Меню

Переделка вольтметра переменного тока для постоянного

Переделка вольтметра переменного тока для постоянного

интересные РАДИОСХЕМЫ самодельные

  • ELWO
  • 2SHEMI
  • БЛОГ
  • СХЕМЫ
    • РАЗНЫЕ
    • ТЕОРИЯ
    • ВИДЕО
    • LED
    • МЕДТЕХНИКА
    • ЗАМЕРЫ
    • ТЕХНОЛОГИИ
    • СПРАВКА
    • РЕМОНТ
    • ТЕЛЕФОНЫ
    • ПК
    • НАЧИНАЮЩИМ
    • АКБ И ЗУ
    • ОХРАНА
    • АУДИО
    • АВТО
    • БП
    • РАДИО
    • МД
    • ПЕРЕДАТЧИКИ
    • МИКРОСХЕМЫ
  • ФОРУМ
    • ВОПРОС-ОТВЕТ
    • АКУСТИКА
    • АВТОМАТИКА
    • АВТОЭЛЕКТРОНИКА
    • БЛОКИ ПИТАНИЯ
    • ВИДЕОТЕХНИКА
    • ВЫСОКОВОЛЬТНОЕ
    • ЗАРЯДНЫЕ
    • ЭНЕРГИЯ
    • ИЗМЕРЕНИЯ
    • КОМПЬЮТЕРЫ
    • МЕДИЦИНА
    • МИКРОСХЕМЫ
    • МЕТАЛЛОИСКАТЕЛИ
    • ОХРАННЫЕ
    • ПЕСОЧНИЦА
    • ПРЕОБРАЗОВАТЕЛИ
    • ПЕРЕДАТЧИКИ
    • РАДИОБАЗАР
    • ПРИЁМНИКИ
    • ПРОГРАММЫ
    • РАЗНЫЕ ТЕМЫ
    • РЕМОНТ
    • СВЕТОДИОД
    • СООБЩЕСТВА
    • СОТОВЫЕ
    • СПРАВОЧНАЯ
    • ТЕХНОЛОГИИ
    • УСИЛИТЕЛИ

Постоянное напряжение для вольтметра из китая и переделка его на переменное.
———————————————
Вольтметр на 500в для постоянного напряжения можно ли им мерить переменное 380в 2 фазы? Наверное поставить потребуется диодный мост (1 стабилизирующий диод будит показывать полупериод и резать напряжение на половину)
———————————————
Диапазон измерения:000,0-500,0 В

Рабочая температура воздуха: -10℃

Рабочее напряжение: DC5-15V *1

На граданском языке ,это подобрать,т е откалибровать нужный ,прибор чтобы верно показывал показания по сравнению с контрольным прибором,хоть электронный хоть стрелочный,важная весч это изоляция,,чтобы не взбордрило при 500 вольтах,схемы такие же как и в тестерах ,открыл первый попавшийся

Если вольтметр постоянного тока дополнить выпрямителем, преобразующим переменное напряжение в постоянное (точнее — пульсирующее), получим вольтметр переменного тока. Возможная схема такого прибора с однополупериодным выпрямителем показана на рис.2. Работает прибор следующим образом. В те моменты времени, когда на левом (по схеме) зажиме прибора положительная полуволна переменного напряжения, ток идет через диод Д1 и далее через микроамперметр к правому зажиму. В это время диод Д2 закрыт. Во время положительной полуволны на правом зажиме, диод Д1 закрывается, и положительные полуволны переменного напряжения замыкаются через диод Д2, минуя микроамперметр.
Добавочный резистор Rд рассчитывают так же, как и для постоянных напряжений, но полученный результат делят на 2,5-3, если выпрямитель прибора однополупериодный, или на 1,25-1,5, если выпрямитель прибора двухполупериодный — рис.3. Более точно сопротивление этого резистора подбирают опытным путем во время градуировки шкалы прибора. Можно рассчитать Rд и по другим формулам. Сопротивление добавочных резисторов вольтметров выпрямительной системы, выполненных по схеме на рис.2, вычисляют по формуле:
Rд = 0,45*Uп/Iи – (Rп + rд);
Для схемы на рис.3 формула имеет вид:
Rд = 0,9*Uп/Iи – (Rп + 2rд); где rд – сопротивление диода в прямом направлении.
Показания приборов выпрямительной системы пропорциональны средне выпрямленному значению измеряемых напряжений. Шкалы же их градуируют в среднеквадратических значения синусоидального напряжения, поэтому показания приборов выпрямительной системы равны среднеквадратичному значению напряжения лишь при измерении напряжений синусоидальной формы. В качестве выпрямительных диодов используются германиевые диоды Д9Д. Такими вольтметрами можно измерять и напряжение звуковой частоты до нескольких десятков килогерц.

