Меню

Определить ток холостого хода двигателя постоянного тока

Характеристика холостого хода и нагрузочная характеристика генератора постоянного тока с независимым возбуждением

Генератор

Характеристика холостого хода генератора

Приводим генератор постоянного тока с независимым возбуждением во вращение со скоростью ω при отсутствии напряжения на обмотке возбуждения, при этом на зажимах якоря появится напряжение, которое называется напряжением остаточного магнетизма.

Схема генератора постоянного тока с независимым возбуждением

Схема генератора постоянного тока с независимым возбуждением.

Подаем напряжение на обмотку возбуждения и увеличиваем с помощью Rв ток в обмотке возбуждения. Ток в обмотке возбуждения нужен до тех пор, пока генератор не попадет в область насыщения. Теперь плавно уменьшаем ток в обмотке возбуждения до нуля. При токе возбуждения равным нулю меняем полярность на зажимах генератора и начинаем увеличивать ток в обмотке возбуждения до области насыщения, затем уменьшаем этот ток до нуля, меняем полярность на обмотке возбуждения и увеличиваем то к в обмотке возбуждения до насыщения. Получаем полную характеристику холостого хода.

Характеристика холостого хода генератора постоянного тока с независимым возбуждением

Характеристика холостого хода генератора постоянного тока с независимым возбуждением.

Полная характеристика холостого хода генератора представляет собой петлю гистерезиса и связана с сортом стали, из которой изготовлен генератор. Площадь петли гистерезиса равна потерям на перемагничивание стали.

Характеристика холостого хода состоит из 2-х ветвей: верхняя называется нисходящая, нижняя – восходящая.

Чем уже петля гистерезиса, тем меньше потери, кроме того при узкой петле будут и меньше расхождения напряжения на восходящей и нисходящей ветвях характеристики холостого хода.

Для расчетов и исследования используют усредненную характеристику холостого хода, которая проходит посреди петли гистерезиса через нуль.

Нагрузочная характеристика генератора

Схема генератора постоянного тока с независимым возбуждением для получения нагрузочной, внешней и регулировочной характеристик

Схема генератора постоянного тока с независимым возбуждением для получения нагрузочной, внешней и регулировочной характеристик.

Приводим генератор во вращение со скоростью ω и при разомкнутом ключе K. Начинаем увеличивать ток в обмотке возбуждения, пока напряжение на выходе генератора не достигнет номинального значения. Напряжение возрастает по характеристике холостого хода. При значении тока iв равному номинальному замыкаем ключ K и включаем сопротивление нагрузки Rн. По обмотке якоря начинает протекать ток. Как только по обмотке якоря начинает протекать ток, согласно уравнению напряжения генератора:

Если изменять ток в обмотке возбуждения, мы получим характеристику при токе I1=const.

В режиме холостого хода напряжение на зажимах генератора, которое называется напряжением холостого хода, равно ЭДС генератора.

Как только к обмотке якоря будет подключено сопротивление нагрузки, напряжение начнет снижаться по двум причинам:
1. Увеличение падения напряжения на активных сопротивлениях якорной цепи.
2. Снижение магнитного потока Фδ, а следовательно и ЭДС якоря Eа в результате действия размагничивающей реакции якоря.

Если увеличивать ток в якоре, характеристика пойдет еще ниже.

Таким образом, нагрузочные характеристики представляют собой семейство характеристик для различных значений токов нагрузки (от 0 до Iном).

Влияние двух факторов учитывается с помощью, так называемого, характеристического треугольника (реактивного треугольника) – это треугольник, катеты которого пропорциональны току якоря, учитывают снижение напряжения в генераторе, работающем под нагрузкой. Катет AB учитывает влияние реакции якоря, а катет BC – падение напряжение на активных сопротивлениях якорной цепи.

Совместное влияние этих двух факторов учитывается гипотенузой AC.

Нагрузочная характеристика генератора постоянного тока с независимым возбуждением

Нагрузочная характеристика генератора постоянного тока с независимым возбуждением.

Источник



Холостой ход электродвигателя

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Электродвигатель переходит в режим холостого хода, когда с его вала снимают рабочую нагрузку. В этом случае можно определить такие важные параметры функционирования устройства, как намагничивающий ток, мощность и коэффициент потерь в элементах конструкции привода. Но главное – в режиме холостого хода можно определить исправность устройства.

Так, электродвигатель на холостом ходу греться не должен. Но в некоторых случаях температура привода повышается – и это сигнализирует о неполадках, которые впоследствии могут проявить себя.

