Меню

Пик фактор тока из за чего

12 причин появления скачков в сети

Анализ различных причин возникновения скачков напряжения в сети. Рассматриваются аварийные и технологические причины, приводящие к резким скачкам напряжения

Скачки напряжения. Определения и понятия

Скачки напряжения

Скачками напряжения в повседневной речи принято называть резкое (быстрое) значительное изменение значения напряжения. Как правило, под скачком напряжения понимается быстрое значительное увеличение напряжения. Юридически точного определения понятия «скачок напряжения» у нас не существует. Обычно юристы понимают под «скачком напряжения» отклонения качества поставляемой электроэнергии от требований нормативной документации.

Как правило, в судебной практике речь идет о таких скачках напряжения, которые стали причиной нанесения ущерба.

Четкого определения «скачка напряжения» в нормативной документации тоже не найти. Отраслевая нормативная документация различает следующие отклонения параметров электроснабжения от нормы: отклонения и колебания напряжения, перенапряжение.

Изображения скачков напряжения и электрических помех

Отклонение напряжения

«Отклонение напряжения» — это изменение амплитуды длительностью более 1 минуты. Различают нормально допустимое отклонение напряжения и предельно допустимое отклонение напряжения. При этом предельно допустимым является отклонение в 10% от номинального.

Колебание напряжения

«Колебание напряжения» — это изменение амплитуды длительностью менее 1 минуты. Различают нормально допустимое колебание напряжения и предельно допустимое колебание напряжения. При этом предельно допустимым является отклонение в 10% от номинального.

Перенапряжение

«Перенапряжение» — это значительное по амплитуде увеличение параметров тока. Перенапряжением считается повышение напряжения свыше 242 Вольт. Перенапряжение может проходить с длительностью и менее 1 секунды.

Таким образом, объединяя нормативные определения скачка электрического напряжения и юридическое понимание этого понятия, можно сказать, что скачками могут называться как не очень большие, но длительные изменения значения напряжения, так и кратковременные, но значительные превышения этого параметра. Последние ещё могут называться «импульсными скачками».

С точки зрения физики, важным является общая излишняя энергия, воздействующая на приборы — потребители тока. Именно эта энергия, вызванная скачком в сети, и приводит к нанесению ущерба подключенным электрическим приборам.

Причины появления скачков напряжения

Существует достаточное количество объективных и субъективных причин природного, аварийного и техногенного характера для появления скачков напряжения в электрических сетях. Ниже постараемся перечислить основные.

1 причина появления «скачка напряжения» — одновременное отключение мощных бытовых приборов

Причина появления скачка параметров тока кроется у нас дома. Сегодня современный дом очень насыщен мощными электрическими приборами. В домах со старой проводкой это очень опасно. Но и в новых домах часто бывает, что нагрузка не может быть рассчитана на использование очень мощных приборов по причине подключения всего нового дома к «старым электрическим сетям». На практике часто происходит следующее. В доме включаются несколько мощных электрических приборов, это приводит к падению параметров тока в сети. При резком отключении мощного прибора или нескольких мощных электрических приборов происходит резкий скачок.

2 причина появления «скачка напряжения» — нестабильность в работе трансформаторной подстанции

Большинство трансформаторных подстанций, осуществляющих электроснабжение в распределительных и транспортирующих сетях, было построено достаточно давно. Оборудование, установленное на этих подстанциях, имеет сегодня значительный износ. Кроме того, многие подстанции работают с большой перегрузкой ввиду увеличения потребления электроэнергии. В результате на подстанциях случаются сбои в работе оборудования, приводящие к возникновению скачков.

3 причина появления «скачков напряжения» — аварии в передающих электрических сетях

Сотни тысяч километров линий электропередач окутывают все города и поселки нашей страны. К каждому дому, к каждому участку подходит линия электроснабжения. Перефразировав известную фразу из популярного фильма, можно сказать, что без электричества сегодня и «не туда», «и не сюда». Линии электропередач построенные десятки лет назад, не молодеют и сегодня. А значит, вероятность обрывов и замыкания на линиях передач существует. Такие аварии могут спровоцировать большие скачки электрического напряжения.