Источник



Как сделать простой вольтметр своими руками – схемы и рекомендации

вольтметр

Электрические измерения

Ситуации, когда под рукой должен находиться вольтметр, встречаются достаточно часто. Для этого нет необходимости использовать заводской сложный прибор. Изготовить простенький вольтметр своими руками – не проблема, потому что состоит он из двух элементов: стрелочный измерительный блок и резистор. Правда, необходимо отметить, что пригодность вольтметра определяется его входным сопротивлением, которое состоит из сопротивлений его элементов.

Вольтметр

Но необходимо учитывать тот факт, что резисторы есть разные с разными номиналами, а это говорит о том, что от установленного резистора будет зависеть входное сопротивление. То есть, подобрав правильно резистор, можно сделать вольтметр под замеры определенных уровней напряжений сетей. Сам же измерительный прибор чаще оценивается по показателю – относительное входное сопротивления, приходящееся на один вольт напряжения, его единица измерения – кОм/В.

То есть, получается так, что входное сопротивления на разных измеряемых участках разное, а относительная величина – показатель постоянный. К тому же, чем меньше отклоняется стрелка измерительного блока, тем больше относительная величина, а, значит, точнее будут измерения.

Прибор для измерения нескольких пределов

Кто не раз сталкивался с транзисторными конструкциями и схемами знает, что очень часто вольтметром приходится замерять цепи с напряжением от десятков долей одного вольта до сотен вольт. Простой приборчик, изготовленный своими руками, с одним резистором это не осилит, поэтому в схему придется подключить несколько элементов с разным сопротивлением. Чтобы вы поняли, о чем идет речь, предлагаем ознакомиться со схемой, расположенной снизу:

Четыри резисторами

На ней показано, что в схеме установлено четыре резистора, каждый из которых отвечает за свой диапазон измерений:

  1. От 0 вольт до единицы.
  2. От 0 вольт до 10В.
  3. От 0 В до 100 вольт.
  4. От 0 до 1000 В.

Номинал каждого резистора поддается подсчету, который проводится на основе закона Ома. Здесь используется следующая формула:

  • Rп – это сопротивление измерительного блока, возьмем, к примеру. 500 Ом;
  • Uп – это максимальное напряжение измеряемого предела;
  • Iи – это сила тока, при которой стрелка отклоняется до конца шкалы, в нашем случае – 0,0005 ампер.

Для несложного вольтметра из китайского амперметра можно выбрать следующие резисторы:

  • для первого предела – 1,5 кОм;
  • для второго – 19,5 кОм;
  • для третьего – 199,5;
  • для четвертого – 1999,5.

А вот относительная величина сопротивления этого прибора будет равна 2 кОм/В. Конечно, расчетные номиналы не совпадают со стандартными, поэтому резисторы придется подбирать близкими по значению. Далее проводится финишная подгонка, при которой производится градуировка самого прибора.

Как переделать вольтметр постоянного напряжения в переменное

Показанная на рисунке №1 схема – это вольтметр постоянного тока. Чтобы его сделать переменным или, как говорят специалисты, пульсирующим, необходимо в конструкцию установить выпрямитель, с помощью которого постоянное напряжение преобразуется в переменное. На рисунке №2 вольтметр переменного тока показан схематически.

Данная схема работает так:

  • когда на левом зажиме находится положительная полуволна, то открывается диод D1, D2 в этом случае закрыт;
  • напряжение проходит через амперметр к правому зажиму;
  • когда положительная полуволна находится на правом конце, то D1 закрывается, и напряжение через амперметр не проходит.