Параметры холостого хода электродвигателя

Как было сказано выше, холостой ход – это режим работы асинхронного электродвигателя, при котором на валу нет нагрузки. В этом случае устройство с точки зрения электротехники схоже с трансформатором. Но главное – оно потребляет меньше электроэнергии, что особенно важно для контроля правильности работы мотора.

В частности, ток холостого хода асинхронного электродвигателя в зависимости от мощности и частоты вращения составляет в среднем 20-90% от номинального. Существует таблица, в которой указаны данные значения.

Так, например, ток холостого хода электродвигателя на 5 кВт при частоте вращения в 1000 оборотов в минуту составляет 70% от номинального (см. рис. 2). При частоте вращения 3000 оборотов в минуту – всего 45% от номинального (см. рис. 3). Это важно учесть, так как если фактическая сила тока значительно расходится с расчётной, то это сигнализирует о неполадках.

Стоит отметить, что параметры работы двигателя обычно указаны в прилагаемой к нему документации или могут быть получены посредством расчётов.

Что делать, если греется электродвигатель на холостом ходу
Электродвигатель на холостом ходу греться не должен. Допускается лишь незначительное увеличение температуры, обусловленное естественными причинами – появление трения в подшипниках на валу ротора и сопротивление в обмотке. А вот заметный нагрев сигнализирует в первую очередь о неполадках в устройстве.

Чаще всего нагревается асинхронный электродвигатель на холостом ходу из-за межвиткового замыкания в обмотках. Это требует срочного ремонта. Ведь при повышении нагрузок межвитковое замыкание может привести к перегреву и выгоранию обмотки – и, как следствие, повреждению как самого ЭД, так и конструкции, в которую он установлен.

Ещё одна возможная причина нагрева ЭД в этом режиме – эксплуатация в нештатных условиях. Например, превышение напряжения. В этом случае необходимо срочно отключить питание двигателя, так как из-за перегрева может возникнуть межвитковое замыкание в обмотках или замыкание обмотки на корпус двигателя.

Реже нагрев ЭД наблюдается из-за затруднённого движения ротора. Стоит убедиться, что подшипники работают нормально, а между обмотками ротора и статора не попали загрязнения.

Источник

Машины постоянного тока

Определить ток якоря и напряжение генератора с независимым возбуждением для токов возбуждения I в , равных 0,4 А и 0,2 А. Сопротивление цепи якоря r я =0,6 Ом , нагрузки r н =9,4 Ом . Характеристика холостого хода генератора изображена на рис. 9.12. Указать не правильный ответ.

Для I в = 0,4 А : 1) I я =14 А. 2) U я = 131,6 В.

Для I в = 0,2 А : 3) I я = 12А. 4) U я = 102,8 В.

Электродвижущую силу генератора определяем по характеристике холостого хода рис.9.12:

а) при I В =0,4 А ЭДС Еa= 140 В;

б) при I В =0,2 А ЭДС Е б = 120 В.

Ток якоря определяем по закону Ома:

a) I я,а =E а /(r н +r я )=140/(9,44+0,6)=14 A;

б) I я,б =E б /(r н +r я )=120/(9,4+0,6) =12 А.

Напряжение генератора меньше ЭДС на падение напряжения в обмотке якоря:

а) U а =Е а – I я,а r я =140 — 14∙0,6= 131,6 В ;

б) U а =Е а – I я,а r я =120 — 12∙0,6 = 112,8 В. Ответ: 4.

Обмотка возбуждения двигателя постоянного тока с параллельным возбуждением по ошибке оказалась включенной неправильно (рис. 9.25). Как будет вести себя двигатель после включения его в сеть при r п = 9 r я , I п = 2,5 I ном , если момент нагрузки:

а) М с =0 ; б) М с =0,5 М ном . Указать правильный ответ.

  1. В обоих случаях двигатель не будет вращаться.
  2. В обоих случаях двигатель разгонится до недопустимо большой частоты вращения.
  3. а) двигатель разгонится до n≈n 0 ; б) двигатель не будет вращатся.
  4. а) двигатель пойдет в разнос; б) двигатель не будет вращатся.

Пусковой ток якоря двигателя I П =U а /(r П +r я ) . Напряжение на обмотке якоря двигателя меньше напряжения сети на падение напряжения в пусковом реостате:

U Дв =U ном – I П r П =U ном – U нмо r П /(r я +r П )=U ном – U ном 9r я /(r я +9r я )=U ном – 9U ном /10=U ном /10

Номинальный ток возбуждения двигателя имеет место при номинальном напряжении I В,ном =U ном /r В . В данном случае напряжение на обмотке возбуждения равно напряжению на обмотке якоря, которое меньше номинального в 10 раз. Если допустить, что характеристика зависимости магнитного потока двигателя от тока возбуждения — почти прямая линия, то магнитный поток двигателя будет меньше номинального в 10 раз.