4 причина появления «скачков напряжения» — обрыв «нуля»

Это, пожалуй, самый частый и опасный вид аварии, вызывающий очень большое перенапряжение. Ежегодно тысячи человек несут ущерб по причине примитивного «обрыва нуля». В случае обрыва «нуля» может произойти появление напряжения на контакте «ноль» во всех розетках дома. Это приводит к тому, что все электрические приборы, включенные в розетку, сгорают. При этом сгорают даже «выключенные» с помощью дистанционного пульта приборы. Причина банальная — ослабление контакта «ноль» в общем коммутационном щитке дома. При этом, если контакт не постоянный, то появляется, то пропадает, то возникают очень сильные скачки.

5 причина появления «скачков напряжения» — ослабление заземления

Заземление электрических приборов играет важную роль в обеспечении безопасности использования устройств. В случае нарушения изоляции электрических приборов, напряжение часто передается на корпус прибора. В этом случае «заземление» играет роль отвода этого аварийного тока. В случае ухудшения качества заземления вероятность появления скачков параметров тока существенно вырастает.

6 причина появления «скачков напряжения» — значительная перегрузка сети

Электрооборудование, смонтированное на электрических подстанциях, рассчитано на конкретное максимальное значение мощности подключаемой нагрузки. В настоящее время идет очень большой рост потребления электроэнергии в наших домах. Первая причина здесь — это строительство новых больших зданий на месте старых маленьких домиков. Вместо 10 квартир получается сразу 100 квартир в одном большом доме. Вторая причина — рост числа используемых мощных электрических приборов. Посмотрите на фасад современно многоквартирного дома, на нем 200 сплит-систем. А это дополнительно 400 кВт мощности. Плюс 100 микроволновых печей, плюс 100 электрических калориферов, плюс 100 стиральных машин, плюс 100 электрических нагревателей воды, набегает очень большая суммарная мощность дома. При этом подстанции испытывают значительные перегрузки, и скачки в таком районе города неизбежны.

7 причина появления «скачков напряжения» — плохое качество монтажа и материалов электрической домовой разводки

Если что-то не работает в электрической цепи, то нужно искать плохой контакт. Это первое правило электриков. Плохой контакт в розетке или в электрическом патроне может возникнуть из-за плохого монтажа этих устройств или по причине использования дешевых сплавов для контактных пластин этих приборов. Плохой контакт вызывает искрение. А искрение — это эпицентр появления скачков электрического напряжения и сильных импульсных помех. Было бы хорошо для исключения появления скачков напряжения не использовать розетки вовсе, но так не бывает. А значит, каждое включение или выключение мощного электрического прибора — это новый скачок напряжения в сети.

8 причина появления «скачков напряжения» — включение промышленного оборудования в смежной сети электропередач

Большие и систематические скачки напряжения в сети наблюдаются вблизи крупных промышленных объектов. Включение мощного электродвигателя порождает большие пусковые токи. Эти токи могут «вернуться» в электрическую сеть в виде большой реактивной нагрузки. И хотя на таком оборудовании должны устанавливаться специальные пускатели и дополнительные сетевые фильтры, порождения электрических скачков избежать нельзя. И вовсе не обязательно жить рядом с большим металлургическим заводом, чтобы получить неприятные электрические сюрпризы. Для порождения хорошего скачка напряжения будет достаточно соседства с насосной станцией, с мощным вентиляционным оборудованием, с автомобильной мастерской или с большим супермаркетом.

Читайте также:  Максимальный ток в шуруповерте 12в

9 причина появления «скачков напряжения» — «мерцающий эффект»

Скачки напряжения могут иметь систематический характер. Возможной причиной таких скачков может быть некорректная работа регулирующего оборудования в электрических приборах. Регуляторы электрических приборов должны осуществлять включение и выключение прибора или его части для контроля определенных параметров. Пример самого простого регулятора — это регулятор температуры отопительного прибора или электрического утюга. При достижении нужной температуры элемента прибор должен отключится. Часто бывает, что регулятор срабатывает очень часто, это приводит к износу контактов коммутирующего устройства. Изношенные контакты начинают порождать скачки тока. В этом случае можно видеть на графике напряжения скачки периодического характера.