В схему обязательно добавляется резистор Rд, сопротивление которого рассчитывается точно так же, как и остальные элементы. Правда, его расчетное значение делится на коэффициент, равный 2,5-3. Это в том случае, если в вольтметр устанавливается однополупериодный выпрямитель. Если используется двухполупериодный выпрямитель, то значение сопротивления делится на коэффициент: 1,25-1,5. Кстати, схема последнего изображена на рисунке №3.

Как правильно подключить вольтметр

Тот, кто не знает, но хочет проверить напряжение на каком-то участке электрической сети, должен задаться вопросом – как подключить вольтметр? Это на самом деле серьезный вопрос, в ответе которого лежит простое требование – подключение вольтметра необходимо проводить только параллельно нагрузке. Если будет произведено последовательное подключение, то сам прибор просто выйдет из строя, и вас может ударить током.

Вольтметр своими руками

Все дело в том, что при таком соединении уменьшается сила тока, действующая на сам измерительный прибор. При этом сопротивлении его не меняется, то есть, остается большим. Кстати, никогда не путайте вольтметр с амперметром. Последний подключается к цепи последовательно, чтобы снизить показатель сопротивления до минимума.

И последний вопрос темы – как пользоваться вольтметром, изготовленным самостоятельно. Итак, в вашем приборе два щупа. Один подключается к нулевому контуру, второй к фазе. Так же можно проверить напряжение через розетку, предварительно определив, к какому гнезду запитан ноль, а к какому фаза. Или соединяете параллельно прибор к измеряемому участку. Стрелка измерительного блока покажет величину напряжения в сети. Вот так пользуются этим самодельным измерительным прибором.

Читайте также:  Выбрать условия существования электрического тока

Источник

Как переделать вольтметр переменного тока на постоянный

Здравствуй дорогой читатель. Иногда возникает необходимость иметь «под рукой» небольшой простенький вольтметр. Сделать такой вольтметр своими руками не составит большого труда.

О пригодности вольтметра для измерения напряжений в тех или иных цепях судят по его входному сопротивлению, которое складывается из сопротивления рамки стрелочного прибора и сопротивления добавочного резистора. Так как на разных пределах добавочные резисторы имеют разные номиналы, то и входное сопротивление прибора будет другим. Чаще вольтметр оценивают его относительным входным сопротивлением, характеризующим отношение входного сопротивления прибора к 1В измеряемого напряжения, например 5кОм/В. Это удобнее: входное сопротивление вольтметра на разных пределах измерений разное, а относительное входное сопротивление постоянное. Чем меньше ток полного отклонения стрелки измерительного прибора Iи, используемого в вольтметре, тем больше будет его относительное входное сопротивление, тем точнее будут производимые им измерения. В транзисторных конструкциях приходится измерять напряжение от долей вольта до нескольких десятков вольт, а в ламповых еще больше. Поэтому однопредельный вольтметр неудобен. Например, вольтметром со шкалой на 100В нельзя точно измерить даже напряжения 1— 5В, так как отклонение стрелки получится малозаметным. Поэтому нужен вольтметр, имеющий хотя бы три — четыре предела измерений. Схема такого вольтметра постоянного тока показана на рис.1. Наличие четырех добавочных резисторов R1, R2, R3 и R4 свидетельствует о том, что вольтметр имеет четыре предела измерений. В данном случае первый предел 0-1В, второй 0-10В, третий 0-100В и четвертый 0-1000В.
Сопротивления добавочных резисторов можно рассчитать по формуле, вытекающей из закона Ома: Rд= Uп/Iи — Rп, здесь Uп — наибольшее напряжение данного предела измерений, Iи – ток полного отклонения стрелки измерительной головки, а Rп – сопротивление рамки измерительной головки. Так, например, для прибора на ток Iи = 500мкА (0,0005А) и рамкой сопротивлением 500 Ом сопротивление добавочного резистора R1, для предела 0-1В должно быть 1,5кОм, для предела 0-10В — 19,5кОм, для предела 0-100В — 199,5кОм, для предела 0-1000 – 1999,5кОм. Относительное входное сопротивление такого вольтметра будет 2кОм/В. Обычно, в вольтметр монтируют добавочные резисторы с номиналами, близкими с расчетными. Окончательно же «подгонку» их сопротивлений производят при градуировке вольтметра путем подключения к ним параллельно или последовательно других резисторов.