Момент, развиваемый двигателем при пуске, равен

М П =k M ФI П = k M Ф ном 2,5I ном /10= 0,25 k M Ф ном I ном =0,25 М ном .

При пуске вхолостую двигатель пойдет в ход и разгонится до частоты вращения, примерно равной частоте вращения идеального холостого хода, так как по мере разбега двигателя вследствие уменьшения тока в пусковом реостате напряжение на обмотке якоря и, следовательно, на обмотке возбуждения будет увеличиваться и к концу разбега будет близко к номинальному.

При пуске под нагрузкой с моментом Мс=0,5 М ном двигатель вращаться не будет, так как момент, развиваемый двигателем, меньше момента сил сопротивления на валу: Мс>М Дв ,

т. е. 0,5 М ном >0,25 М ном . Ответ: 3.

Определить сопротивление обмотки якоря двигателя r я и пускового реостата r п , который надо включить в цепь якоря, чтобы ток якоря при пуске I я,п =2,5 I ном . Данные двигателя: P ном =39 квт; U ном =220 В; I ном =200 А. Указать правильный ответ.

1) r я =1,0 Ом. 2) r я =0,125 Ом. 3) r п =0,3775 Ом. 4) r п =0,44 Ом.

Потери в обмотке якоря при номинальной нагрузке равны

∆P ном =U ном I ном — P ном = 220∙200 — 39∙10 3 = 5000 Вт . Сопротивление обмотки якоря равно r я =∆P ном / 2I ном 2 =5000/2∙200 2 = 0,0625 Ом.

Сопротивление пускового реостата определяем по закону Ома

r П =U ном /I ном – r я =200/2,5∙200 — 0,0625 = 0,3775 Ом. Ответ: 3.

В каком соотношении находятся ЭДС обмотки якоря двигателя при его работе в точках /, 2, 3, 4 характеристик, изображенных на рис. 9.43? Характеристика, на которой расположена точка 2, является естественной. Указать правильный ответ.

  1. E 1 =E 2 =E 3 =E 4 . 2) E 1 =E 2 >E 3 >E 4 . 3) E 1 >E 2 >E 3 >E 4 . 4) E 1 2 3 4 .

Электродвижущая сила, возникающая в обмотке якоря двигателя,

E=k e Фn=U – I я (r я +r Д ).

Из взаимного расположения характеристик видно, что характеристика, на которой расположена точка 1, соответствует ослабленному магнитному потоку двигателя; характеристика, на которой расположена точка 3,— реостатная (в цепи якоря включен добавочный резистор); характеристика, на которой расположена точка 4, имеем место при пониженном напряжении на обмотке якоря двигателя; например в системе Г—Д:

Е 1 =U ном – I я r я Е 2 =U ном – I я r я =k e Фn 2 E 3 =U ном – I ном( r я + r Д )= k e Фn 3

Е 4 =U′ – I я r я =n′ 0 U ном /n 0 – Iяrя=k e Фn 1

Так , как ток якоря I я1 двигателя для всех точек одинаков, a n 2 >n 3 >n 4 , то E 1 =E 2 >E 3 >E 4 .

Что произойдет при обрыве обмотки возбуждения двигателя постоянного тока с пара.ллельным возбуждением, если он работает: а) с номинальным моментом на валу

М С = М ном , б) вхолостую? Указать неправильный ответ.

а) При номинальном моменте на валу:

1) сгорят предохранители, и двигатель остановится;

2) если предохранители не сгорят, двигатель остановится.

б) При работе вхолостую:

3) сгорят предохранители;

4) если предохранители не сгорят, двигатель остановится;

5) если предохранители не сгорят, частота вращения вигателя начнет увеличиваться и двигатель может пойти вразнос.

При обрыве цепи обмотки возбуждения двигателя постоянного тока с параллельным возбуждением исчезнет ток возбуждения и, следовательно, магнитный поток, создаваемый им. Останется лишь магнитный поток остаточного намагничивания, который составляет не более 3—5 % номинального потока .

Из выражения Е=U ном – I я r я =k e Фn следует, что в той же степени уменьшится ЭДС обмотки якоря до (3—5) % U ном .

Если допустить, что частота вращения двигателя вследствие инерции якоря в течение времени после обрыва обмотки и исчезновения тока возбуждения практически не изменится, то справедливо следующее.

