, благодаря присоединению электронов к нейтральным атомам).

При этом электроны движутся к полюсу с высоким потенциалом (положительному), в то время как положительные ионы движутся по направлению к низкопотенциальному (отрицательному) полюсу.

Процесс ионизации нарастает лавинообразно возникает газовый разряд, который и есть электрический ток в газе.

Ярким примером газового разряда является молния.

Как известно, молния может пробивать либо от облака к земле, либо от облака к облаку. В некоторых случаях она даже идет от земли к облаку. На самом деле молния не стремится к «земле», а просто ищет путь к более низкому потенциалу, чтобы уменьшить (разрядить) высокое напряжение, которое образуется, когда слишком много зарядов скапливаются в одном месте.
Как правило, этот более низкий потенциал действительно земля, но не всегда.

Пробивное напряжение

Для возникновения газового разряда необходимо определенное напряжение, которое называется пробивным напряжением .
Это такой потенциал, который обеспечивает достаточное количество энергии, чтобы образовалось необходимое для газового разряда количество ионов.
Все диэлектрики, как и газы, имеют определенное значение пробивного напряжения.

Проводимость в газах

Таким образом, в газах сочетаются два вида проводимости: электронная и ионная.
В отличие от растворов электролитов, в газах отрицательный заряд в основном переносится не отрицательными ионами, а электронами .

Еще одно отличие: образование ионов в газе происходит за счет воздействия внешних факторов – высокого напряжения, нагревания, различных излучений (ультрафиолетового, рентгеновского, радиоактивного) или космических лучей – в то время как в растворах электролитов образование ионов вызвано ослаблением межмолекулярных связей.
Если в какой-то момент внешний фактор прекратит свое действие на газ, то ток тоже прекратится. При этом положительно заряженные ионы и электроны могут опять объединиться – рекомбинировать.

Плазма, как особое состояние ионизованного газа

Ионизованное состояние газа получило название плазмы.
Если быть точнее, плазма — это частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически совпадают.

Следует сказать, — нет четкой границы между плазмой и просто ионизированным газом. Принято лишь условно считать, что газ превращается в плазму в тот момент, когда начинает проявлять ее свойства, основное из которых — электропроводность .

При комнатной температуре воздух является диэлектриком, хотя и содержит некоторое количество ионов и свободных электронов. Чем температура воздуха выше, тем интенсивнее движутся частицы, тем больше их скорость и чаще столкновения, приводящие к увеличению степени ионизации и, соответственно, к росту проводимости.

С этой точки зрения пламя спички и электрическая дуга — все это плазма (низкотемпературная).
Желающие могут провести простые эксперименты с пламенем, подтверждающие, что обычное пламя от спички реагирует на магнитное поле и вполне себе заметно проводит электрический ток, т. е. проявляет свойства проводника.

Свойства плазмы

● Электропроводность (проводимость). Проводимость плазмы увеличивается по мере роста степени ионизации. В зависимости от степени ионизации плазма подразделяется на слабо ионизированную (доли процента), частично ионизированную (несколько процентов) и полностью ионизированную (100%). Слабо ионизированной плазмой является ионосфера — верхний слой земной атмосферы. В состоянии полностью ионизированной плазмы находятся Солнце, горячие звезды (температура порядка 10 6 — 10 8 К). При очень высокой температуре полностью ионизованная плазма по своей проводимости приближается к сверхпроводникам.

● Между частицами плазмы действуют кулоновские силы, сравнительно медленно убывающие с расстоянием.

● Каждая частица взаимодействует сразу с большим количеством окружающих ее частиц. Частицы плазмы могут участвовать в упорядоченных движениях.

Читайте также:  Получение трехфазной системы токов соединение обмоток генератора звездой

● Заряженные частицы плазмы очень подвижны, за счет чего легко перемещаются под действием электрических и магнитных полей.

Плазма в природе

В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества (по массе около 99,9%). Из плазмы состоят Солнце, звезды (высокотемпературная плазма), солнечный ветер, ионосфера, северное сияние, коронный разряд, электрическая дуга, пламя (низкотемпературная плазма).