10 причина появления «скачков напряжения» — попадание молнии в линии передач

Самая эффектная и самая мощная причина, порождающая гигантские перенапряжения и скачки — это попадание молнии в линии электропередач. Я думаю, каждый человек видел, как молния попадает в линии электропередач и в металлические опоры линий передач. Нужно сказать, что история создания электрических приборов тесно связана с молнией. Первые опыты по использованию электричества проводились с энергией молнии. Современные системы электропередач имеют защиту от молнии, однако, полностью избежать появления больших импульсов в сети не удается. Мощные разряды молний порождают большое перенапряжение, которое распространяется вдоль линии передач и может дойти до конечного потребителя. И хотя импульс от удара молнии длиться сотые или тысячные доли секунды, но этой бешеной энергии в тысячи вольт достаточно для нанесения большого ущерба электрооборудованию.

11 причина появления «скачков напряжения» — попадание высокого напряжения с линий трамвайных и троллейбусных контактных линий

Ситуация, когда происходит обрыв контактной трамвайной или троллейбусной линии электропередач, случается в городе несколько раз в месяц. Причиной может быть сильный порыв ветра или выполнение строительных работ, падение дерева на линию передач. При этом один из проводов контактной линии может зацепить или полностью упасть на линии обычных электропередач. В этом случае в сети можно наблюдать скачки напряжения в сотни вольт. Бывают случаи, когда такая авария приводит к сгоранию всех электрических приборов в нескольких домах рядом с аварией. При этом, если не происходит защитного отключения, то перенапряжение может вызвать даже возгорание приборов.

12 причина появления «скачков напряжения» — проведение сварочных работ

Проведение сварочных работ с помощью электрической сварки всегда приводит к появлению больших скачков напряжения во всей сети. И если в городе такое явление редко, то в деревнях и поселках встречается с завидной постоянностью. Кто-то варит забор, кто-то выбрасывает холодильник, сгоревший от большого скачка напряжения. При этом часто сварочные аппараты подключают прямо на вход проводов в дом, то есть минуя все защиты. Каждая дуга сварки в этом случае порождает большой скачок параметров тока в сети.

Таким образом, можно выделить несколько групп причин порождения скачков напряжения:

  • скачки напряжения порождаются по причине плохого качества оборудования и монтажа электрооборудования и электрической разводки;
  • скачки напряжения появляются по причине включения или выключения мощного оборудования или мощных электрических приборов;
  • скачок напряжения обусловлен природными факторами, ударами молнии, сильным ветром, наводнением;
  • скачки напряжения порождены нарушениями правил эксплуатации приборов и оборудования или недостаточного объема проведенных профилактических работ;
  • скачок электрического напряжения обусловлен нарушениями при проведении строительных и сварочных работ;
  • скачок напряжения появился из-за аварий техногенного характера.

типы причин, вызывающие скачки напряжения

Как бороться со скачками напряжения в сети

Важность защиты электрической сети и приборов в электрической сети от воздействия больших скачков напряжения трудно переоценить. Защита от скачков напряжения в электрической сети может строиться на применении специальных устройств для защиты от скачков напряжения, сетевых фильтров. Для защиты сети и потребителей от скачков могут использоваться и стабилизаторы напряжения со встроенной защитой от скачков напряжения. Устройства защиты от скачков напряжения могут монтироваться в коммутационные электрические шкафы или включаться непосредственно в розетку. Отдельным способом защиты от скачков является использование устройства защиты от скачков, монтируемых внутри электрического прибора.

Как защитить свой дом от скачков напряжения, смотрите в разделах Защита от скачков напряжения и Стабилизаторы напряжения.

Источник



Что такое крест-фактор (пик-коэффициент, коэффициент амплитуды, пик-фактор, Crest factor, Cross Ratio, Peak-to-average ratio (PAR), CF, C.F.)

Что такое крест-фактор (пик-коэффициент, коэффициент амплитуды, пик-фактор, Crest factor, Cross Ratio, Peak-to-average ratio (PAR), CF, C.F.)

Крест-фактор – это отношение величины амплитуды (пикового или максимального значения) тока или напряжения к его действующему (эффективному, RMS) значению.
Крест-фактор нагрузки — отношение пикового значения потребляемого тока к действующему значению.
Crest — вершина, пик (анг.)
Factor — коэффициент (анг.)