До обрыва ЭДС двигателя составляла:

а) при работе двигателя с номинальным моментом иа валу

Е ном =U ном – I я,ном r я =(0,85 — 0,95) U ном ;

б) при работе вхолостую Е x1 =U ном .

В результате значительного уменьшения ЭДС двигателя, как следу-из выражения I я =(U ном – Е)r я , возрастает ток якоря двигателя. Для случая а) имеем

I я,ном =(U ном — (0,85 — 0,95) U ном )/ r я ;

I я,а =(U ном — (0,03 — 0,05) U ном )/ r я ,

I я,а = I я,ном (U ном — (0,03 — 0,05) U ном )/(U ном — (0,85 — 0,95) U ном )≈(7—18) I я,ном .

Для случая б) ток увеличится в несколько большей степени, так как

Предохранители обычно рассчитываются на ток не более (3—4) I ном , .поэтому в обоих случаях должны сгореть предохранители и двигатель остановится.

Момент, развиваемый двигателем при обрыве в цепи обмотки возбуждения, равен

М=k М ФI я =k М (0,03 — 0,05)Ф ном (7—18) I я,ном =(0,21— 0,9)М ном

Поэтому, если предохранители не сгорят в первом случае, двигатель остановится, так как момент, развиваемый двигателем, меньше момента сил сопротивления навалу, т.е. Мд (0,21— 0,9)М ном ном , и если двигатель не будет отключен, он выйдет из строя.

Во втором случае при отсутствии момента на валу частота вращения двигателя начнет увеличиваться и может достичь недопустимого значения – двигатель пойдет вразнос:

n 0 =U ном /k е Ф ном ; n′ 0 =U ном /k е (0,03 — 0,05)Ф ном ;

n′ 0 = n 0 /(0,03 — 0,05) ≈ (30— 20) n 0 . Ответ: 4.

Определить сопротивление, включенное в цепь якоря двигателя постоянного тока с последовательным возбуждением, при котором двигатель имеет характеристику а (рис. 9.60). Сопротивление цепи r я + r в =0,3 Ом . Характеристики естественная (б) и искусственная с добавочным сопротивлением в цепи якоря 1,5 Ом (в) изображены на рис. 9.60. Указать правильный ответ.

1) 1 Ом. 2) 0,75 Ом. 3) 0,6 Ом. 4) не достаточно условий.

Уравнение естественной характеристики имеет вид:

n е =[U ном – I я( r я + r В )]/ k l Ф= n 0е -∆ n е

Уравнение искусственной характеристики

n И =[U ном – I я( r я + r В +r Д )]/ k е Ф= n 0И — ∆ n И

Если двигатель работает на естественной или искусственной характеристике с одинаковым током якоря, магнитные потоки двигателя будут иметь одинаковое значение, так как Ф В ≡ I В = I я .

Тогда ∆ n е / ∆ n И = ( r я + r В )/ ( r я + r В +r Д )

Из отношения ∆n е к ∆n И на искусственной характеристике а, например для тока

I я = 40 А , определяем ∆n е из ∆n е /(∆n е +400)=0,3/(0,3+ +1,5) , откуда ∆n е = 80 об/мин.

Из отношения ∆n е к ∆n И на искусственной характеристике а, например для тока

I я =40 А , определяем искомое сопротивление ∆n е /( ∆n е +200)=80/(80+200)=0,3(0,3+r Д ) , откуда r Д =0,75 Ом. Ответ: 2.

Определить частоту вращения и ЭДС якоря двигателя постоянного тока со смешанным возбуждением при токах якоря для двух случаев: а) I я =0,5I я , ном ; б) I я =I я , ном , если в цепь якоря включено добавочное сопротивление r Д =2 Ом. Данные двигателя:

Р ном = 9 кВт; n ном =900 об/мин; U ном =220 B; I ном =50 А; r я +r в =0,338+0,062=0,4 Ом. Естественная скоростная характеристика изображена на рис. 9.67. Указать неправильный ответ. 1) n а =860 об/мин. 2) Е а =160 В. 3) n б =420 об/мин. 4) Е б =100 В.

Решение 9-67. Электродвижущая сила якоря равна:

а) при I я =0,5I ном

Е а =U ном – I я( r я + r В +r Д )]= 220 — 25 (0,4 + 2) = 160 В ;

б) при I я =I ном ,

Е б = 220 — 50 (0,4 +2)= 100 В .