Если вольтметр постоянного тока дополнить выпрямителем, преобразующим переменное напряжение в постоянное (точнее — пульсирующее), получим вольтметр переменного тока. Возможная схема такого прибора с однополупериодным выпрямителем показана на рис.2. Работает прибор следующим образом. В те моменты времени, когда на левом (по схеме) зажиме прибора положительная полуволна переменного напряжения, ток идет через диод Д1 и далее через микроамперметр к правому зажиму. В это время диод Д2 закрыт. Во время положительной полуволны на правом зажиме, диод Д1 закрывается, и положительные полуволны переменного напряжения замыкаются через диод Д2, минуя микроамперметр.
Добавочный резистор Rд рассчитывают так же, как и для постоянных напряжений, но полученный результат делят на 2,5-3, если выпрямитель прибора однополупериодный, или на 1,25-1,5, если выпрямитель прибора двухполупериодный — рис.3. Более точно сопротивление этого резистора подбирают опытным путем во время градуировки шкалы прибора. Можно рассчитать Rд и по другим формулам. Сопротивление добавочных резисторов вольтметров выпрямительной системы, выполненных по схеме на рис.2, вычисляют по формуле:
Rд = 0,45*Uп/Iи – (Rп + rд);
Для схемы на рис.3 формула имеет вид:
Rд = 0,9*Uп/Iи – (Rп + 2rд); где rд – сопротивление диода в прямом направлении.
Показания приборов выпрямительной системы пропорциональны средне выпрямленному значению измеряемых напряжений. Шкалы же их градуируют в среднеквадратических значения синусоидального напряжения, поэтому показания приборов выпрямительной системы равны среднеквадратичному значению напряжения лишь при измерении напряжений синусоидальной формы. В качестве выпрямительных диодов используются германиевые диоды Д9Д. Такими вольтметрами можно измерять и напряжение звуковой частоты до нескольких десятков килогерц. Шкалу для самодельного вольтметра можно начертить с помощью программы FrontDesigner_3.0_setup.

Электроника, электротехника. Профессионально-любительские решения.

Принцип измерения

Если для измерения постоянного напряжения Вы пользуетесь вольтметром с измерительной головкой магнитоэлектрической системы, то обращали внимание, что при неправильной полярности подключения щупов вольтметра к источнику измеряемого напряжения, стрелка измерительной головки отклоняется в обратную сторону за нуль и зашкаливает. Если таким прибором попытаться измерить переменное напряжение частотой около 50 Гц и выше, стрелка может слегка дёрнуться в первоначальный момент времени, но после будет указывать на ноль. Ненулевое значение будет говорить о наличии постоянной составляющей напряжения.

Самый простой способ выйти из положения – преобразовать переменное напряжение в постоянное, то есть выпрямить его. Это легко сделать с помощью одного единственного диода, как показано в статье «Элементарный выпрямитель на одном диоде». Если желаете измерить напряжение более-менее точно, для выпрямления можно использовать диодный мост.

Схемы измерения

Причина такого поведения магнитоэлектрического измерительного прибора при измерении переменного напряжения проста. В таких приборах присутствует постоянный магнит, а направление отклонения стрелки прибора зависит от направления протекания тока в катушке поворачивающейся рамки. В момент положительного полупериода стрелка прибора пытается отклониться в одну сторону, отрицательного – в другую. При достаточно частой смене полярности, например как в потребительской сети 50 Гц, стрелка просто не успевает отклониться в одну сторону, как вдруг ей нужно отклоняться в обратную. При этом можно заметить просто дрожание стрелки, или не заметить ни чего.

Измерительные головки электромагнитной системы в устройстве своём не имеют постоянного магнита, а их принцип действия основан на явлении втягивания предмета из намагничивающегося материала в область центра катушки с током. Направление действия катушки с током на намагничивающийся объект не зависит от направления тока в обмотке катушки. Поэтому такие приборы легко измеряют как постоянный, так и переменный ток или напряжение.

Если у Вас возникла необходимость измерить напряжение в сети переменного тока, а под рукой только прибор с измерительной головкой магнитоэлектрической системы (с постоянным магнитом), то можно просто выйти из положения, имея под рукой хотя бы один выпрямительный диод с обратным напряжением не ниже амплитудного значения предположительно измеряемой величины. Для этого рассмотрим две схемы.