Крест-фактор для тока прямоугольной формы (меандр) равен единице; для синусоидальной — 1,414 (корень из 2).
Крест-фактор для импульсного блока питания может достигать 4 (в критических случаях до 5), при питании от обычной розетки. Обусловлено это тем, что блок питания без коррекции коэффициента сощности потребляет ток короткими и высокими импульсами, примерно совпадающими с пиком синусоиды сетевого напряжения.
На входе блока питания стоит выпрямитель и следом за ним – конденсатор, с которого уже снимается напряжение питания для питания инвертора. При включении блока питания в сеть конденсатор заряжается . Потом сетевое напряжение начинает быстро спадать, в то время как конденсатор значительно медленнее разряжается в нагрузку, соответственно когда напряжение опять начнет расти, ток заряда конденсатора (а соответственно и ток потребляемый от источника) будет потребляться только когда напряжение источника будет превышать напряжение на конденсаторе, ток будет потребляться только часть полупериода (ток перестанет быть синусоидальным), поскольку нам нужно от источника забрать ту же мощность, то пиковое значение тока значительно вырастет.

Крест-фактор, указываемый как выходной параметр ИБП, характеризует его способность питать нелинейную нагрузку, потребляющую ток импульсами. Крест-фактор большинства ИБП равен 3:1

Крест-фактор это характеристика взаимодействия нагрузки и источника, желательно рассматривать конкретный случай взаимодействия нагрузки или источника (выходное напряжение ИБП может сильно отличаться от синусоиды). Например, в случае синусоидального питающего напряжения и компьютерного блока питания крест-фактор равен 2—3. Использование напряжения, полученного в результате ступенчатой аппроксимации на той же нагрузке, обычно дает крест-фактор от 1,4 до 1,9. Если компьютер питается от ИБП, имеющего выходное напряжение в виде меандра с паузой, то пик-фактор уменьшается до 1.8-2.

Описанные значения CF относятся к установившимуся режиму работы нагрузки. Следует учитывать переходные процессы, происходящие при изменении режимов работы нагрузки (запуск, сброс, наброс нагрузки).

Читайте также:  Омоложение кожи лица токами

При сравнении устройств нужно учитывать вероятные различия в методиках измерений CF.

Источник

Пик-фактор

Пик — фактор или пик — фактор ( английский пик — фактор в) описывает электротехник , отношение пика к среднеквадратичному значению в качестве величины переменной и всегда больше или равна единице. Он используется в области электрических измерительных технологий , коммуникационных технологий , звуковых технологий и акустики .

Подобно форм-фактору или коэффициенту искажения, он служит в качестве характеристического значения для приблизительного описания формы кривой переменной величины.

Квадрат коэффициента амплитуды определяется как английский отношение пиковой к средней мощности ( PAPR далее) и выражает отношение пиковой мощности к средней мощности сигнала. PAPR обычно дается как логарифмическая мера в децибелах . Помимо прочего, он используется в радиоприемниках для получения управляющего сигнала для автоматической регулировки усиления (АРУ).

Содержание

  • 1 определение
  • 2 Практическое значение
  • 3 PAPR
  • 4 значения коэффициента амплитуды (примеры)
  • 5 литературы
  • 6 индивидуальных доказательств

определение

Икс

Коэффициент амплитуды размера определяется как: Икс <\ displaystyle X>

k s знак равно | Икс | м а Икс Икс е ж ж <\ displaystyle k_ = <\ frac <| X | _ <\ mathrm >> >>>> k_s = \ frac <| X | _ <\ mathrm <max data-lazy-src=

Расчет мощности ИБП

Мощность одна из основных характеристик, принимаемых во внимание при выборе источника бесперебойного питания (ИБП). При ее определении, следует учитывать особенности нагрузки.

Покупка ИБП, мощность которого превышает ваши потребности, означает трату денег впустую. Однако недооценка необходимой мощности системы бесперебойного электропитания чревата потерей нагрузки, что совершенно недопустимо. Как максимально точно рассчитать эту характеристику?

Для этого следует знать коэффициент мощности нагрузки (Power Factor, P), который определяет, какая часть мощности, предоставляемой источником электроэнергии, действительно потребляется оборудованием (активная мощность). Если нагрузка ведет себя как идеальное сопротивление, она поглощает всю подаваемую на нее мощность, то есть P=1. Идеальная емкость (конденсатор) или индуктивность (катушка) вообще не потребляют активной мощности (Р=0), поскольку не преобразуют электрическую энергию в другие ее виды. В течение одной четверти периода синусоиды энергия запасается в магнитном поле катушки или в электрическом поле конденсатора, а на протяжении другой – возвращается в сеть. Таким образом, в данном случае имеет место лишь рециркуляция энергии, а сопротивления катушки и конденсатора, в отличие от активного сопротивления резистора, называют реактивным.