Уравнение электромеханической, естественной характеристики имеет вид

n е =[U ном – I я( r я + r В )]/ k e Ф

n И =[U ном – I я( r я + r В +r Д )]/ k e Ф

Если двигатель работает на естественной или искусственной характеристике с одинаковым током якоря, магнитные потоки двигателя будут иметь одинаковое значение, так как I посл =I; Ф≡ (Iw) п,о + (Iw) посл =(Iw) п,о +сI я , где (Iw) п,о —МДС параллельной обмотки возбуждения, которая от нагрузки не зависит.

Тогда из отношения уравнений для естественной и искусственной характеристик можно получить

n И = n е [U ном – I я( r я + r В +r Д )] / [U ном – I я( r я + r В )].

При I я = 0,5 I ном частота вращения на естественной характеристике (см. рис. 9.67) равна

n е = 1,25n ном = 1,25∙900 = 1125 об/мин ;

n а =n И = n е [U ном – I я( r я + r В +r Д )] / [U ном – I я( r я + r В )]= n е Е а / [U ном – I я( r я — r В )]=

=1125∙ 160/(220 – 25 ∙0,4)=860 об/мин.

При токе I я = I ном имеем n е = n ном = 900 об/мин;

n б =n И = n е Е б / [U ном – I ном( r я + r В )]=900 ∙100/(220 – 50 ∙0,5)=450 об/мин.

Генератор постоянного тока с независимым возбуждением приводится в движение асинхронным двигателем (рис. 9.73, а), механическая характеристика которого изображена на рис. 9.73, б. При нагрузке генератора 20 А напряжение на его выводах 220 В , а момент на валу асинхронного двигателя оказался равным номинальному значению. Определить напряжение при холостом ходе генератора ( I я = 0 ). Потерями мощности в генераторе пренебречь. Сопротивление якоря генератора r я =0,5 Ом. Номинальная частота вращения асинхронного двигателя n ном =920 об/мин . Указать правильный, ответ.

1) 230 В. 2) 240 В. 3) 220 В. 4) 250 В.

Электродвижущая сила генератора при нагрузке 20 А равна

Е=U – I я r я =220 + 20∙0,5 = 230 В .

При холостом ходе генератора нагрузки на валу двигателя не будет, его частота вращения и, следовательно, частота вращения генератора будут равны примерно частоте вращения магнитного потока асинхронного двигателя n=n 0 =1000 об/мин; определим ЭДС генератора:

при нагрузке E= k e Фn ном = ke Ф ∙920 = 230 В;

при холостом ходе E 0 = k e Фn 0 = ke Ф∙1000 ;

из отношения Е 0 к Е следует:

Е 0 = E n 0 / n 0 = 230∙1000/920 = 250 В.

Валы двух одинаковых двигателей постоянного тока Д 1 и Д 2 с независимым возбуждением с помощью кулачковых муфт К 1 и К 2 соединены с валом производственного механизма ПМ (рис. 9.74). Якоря двигателей соединены последовательно и включены в сеть с напряжением, в 2 раза большим номинального напряжения двигателей. Двигатели нагружены номинальным моментом и вращаются с номинальной частотой вращения. Как изменятся частоты вращения двигателей, если у муфты К 2 срежется шпонка и вал двигателя Д 2 потеряет связь с механизмом? Указать правильный ответ.

1) Частота вращения обоих двигателей уменьшится.

2) Частота вращения обоих двигателей увеличится.

3) Оба двигателя остановятся.

  1. Двигатель Д 1 остановится, частота вращения двигателя увеличится почти в 2 раза.

В условиях нормальной работы токи якорей равны:

I я =(2U ном – 2E)/2r я =(U ном – E)/r я =I ном .

Моменты, развиваемые двигателями, также были равны:

М Д1 =М Д2 =k М ФI ном .

Момент сопротивления распределялся поровну на каждый двигатель:

М С,Д1 =М С,Д2 = М=М С /2. Как только вал двигателя Д 2 потеряет механическую связь с механизмом, момент сил сопротивления на его валу исчезнет и его частота

вращения, как это вытекает из уравнения движения

Одновременно будет увеличиваться его ЭДС

Е Д2 = k е Фn Д2

и уменьшаться ток в цепи якорей двигателей. В результате момент, развиваемый двигателем Д 1 , будет уменьшаться и окажется меньше момента, создаваемого механизмом на его валу; частота вращения двигателя начнет уменьшаться, и двигатель постепенно остановится. Поскольку двигатель Д 2 оказался без нагрузки, он разгонится до частоты вращения, при которой ток в цепи якорей будет близок к нулю:

I я =(2U ном – E Д2 )/2r я =0,

Е Д2 == 2U ном = 2k e Фn 0 = k e Ф Д2 .