Схема с одним диодом

Менее точный, но предельно простой вариант. Всё, что нужно, это подключить один из щупов прибора через выпрямительный диод. При этом следует учесть, что к клемме приора с положительной полярностью диод должен быть подключен катодом (к отрицательной – анодом). При действии положительного полупериода стрелку будет отклонять измеряемая величина напряжения в нужную нам сторону. Во время отрицательного полупериода диод будет запираться, разрывая цепь прибора с источником напряжения, которое уже не подействует на стрелку прибора в обратном направлении.

Читайте также:  Первая помощь при легком ожоге током

Особенность измерения схемой с одним диодом

Определение значения величины. При измерении по рассмотренной схеме следует учесть, что прибор реагирует только во ремя одного полупериода, и покажет величину в два раза меньше действительного действующего значения напряжения. То есть, если при измерении напряжения такой схемой прибор показал значение 110 В, это показание нужно умножить на два, и получите то, что Вы измерили.

Выбор диода. Для правильного выбора диода нам нужно обязательно учесть обратное напряжение диода, которое должно быть больше амплитудного значения измеряемой величины, иначе диод может пробить, и прибор перестанет показывать, или может врать на несколько порядков. Например, мы собираемся измерить напряжение в розетке. При указании класса напряжения оборудования указывается действующая величина. Чтобы узнать амплитудное значение, нужно действующую величину умножить на корень из двух: . Напряжение потребительской сети 220 В. Амплитуда напряжения будет 220×1,41=311 В. В нашем случае вполне подойдут выпрямительные диоды с обратным напряжением 400 В и выше. Ниже не желательно, т.к. в случае перенапряжения в сети, амплитуда напряжения может превысить обратное напряжение диода, произойдёт необратимый пробой p-n перехода и диод выйдет из строя.

Кроме того, не выбирайте мощные диоды, чем меньше мощность, тем лучше. У мощных диодов большая площадь p-n перехода, который в запертом состоянии может вести себя как обкладки конденсатора. Таким образом, в отрицательный полупериод может сказаться ёмкостная проводимость, и показания прибора окажутся несколько занижены. Чем больше частота измеряемого напряжения, тем больше влияние, особенно при использовании высокоомных чувствительных измерительных головок.

Схема с диодным мостом

Более сложный вариант, но позволяющий измерять электрические величины более точно. Для этого потребуется 4 диода, либо готовый диодный мост. Принцип работы схемы аналогичен первому варианту, но здесь измерительный элемент чувствует оба полупериода напряжения, которые действуют на него однонаправлено, и прибор показывает действующее значение напряжения. То есть, показания прибора будут соответствовать действительности.

Выбор диодов или диодного моста аналогичен первому случаю.

Меры предосторожности

При модификации Вашего прибора указанными способами, уделите особое внимание безопасности. Диоды или диодный мост используемые в схемах, а так же контактные места рассечки проводов, щупов прибора, клеммы вольтметра должны быть надёжно заизолированы, чтобы предотвратить поражение электрическим током при случайном прикосновении к токоведущим частям прибора во время измерения.

Вобщем купил вольтметры еще пару.цена то их копейки около 1.3 доллара

Измеряет напряжение от 3 до 30 вольт

Но устройство можно тюнинговать как говорится.

Вольтметр собран на микроконтроллере STM8
схема ниже

. В приведенной схеме входной делитель напряжения состоит из последовательно соединённых резисторов R2 + R3 и R4 (130 кОм 13к и 12 кОм). Нетрудно посчитать, что при подаче 1 В на вход делителя на измерительный вход процессора подается напряжение 0,025 В. (Ток делителя I=U:R = 1: (130+13+12)=0,0065 mA; падение напряжения на R2=I*R=0,0065 mA * 12k= 0,08B).

Если в блоке питания в цепь выходного тока поставить измерительный резистор величиной 0,08 Ома, то при протекании по нему тока в 1А, на измерительном резисторе упадет напряжение 0,08 В. И если это напряжение подать на R2, то индикатор вольтметра покажет единицу (1 Ампер). Таким образом, вольтметр превратился в амперметр.