В реальной жизни ничего идеального не существует, поэтому и значение коэффициента мощности нагрузки обычно находится в интервале от 0 до 1. В общем случае P вычисляется как отношение поглощаемой нагрузкой активной мощности (она измеряется в ваттах, Вт) к полной поступающей мощности (измеряется в вольт-амперах, ВА):

коэффициент мощности (Р) = активная мощность (Вт)/полная мощность (ВА).

При наличии только гармонических искажений коэффициент мощности равен косинусу угла сдвига фаз между током и напряжением, поэтому его часто обозначают cos φ. Нагрузка с преобладанием емкостной составляющей характеризуется опережающим коэффициентом мощности (cos φ положительный), а индуктивная нагрузка — отстающим (cos φ отрицательный).

Основной нагрузкой для ИБП являются ПК и серверы. В блоки питания этих устройств устанавливается выпрямитель с фильтром в виде конденсатора, поэтому они обладают определенной емкостной составляющей. Коэффициент мощности простейших блоков питания, используемых в дешевых ПК, может не превышать 0,6 — это означает, что лишь 60% подаваемой источником полезной мощности идет в дело. В действительности для типичных ПК ситуация не столь плоха — их коэффициент мощности составляет обычно 0,8, соответственно, большинство ИБП малой мощности проектируются с расчетом на обслуживание такой нагрузки.

Читайте также:  Пульт ду сварочного тока

Что касается современных серверов, систем хранения данных и сетевого оборудования (коммутаторы, маршрутизаторы), то здесь дело обстоит еще лучше. В них используются блоки питания с функцией коррекции коэффициента мощности, поэтому его значение приближается к 1. Но в расчетах все же лучше считать такое оборудование нагрузкой с небольшой емкостной составляющей, а коэффициент мощности принимать равным 0,95.

А вот кондиционеры, которые часто тоже защищают с помощью ИБП, представляют собой уже нагрузку с индуктивной составляющей, что связано с наличием электродвигателей в их компрессорах. Коэффициент мощности этого оборудования обычно находится в интервале от 0,6 до 0,8 (см. Таблицу 1).

Как оценить средний коэффициент мощности нагрузки, состоящей из разнотипного оборудования? Предположим, в офисе установлено следующее оборудование:

Тогда для определения усредненного коэффициента вначале рассчитывается усредненное отклонение Р от единицы:

Таким образом, нагрузка будет иметь индуктивный характер с P=0,95.

ДВА КОЭФФИЦИЕНТА МОЩНОСТИ

В спецификации почти любого ИБП указан его входной коэффициент мощности. Этот параметр не имеет никакого отношения к выходному коэффициенту и определяет то, как сам ИБП (как нагрузка) ведет себя по отношению к внешней сети. В современных ИБП, где выпрямитель построен на основе транзисторов IGBT, входной коэффициент мощности близок к единице, а значит, источник ведет себя практически как идеальное активное сопротивление и почти не вносит искажений во внешнюю сеть. Значение входного P полностью зависит от схемотехники ИБП.

Выходной коэффициент мощности для ИБП определяется подключенной к нему нагрузкой. Зная эту характеристику (наряду с полной мощностью в ВА), можно, умножив одно на другое, получить максимальную мощность в Вт, которую источник способен обслужить. Если коэффициент мощности нагрузки окажется больше указанного для ИБП, последний все равно не сможет превысить рассчитанную приведенным выше способом мощность в Вт, а значит, не обеспечит максимального значения ВА.

Обратимся опять к примеру. Пусть имеется ИБП номинальной мощностью 60 кВА, рассчитанной для нагрузки с коэффициентом мощности 0,9. Максимальная активная мощность, которую он может обслужить, составляет 54 кВт:

Нагрузку с указанной полной мощностью, но меньшим Р, например 0,8, он обслужит без проблем:

Как уже упоминалось, коэффициент мощности многих типов современного ИТ- и телекоммуникационного оборудования приближается к 1, поэтому здесь надо быть очень внимательным. Чтобы не ошибиться, многие специалисты сегодня при выборе ИБП предпочитают руководствоваться его выходной мощностью в Вт.