Таким образом, двигатель Д 2 будет вращаться с частотой, примерно в 2 раза большей частоты вращения идеального холостого хода. Ответ: 4.

Причинами использования в качестве двигателей электропровода двигателей постоянного тока с последовательным возбуждением, а не с параллельным являются: а) возможность длительной их работы с номинальным моментом при длительном снижении напряжения в сети постоянного тока, б) независимость пускового момента от напряжения сети.

Два двигателя постоянного тока, один с последовательным, другой с параллельным возбуждением, имеют следующие паспортные данные:

Р ном = 60 кВт, U ном = 440 В, I ном =160 А, n ном = 960 об/мин. Сопротивление последовательной обмотки возбуждения . r в = 0,5r я . Зависимость магнитного потока от МДС обмотки возбуждения двигателей изображена на рис. 9.91.

Определить ток в цепи якоря, частоту вращения двигателей при моменте сил

сопротивления на валу М с =М ном , значение которого не зависит от частоты вращения, при их работе от сети с напряжением U =0,6U ном , а также значения максимально возможных моментов при этом напряжении, если значения пусковых токов I п =2,5I ном . Указать неправильный ответ. Двигатель с параллельным возбуждением: 1) I я =230 А. 2 ) n=562 об/мин. 3) М п =0,7 М п(Uном) .

Двигатель с последовательным возбуждением: 4) I я =160 А. 5) n=547 об/мин.

Решение 9-91. Сопротивление обмотки якоря

r я =∆P ном /2I ном 2 =(U ном I ном — P ном )/ 2I ном 2

Двигатель с последовательным возбуждением. Сопротивление обмотки последовательного возбуждения

r В = 0,5 r я =0,5∙0,137 =0,0685 Ом

при номинальном напряжении

М C =М ном =k М Ф ном I я,ном , I я,ном =(U ном – E ном )/(r я +r В )

при пониженном напряжении

М C =М′= k М Ф′I я , I я ′=(0,6U ном – E)/(r я +r В ).

Поскольку момент сил сопротивления на валу остался неизменным, , очевидно, что

Ф′=Ф ном , I я ′= I я,ном ,

Значение частоты вращения при U= 0,6 U ном можно определить из соотношения ЭДС

Е ном =U ном – I я,ном (r я + r В ) = k e Фn 1 = 440 — 160 (0,137+0,0685) = 407 В;

Е′ =0,6U ном – I я,ном (r я + r В ) = k e Фn′= 0,6∙440 — 160 (0,137 4-0,0685) = 231 В ,

n′= n 0 E′/E ном =960∙231/407=547 об/мин .

Пусковой, момент при U= U ном

М п,ном =k М Ф ном I′ я,п

М′ п =k е Ф ном I я,п

Двигатель с параллельным возбуждением. Ток возбуждения и МДС параллельной обмотки возбуждения при U= 0,6U ном составляют I B =0,6 I в,ном и (Iw)′ В =0,6 (Iw) В,ном ,

так как ток возбуждения пропорционален напряжению сети. Магнитный поток, соответствующий этой МДС, определяется из кривой Ф=(Iw) (см. рис. 9.91):

Ток якоря при U= 0,6U ном определяется из выражения

М С = М ном =k е Ф′ I′ я = k е Ф ном I я,ном ;

I′ я = I я,ном Ф ном /Ф′=160/0,7=230 А.

Значение частоты вращения определяется из соотношения ЭДС:

Е ном =U ном – I я,ном r я = k е Ф ном n ном = 440 – 160∙0,137 = 418 В;

Е′ =0,6U ном – I′ я r я = k е Ф′ n′=0,6∙440 – 230∙ 0,137 ==232,5 В ;

n′= n ном E′ Ф ном /E ном Ф′=960 ∙232,5/(418 ∙0,7)=762 об/мин

Источник

Наладка электрических машин электроприводов — Снятие характеристик при холостом ходе машин постоянного тока