я поставил 0.1 ом 10 ватт резистор.точность 1%. показывает тоже амперметр что и китайский мультиметр

вот схемка чисто делителя для пределки в амперметр

Можно установить тумблер и переключать измеритель в режим вольтметра или амперметра по приводимой ниже схеме. Коммутировать приходится три цепи:

— штатный вход вольтметра;

— дополнительный вход измерителя (измерительный вход процессора);

— общий провод вольтметра.

Для того, чтобы использовать в качестве переключателя двухполюсный тумблер, пришлось пойти на некоторое ухищрение – добавить «свой» резистор Rдоб

чтобы все это работало кстати нужно подать внешнее питание.на входе на стабилизатор напряжения DA1 стоит диод.его выпаиваем и на конец идущий на стаб паяем внешний + . Теперь устройство будет мерять от 0 до 99 вольт.так как до этого все ограничивал стабилизатор пределы которого 3-30 вольт

Источник

Как переделать вольтметр переменного тока на постоянный

Амперметр переменного тока

Амперметром постоянного тока называют прибор, который показывает силу тока в цепи. Показатель измеряется в амперах. Из этих данных можно узнать о магнитодвижущей силе, понять электрический потенциал. Изобретателем устройства является И. Швейгер, университетский профессор из Галле. Произошло это еще в XIX веке. И тогда прибор носил название «токовый гальванометр».


Амперметр переменного тока

Устройство мультиметра

Современный мультиметр (тестер) представляет собой сложное электронное устройство. Эти измерительные приборы отличаются принципом работы и способом отображения полученных результатов. При этом их устройство и внешний вид целиком и полностью зависят от производителя, имеющего возможность оснастить мультиметры дополнительными возможностями. Например, имеются тестеры, оборудованные встроенными токопроводящими клещами, которые позволяют измерять электрические параметры цепей не разрывая проводов.

Классификация и принцип действия

По конструктивному исполнению мультиметры могут быть стационарными и малогабаритными. Кроме того, исходя из схемотехнического решения они могут быть:

Стационарные мультиметры работают, как правило, от сети централизованного электропитания. Они представляют собой высокоточные электронные устройства и используются для прецизионных измерений в лабораторных или производственных условиях. Работают также в составе информационно-измерительных систем и специализированных промышленных комплексов. В малогабаритных (карманных) тестерах для измерения сопротивления используются встроенные аккумуляторы или сменные элементы электропитания.

В аналоговых мультиметрах результат измерения отображается отклонением стрелки на градуированной шкале, а в цифровых – на светодиодном табло или жидкокристаллическом экране. Могут встретиться и оригинальные модели, оснащенные одновременно стрелочным индикатором и цифровым экраном.

Электрическая схема стрелочных мультиметров аналогового типа отличается простотой и представляет собой набор шунтирующих прецизионных резисторов большого и малого номинала. Чтобы с помощью таких тестеров можно было измерять параметры электрических цепей переменного тока, в схему вводят выпрямительные диоды. Это связано с тем, что магнитоэлектрическая система стрелочного микроамперметра работает только на постоянном токе.

Электрические схемы цифровых мультиметров значительно сложнее и содержат в своем составе такие узлы:

  • операционный усилитель;
  • аттенюатор;
  • аналогово-цифровой преобразователь;
  • высокоточный выпрямитель;
  • механический или электронный коммутатор.

Блок-схема является базовой для всех цифровых мультиметров и позволяет осуществлять измерение параметров электрических цепей постоянного и переменного тока с высокой точностью.

Принцип действия аналоговых тестеров основан на том, что измерению предшествует преобразование всех входящих сигналов в силу тока, которая затем и измеряется. В отличие от них цифровые мультиметры все входящие сигналы предварительно преобразуют в напряжение.

Что измеряют амперметром

Физическая величина амперметра демонстрирует силу тока в цепи. Ампер привязан к международной системе единиц. Начиная с 1948 года, определена его формула. В ней учитывается магнитодвижущая сила плюс проводимость проводников.

Интересная информация! Есть разделение на кратные и дольные единицы. Опираясь на международное бюро мер и весов, амперметр способен показывать значения в декаамперах, гектоамперах, килоамперах и так далее.