Если вы затрудняетесь в определении коэффициента Р, то для полной гарантии следует выбирать ИБП, мощность которого в Вт была бы больше характеристики нагрузки в ВА. Но в этом случае возможно существенное завышение мощности ИБП. Для более точного расчета следует сначала вычислить суммарную величину нагрузки (в ВА), затем ее усредненный Р, после чего, умножив оба значения, получить значение в Вт. Мощность ИБП в Вт не должна быть ниже характеристики нагрузки, выраженной в тех же единицах измерения.

ЕЩЕ ДВА ФАКТОРА

Важной характеристикой нагрузки служат еще два коэффициента: Crest Factor и Surge Factor. Первый из них в русскоязычной документации часто именуют пик-коэффициентом (или пик-фактор). Он определяется отношением максимального (пикового) значения тока к его среднеквадратичному (RMS) значению. Для волн прямоугольной формы пик-фактор равен единице, для идеальной синусоиды – 1,414 (√2).

Хотя мы назвали пик-фактор «характеристикой нагрузки», на самом деле на его значение влияют и характеристики источника электропитания. Импульсные блоки питания компьютеров потребляют ток очень неравномерно, поэтому для них пик-фактор обычно составляет от 2 до 3. Но это в том случае, если на нагрузку поступает чистая синусоида. Если же ИБП выдают ступенчато аппроксимированную синусоиду (что типично для источников мощностью менее 1 кВт), то пик-фактор оказывается менее 2 (обычно от 1,4 до 1,9). В целом же использование ИБП, сетевых фильтров и устройств подавления импульсных помех способствует снижению пик-фактора. Это, безусловно, положительный момент, поскольку высокий пик-фактор (большой ток) приводит к сильному нагреву элементов систем электропитания.

Большинство ИБП при полной нагрузке способны поддерживать пик-фактор 3 (при снижении нагрузки значение этой характеристики увеличивается), поэтому обычно проблем не возникает. Даже если источник не обеспечивает необходимое пиковое значение тока, то, как правило, работа блока питания нагрузки не нарушается, возможны лишь небольшие искажения формы электрического сигнала. Однако в крупных инсталляциях (например, когда ИБП обслуживает большое число ПК) такие искажения могут оказаться настолько значительными, что способны привести к нарушению функционирования нагрузки. Поэтому желательно, чтобы пик-фактор, поддерживаемый ИБП, не оказался ниже пик-фактора нагрузки.

Для расчета среднего пик-фактора нагрузки, состоящей из разнотипного оборудования, можно порекомендовать тот же способ, что и для расчета среднего коэффициента мощности. Обратимся к нашему примеру:

Усредненный пик-фактор можно вычислить так:

Если заявленный в характеристиках ИБП пик-фактор больше указанного значения, то проблем не будет.

Значение Surge Factor (к сожалению, устоявшегося рускоязычного термина для этой характеристики нет) определяет то, насколько пусковой ток, потребляемый нагрузкой, превышает его номинальное значение. Например, для запуска электродвигателя требуется большой пусковой момент, поэтому компрессоры холодильных установок при включении потребляют ток, в несколько раз превышающий номинальный (см. Таблицу 1). Пусковой ток системы освещения, использующей обычные лампы накаливания, тоже может значительно превосходить его номинальное значение. Дело в том, что удельное электрическое сопротивление вольфрама, из которого изготавливают нити накаливания, в значительной степени зависит от температуры: при 20°C его значение составляет 55×10 -9 Ом×м, при 1727°C — 557х10 -9 Ом×м. Соответственно, пусковой ток будет примерно в 10 раз превосходить номинальный.

Что касается компьютеров и серверов, то для них значение Surge Factor обычно не превышает 1,5, и большинство ИБП имеют достаточную перегрузочную способность, чтобы гарантировать надежное включение и стабильную работу этих устройств. Если же в составе нагрузки имеется оборудование с большим пусковым током, то перегрузочную способность выбираемого ИБП следует изучить самым тщательным образом.

Проанализировав рассмотренные в статье факторы, не забудьте еще и о том, что для обеспечения устойчивой работы оборудования мощность ИБП следует выбирать «с запасом» – больше требуемой на 15-25%.

Источник