Содержание материала

  • Наладка электрических машин электроприводов
  • Введение
  • Общие указания по наладке
  • Основные достоинства и недостатки систем управления электрических машин
  • Подбор технической документации, подготовка аппаратуры и рабочего места
  • Внешний осмотр, проверка механической части и сведения о монтаже
  • Измерение сопротивления и контроль изоляции обмоток
  • Проверка изоляции подшипников
  • Измерение сопротивлений обмоток при постоянном токе
  • Испытание электрической прочности изоляции обмоток повышенным напряжением
  • Пуск двигателя
  • Проверка механической части и правильности установки щеток машин постоянного тока
  • Измерение сопротивлений обмоток машин постоянного тока
  • Проверка схемы соединений обмоток машин постоянного тока
  • Подъем напряжения генератора постоянного тока
  • Пуск двигателя постоянного тока
  • Снятие характеристик при холостом ходе машин постоянного тока
  • Снятие характеристик хх и кз генератора
  • Испытание генераторов под нагрузкой и графическое построение характеристик
  • Испытание и снятие характеристик двигателей постоянного тока при различном виде нагрузок
  • Наладочные работы при неподвижном состоянии машины переменного тока
  • Пуск и снятие характеристик асинхронных двигателей
  • Снятие характеристик синхронных генераторов
  • Пуск и снятие характеристик синхронных двигателей
  • Область применения и перспективы развития управляющих и измеряющих машин
  • Электромашинные усилители
  • Тахогенераторы
  • Сельсины
  • Исполнительные микродвигатели
  • Осциллографирование токов и напряжений
  • Осциллографирование скорости и ускорений

После проведения пробных включений, установления исправности механической части машины и хорошей коммутации щеток снимаются характеристики машины.
Характеристиками машин принято называть [Л. 2] взаимную зависимость электрических и механических величин: напряжения на якоре, тока якоря, тока возбуждения, скорости вращения и момента на валу. Заводы- изготовители производят полные испытания и снятие всех характеристик при типовых испытаниях новых конструкций машин; всесторонне испытываются также крупные машины индивидуального изготовления; средние и особенно мелкие машины испытываются по сокращенной программе, и в прилагаемых к ним формулярах характеристики обычно отсутствуют [Л. 3, 5].
При пуске новых установок с машинами постоянного тока в практике наладки принято снимать следующие характеристики [Л. 9, 7].

  1. У всех двигателей в режиме холостого хода измеряется скорость при номинальном напряжении на якоре и номинальном токе возбуждения; у приводов с небольшой статической нагрузкой, как, например, рольгангов, тележек кранов и др., скорость вращения двигателя может измеряться при подсоединенных механизмах.
  2. У двигателей, имеющих регулировку скорости вращения, снимается регулировочная характеристика n=f(Iв)—зависимость скорости от тока возбуждения при неизменном напряжении на якоре.
  3. У двигателей приводов продолжительного режима работы (например, транспортеров, вентиляторов, станков) измеряется скорость вращения при различных эксплуатационных режимах.
  4. У генераторов систем Г—Д снимаются характеристики намагничивания (холостого хода) E=f(Iв) и короткого замыкания ек=f(Iя) при неизменной скорости, где Е, ек — э. д. с. якоря генератора; Iв, Iя — ток возбуждения и ток якоря генератора.
  5. У возбудителей снимаются характеристики холостого хода и внешняя U=f(In) (у возбудителей синхронных двигателей, сидящих на общем валу, снимается только внешняя характеристика).

При наладке сложных электроприводов часто возникает необходимость дополнительно к указанным испытаниям выполнить ряд специальных измерений величин махового момента, электромагнитной постоянной времени и снять характеристики привода в различных режимах работы. В приводах продолжительного режима работы требуется измерить момент нагрузки, для чего в свою очередь следует измерить потребляемую двигателем мощность и оценить потери энергии в двигателе.
Ниже описана рекомендуемая методика снятия характеристик и производства измерений при испытании вращающихся электрических машин.
Для оценки эксплуатационных возможностей электропривода и получения контрольных расчетных величин в первую очередь снимаются характеристики всех электрических машин при холостом ходе. Что касается характеристик машин под нагрузкой, то они снимаются только у отдельных исследуемых электроприводов в процессе опытной эксплуатации.

Снятие регулировочной характеристики двигателя n=f(IB).

При проектировании по типовой характеристике намагничивания машины Ф=f(FB) и заданному диапазону регулирования скорости nмин—nмакс рассчитывается невыключаемое сопротивление реостата в цепи возбуждения. Расчет ведется на основании простейших соотношений

Φ — магнитный поток на полюс;

Рис, 2-14. Схема включения двигателя при снятии регулировочной характеристики.
С, Κ1, К — коэффициенты пропорциональности. Коэффициент К, необходимый для расчета потока Ф (соответствующего заданным скоростям) находится по базовым величинам K=Фn.