Читайте также:  Взаимодействие рамки с током с магнитным полем


Дольные единицы

Сфера применения широка, и электрики обязательно держат прибор под рукой. Цифровые, а также аналоговые модификации востребованы в промышленности. Еще встречаются модификации для потребности народного хозяйства. В энергетической области устройства позволяют определить силу тока на выходе у электротехники.

Строители используют приборы на площадках, чтобы провести проводку в домах и сооружениях. Автотранспорт, как известно, также функционирует на электронике. Устанавливая бортовой компьютер, важно знать силу тока. Отдельное направление – научные институты. Работая с радиоэлектроникой, важно подключать электрооборудование. Блоки питания подлежат тестированию, и чтобы проверить регулятор, важно использовать амперметр.

Амперметр – типы

В зависимости от конструкции различают следующие амперметры:

  • электродинамические;
  • ферродинамические;
  • электромагнитные;
  • электрические.

Классификация по способу вывода информации:

Если оценивать рынок, предлагается большое количество электродинамических амперметров. Измерители изготавливаются с катушками, имеется ряд особенностей:

  • широкий диапазон работы;
  • подходит для цепи переменного тока;
  • неподвижная катушка;
  • точный контрольный прибор.

Устройства востребованы в лабораториях, частных предприятиях. Они функционируют при частоте максимум до 200 Гц. К слабым сторонам стоит отнести повышенную чувствительность к перегрузкам. Если взглянуть на схему электродинамического амперметра, учитывается использование проводных конденсаторов.

Преобладают рабочие резисторы повышенной проводимости. Если есть потребность в приобретении, стоит обратить внимание на измеряемые величины. Также в расчет берется показатель сопротивления. При подключении амперметра в цепи определяется воздействие силы тока от 1 ампера. Эксперты полагают, что электродинамические приборы обеспечивают наиболее высокую точность.

Класс оборудования должен указываться производителем. Также встречаются модели с экранированным, статическим построением компонентов. Если взглянуть на панель, может встречаться различное разделение по амперам.

Важно! Ферродинамический прибор поставляется с подвижными и неподвижными катушками.

  • частотная погрешность;
  • четкая позиция сердечника;
  • широкий температурный диапазон;
  • проблема с намагничиванием;
  • подходит для щитовых установок.

Электрики выбирают их за счет высокого класса надежности. Амперметры данного типа являются компактными. Они способны использоваться на плоской поверхности или монтироваться на рейку. Конфигурация предоставляется с поворотными механизмами либо рядом подшипников. За основу используется пластик, есть варианты с металлической защитой.

Сердечники поставляются с дополнительной обмоткой, крепление осуществляется на винтах. Серийные щитовые приборы производятся с замкнутыми магнитопроводами. Сердечник у таких конструкций выполнен в виде сплошного цилиндра, на котором надето кольцо. Подвижная рамка служит в качестве измерительной обмотки.

Сердечник зафиксирован в горизонтальном положении. Также у амперметров используется подшипник качения, который крепится рядом с фланцем. Электромагнитный тип имеет ряд преимуществ:

  • компактность;
  • высокая точность;
  • подвижный сердечник;
  • учет изменения магнитного поля;
  • простота устройств.

Интересно! Амперметры поставляются с ферримагнитными сердечниками, которые установлены по центру.

Принципы работы

Принцип работы зависит от типа модификации, а для этого стоит рассмотреть устройство амперметра постоянного тока.


Работа прибора

Основные элементы механической модели:

  • рамка;
  • наконечники;
  • центральная катушка;
  • подключенный сердечник;
  • магнит;
  • пружина.

Если рассматривать магнитоэлектрические модели, они включают следующие элементы:

  • проводник;
  • подпятник;
  • винт;
  • грузики.

Вам это будет интересно Проверка микросхемы на исправность

Принцип работы механических модификаций построен на полярности подключения к цепи. На стрелку оказывается воздействие магнитного поля. Направление грузика зависит от амплитуды импульсов. При возрастании электричества стрелка отклоняется в левую сторону.

Схемы подключения

Независимо от конструкции подсоединение прибора в сеть производится исключительно последовательно, что показывает схема подключения амперметра изображенная ниже. Подключение параллельно равносильно короткому замыканию, так как внутреннее сопротивление прибора очень мало. Правильность подключения прибора обеспечивает его сохранность и отсутствие повреждений в электросхеме.