Источник

Электрические свойства пламени

2.2 Электрические свойства пламени

Наглядно иллюстрирует общую сложность процессов тот факт, что пламя обладает значительными электрическими свойствами. Экспериментально установлено, что в пламени существует разделение зарядов, причём положительный объёмный заряд сосредоточен в реакционной зоне (во фронте пламени), а отрицательный – в предпламенной зоне. Предполагается, что разделение зарядов обусловлено амбиполярной диффузией. Носителями отрицательного заряда в пламени являются электроны и отрицательные ионы.

По имеющимся данным, образование ионов происходит как при термическом распаде веществ, так и в результате химических реакций. Предполагается так же, что незначительный вклад (доли процентов) в образование ионов могут вносить мелкие углеродистые частицы, обладающие работой выхода 4,35 кВ.

Так, ещё в 1909 г. Ф. Габер предположил, что ионы в пламени образуются в результате химической ионизации в реакции с участием радикалов С2, СН, ОН. В зависимости от условий горения и вида топлива, концентрация ионов в пламени составляет около 10 10 -10 12 см -3 , т.е. на 4–6 порядков превышает концентрацию, которая должна была бы наблюдаться при чисто термическом механизме ионизации.

Максимум ионизации соответствует фронту пламени, где протекают химические процессы, причём концентрация заряженных частиц резко падает по выходе в зону продуктов сгорания, хотя в этой зоне и наблюдается максимальная температура. Соотношение концентрации ионов в этих зонах оценивают как 1000:1.

При механизме хемиоионизации частицы претерпевают химическую перегруппировку, при которой освобождается количество энергии, достаточное для ионизации одного из продуктов реакции. Предполагается, что в случае пламени такой процесс идёт как побочная реакция между частицами, участвующими в основной реакции горения. Имеется довольно большое число возможных с энергетической точки зрения реакций, в которых участвуют две частицы в основном состоянии или одна в основном, а другая – в возбуждённом состоянии. Поэтому предполагается, что хемоионизация, независимо от того, сопровождается она образованием возбуждённых частиц или нет, является наиболее вероятным источником ионизации пламени.

Энгель и Козенс считали, что при столкновении с колебательно-возбуждёнными частицами электроны свободно могут получить дополнительную энергию. Было рассчитано, что в результате баланса между энергией, полученной от возбуждённых частиц, и энергий, потерянных при упругих столкновениях, средние энергии электронов в пламенях могут лежать в интервале 0,2-1,2 эВ (температура 2320–11600 К).

Многие эксперименты с электростатическими зондами показывают, что в некоторых пламенях существуют повышенные электронные температуры. Так, например, в недавней работе Брэдли и Меттьюса, в которой использовались двойные зонды при пониженных давлениях, были обнаружены температуры до 30000 К. Электроны, обладающие энергией, немного превышающей потенциал ионизации, способны легко ионизировать атомы и молекулы. Именно эти электроны являются источником ионизации в пламенях, где обнаружены повышенные электронные температуры.

Логично предположить, что электроны при температурах порядка 30000 К вызовут ионизацию с большими скоростями. Недавняя работа показала, что в пламенях происходит не только хемоионизация, но и образует значительное количество ионов О2 + , которые могут возникать в присутствии электронов при повышенных температурах. Предполагается, что последние появляются в результате взаимодействия с возбуждёнными молекулами СО2, которые в свою очередь образуют при рекомбинации молекул окиси углерода с атомарным кислородом.

Однако повышенные электронные температуры были обнаружены не во всех пламенях с повышенной степенью ионизации. Более того, при изменении скорости ионообразования были получены плоские плато, соответствующие току насыщения, при атмосферном давлении в широком интервале приложенных напряжений. При этом напряжённость поля в зоне горения имела порядок кВ/см и, таким образом, была достаточна для значительного повышения электронной температуры. Это приводит к выводу, что в различных пламенях могут играть важную роль различные механизмы ионообразования. Выяснение роли электронов повышенной энергии как одного из возможных источников ионизации требуется дальнейшего излучения.

Были предложены два механизма, благоприятные с термохимической точки зрения:

СН+ОСНО + +е — ,

СН (А 2 Δ) +С2Н2 С3Н3 + +е — .

Таким образом, представленный выше текст показывает, что в процессе горения происходит относительно неоднородный распад молекул, образование ионов и свободных радикалов. Потому, многие молекулы, избежавшие полного окисления, могут быть трансформированы при столкновении со свободными радикалами, в результате в ничтожных дозах образуются множества веществ, изначально не входящие в состав горючего.

Источник