По величине nmax рассчитывается Фмин, из характеристики намагничивания определяется Iв.мин. Аналогично по максимально допустимому току возбуждения In макс определяется Фмакс и рассчитывается n-мин.
Регулировочная характеристика дает возможность проверить результаты расчетов и отрегулировать величины установочных сопротивлений. При снятии характеристик двигатель испытывается во всем диапазоне регулирования скорости вращения; особое внимание уделяется проверке устойчивости работы в зоне минимального возбуждения.
Регулировочные характеристики снимаются при номинальном напряжении на якоре и отсутствии (или малой величине) статической нагрузки. На время испытания двигатель включается по нормальной рабочей схеме, но для расширения диапазона регулирования в цепи обмотки возбуждения может быть дополнительно установлен реостат Rд (рис. 2-14). Порядок снятия характеристики следующий.

Рис. 2-15. Регулировочная характеристика двигателя с параллельным (независимым) возбуждением.
п — номинальная скорость при полном (номинальном.) токе возбуждения IВ.Н; n-макс — максимальная скорость при минимальном допустимом токе возбуждения.

  1. Скорость двигателя путем постепенного введения реостата медленно увеличивается от основной, соответствующей полному возбуждению, до 110% верхнего нормированного предела. При значениях скорости, близких к максимальной, необходимо внимательно следить за коммутацией щеток. Если возникает искрение щеток или «качание» якоря, необходимо немедленно прекратить испытание, выяснить и устранить неисправность.

При снятии регулировочной характеристики в режиме холостого хода имеется возможность проверить, насколько устойчивой будет работа двигателя на высшей скорости под нагрузкой. Для этой цели приближение к верхнему пределу скорости следует повторить несколько раз, постепенно увеличивая быстроту введения реостата в цепи возбуждения. При резком увеличении скорости ток якоря двигателя достигает значительной величины, и если возрастающая реакция якоря не вызывает снижения основного магнитного потока, приводящего к дополнительному повышению скорости, то можно ожидать, что машина будет устойчиво работать также и под нагрузкой.
Установив надежность работы двигателя во всем диапазоне изменения скорости, можно приступить к снятию характеристик.

2. Ток возбуждения кратковременно повышается до значения, равного 1,2 номинального, и при этом значении снимается первая точка регулировочной характеристики; затем ступенями снижается возбуждение и снимаются семь-восемь точек в пределах до 110% максимальной рабочей скорости. Для реверсивных двигателей регулировочные характеристики снимаются при обоих направлениях вращения якоря. Одновременно с записью значений скорости и токов возбуждения следует регистрировать напряжение и ток якоря двигателя.

Рис. 2-16. Зависимость скорости двигателя от напряжения на якоре.
а — схема управления; б — характеристики изменения скорости двигателя при регулировании напряжения на якоре; n1. n2, . пм — промежуточные и максимальное значения скорости двигателя, соответствующие напряжениям на якоре (U1. U2, . . ., UM.

  1. По данным измерений строятся характеристики (рис. 2-15). Если напряжение питающей сети Uc отличалось от номинального напряжения двигателя Uu, производится пересчет данных измерений скорости п’.

С достаточной точностью можно принять, что скорость прямо пропорциональна напряжению на якоре, и поэтому ее значение п, приведенное к Uн, находится из простого соотношения

  1. Этим же соотношением пользуются в тех случаях, когда требуется получить регулировочную характеристику в расширенном диапазоне. Так как испытание при высокой скорости представляет опасность для двигателя или механизма, характеристика снимается при пониженном до 40— 30% напряжении якоря, а затем приводится к его номинальному значению расчетным путем.

В системах генератор — двигатель снимаются характеристики n=f(Uг), дающие зависимость скорости вращения двигателя от напряжения генератора. Каждая такая характеристика, соответствующая определенному неизменному току двигателя, представляет собой прямую линию (рис. 2-16).


Рис. 2-17. Схемы регулирования тока возбуждения генераторов.
а — применение потенциометра ПТ; 6 — то же, но последовательно включен реостат Rд; в — применение потенциометра для регулирования тока возбуждения возбудителя.
Выше описано снятие регулировочных характеристик двигателей с помощью реостатов, вводимых в цепь возбуждения. В настоящее время широкое применение находят приводы, у которых возбуждение машин определяется работой магнитных усилителей или управляемых выпрямителей; для возбуждения крупных двигателей служат отдельные возбудители. Регулировочные характеристики таких машин целесообразно снимать при полной рабочей схеме силовых цепей и цепей возбуждения. Для обеспечения безаварийности следует собрать испытательные схемы, позволяющие постепенно, вручную, изменять управляющий сигнал усилителей. Перед снятием характеристик при неподвижных машинах необходимо проверить надежность испытательных схем и плавность регулирования токов возбуждения.

Источник

Читайте также:  Электрический ток сила тока плотность тока закон ома для однородного участка цепи закон джоуля ленца