Перед тем как подключить амперметр важно учесть:

  • постоянный или переменный ток в сети;
  • соблюдается ли полярность прибора;
  • стрелка амперметра должна находиться за серединой шкалы;
  • предел измерения больше максимально возможного скачка тока в электросхеме;
  • окружающая среда соответствует рекомендуемым параметрам;
  • измерительное место находится без воздействия вибрации.

Для измерения больших токов используются шунты. Амперметр подключается к выводам резистора параллельно. Результаты измерений подлежат дальнейшей обработке для вычисления силы тока протекающей в цепи.

Для гальванического разделения силовой и контрольной цепи используют измерительные трансформаторы тока. Амперметр подключается к специальным выводам. Используется такая схема для измерения токов, превышающих предел измерений прибора.

Производить измерения на цифровом амперметре гораздо проще. на него не воздействуют вибрация, правильное положение и магнитные поля. Не столь критично отреагирует прибор и на неправильно выбранную полярность. Превышать предел измерений не рекомендуется, так как можно повредить устройство. Большинство высокотоковых выходов мультиметров не имеют защиты плавким предохранителем.

Шкала и схема амперметра переменного тока

На схеме видны элементы, отвечающие за уровень напряжения. Распространенными считаются варианты с последовательным подключением резисторов. Максимальное падение напряжения происходит на обмотке.


Схема элемента

Интересно! Диоды используются кремниевого типа, они отвечают за стабильность показаний.

Также на схеме показана дополнительная обмотка изоляции. За катушкой трансформатора идут конденсаторы. Кремниевый диод служит для защиты показаний. В сложных схемах амперметр используется с выпрямителями.

Выше описано понятие прибора переменного тока. Рассказана сфера применения, особенности устройств. Показан принцип работы и преимущества конкретных приборов.

Разновидности амперметров

Принято делить их на 3 главных типа конструкций:

  • стрелочный электромеханический;
  • стрелочный электронный;
  • полностью цифровой с современными стандартами индикации измерений.

Стрелочные приборы распространены больше остальных, потому что они отличаются большой надежностью и простотой. Для измерения силы переменного тока могут применять индукционные, детекторные и прочие амперметры, кроме магнитоэлектрических устройств (рассчитанных на постоянный ток). Иногда встречается оснащение аппаратов со стрелочной головкой специальными электронными контурами, которые усиливают передающийся сигнал.

Также электроника позволяет исключать перегрузки, отсеивать посторонние шумы и наводки. За последние годы доля цифровых амперметров заметно выросла, но они все еще остаются «на вторых ролях».

Сама цифровая индикация может быть выполнена на базе как жидких кристаллов, так и светодиодов. Если говорить о стрелочных приборах, то разница между ними касается того, как именно создается вращение стрелки. В электромагнитных аппаратах оно возникает в результате механического действия тока в промежутке между катушкой и движущимся сердечником из ферромагнитного материала. К сердечнику и крепится стрелка. Задание угла поворота происходит, когда становятся равными вращающий момент и сопротивление рабочей пружины.

Отдельного внимания заслуживают щитовые амперметры. По принципу работы они почти не отличаются от других типов. Вместо отдельной «коробочки» используется целый «щит», обеспечивающий стабильность положения прибора. Именно такие устройства востребованы:

  • в производственных цехах;
  • в лабораториях промышленных предприятий;
  • в учебных заведениях;
  • на генерирующих и распределяющих ток объектах;
  • в бортовой аппаратуре транспортных средств;
  • в автоматизированных комплексах;
  • в трансформаторных подстанциях.

Бесконтактное измерение тока

Для осуществления измерения силы тока без разрыва схемы существует специальный вид электрических амперметров под названием токовые клещи. Принцип действия основан на измерении магнитного поля, образующегося вокруг проводника с током. Данный эффект проявляется на переменном напряжении.

Показания амперметра имеют меньшую точность по сравнению с приборами, подключаемыми последовательно. При лабораторных измерения данный способ не используется, но в бытовых целях такой вид измерений достаточно удобен. Безопасность и простота работы с токовыми клещами намного выше, чем при использовании аналоговых приборов.

Источник