Меню

Опасность поражения людей электрическим током в лаборатории

Охрана труда

Электротравма возникает вследствие взаимодействия человека с электрической дугой, током или электромагнитным полем. Из всех типов травм, на электрические факторы приходится от 2 до 4% случаев. Однако среди происшествий с летальным исходом электротравматизм становится причиной 40% смертей. Больше половины травм током происходит в бытовых ситуация, часто с детьми.

Существенное влияние на вероятность получения электрической травмы оказывает обстановка и среда. К факторам, снижающим сопротивление тела, относятся сырость, жара, запыленность помещения и наличие пара или едких газов в атмосфере. Если при этом в здании токопроводящие полы из железа, бетона, кирпича или грунта, а оборудование не заземлено, то при контакте с электричеством его действие усугубляется и человек получает серьезный вред. Поэтому помещения обычно делятся по степени электрической опасности.

К зданиям, в которых возникает повышенная опасность электроповреждения относятся большинство вспомогательных и часть производственных построек, и подземные сооружения. Определить риски здания можно оценив влажность, химическую и органическую активность внутри. При влажности воздуха от 80% ущерб от электричества наносится максимальный, а разрушающие изоляцию среды повышают риск травмы.

Классификация опасности поражения электрическим током

В зависимости от напряжения электроустройства, опасность поражения током есть у оборудования с питанием выше 1 кВ. Они вызывают 1/3 всех травм, притом что доля таких установок относительно устройств с питанием до 1 кВ очень мала, а обслуживается оно только квалифицированным персоналом. Примером такой установки служит распределительный щиток электропоезда в тамбуре, опасность поражения электрическим током которого весьма высока при открытой дверце.

Серьезную опасность электротока можно классифицировать при таких условиях

  • напряжение свыше 12 В, при стальном покрытии или на грунте, и в сырых помещениях;
  • напряжение свыше 42 В, независимо от среды;
  • частота переменного тока в 50-500 Гц;
  • величина тока от 10 мА.

Расчетное сопротивление человеческого тела составляет 1000 Ом, что справедливо для влажной кожи и большинства внутренних органов. Основную опасность представляют цепи с током от 10 мА, поскольку самостоятельно освободиться из них человек не может. При малом ампераже и высоком сопротивлении, устройства до 1 кВ не убивают, если у человека нет дыхательных и сердечных заболеваний.

Можно выделить несколько причин, из которых состоит основная опасность поражения электрическим током и часто наступает летальный исход

  1. Неожиданность.
  2. Дистанционный удар.
  3. Воздействие на рефлексы.
  4. Неопределенность уровня повреждений.

Основная опасность кроется в отсутствии у человека рецепторов, позволяющих дистанционно определить электрическое напряжение предмета, а скорость реакции недостаточна для защиты. Электричеству же иногда не требуется прямого контакта, особенно при напряжении от 1 кВ, поскольку возможно воздействие через землю или дугой. Действие тока заключается не в ударе, а во влиянии на мышцы человека, органы дыхания и сердце. При этом степень травм, не приведших к летальному исходу, нельзя диагностировать.

Степени опасности поражения электрическим током

Действие тока на организм человека заключается в 3 поражающих факторах

  1. термическом;
  2. биологическом;
  3. электролитическом.

Термическое воздействие приводит к ожогам, биологический эффект возбуждает внутренние органы и нарушает их работу, а электролиз вызывает химические реакции.

Все электротравмы можно разделить по их исходу на локальные и общие. К местным повреждениям относят

  • ожоги;
  • электрические метки;
  • электрометаллизация кожи;
  • офтальмия;
  • механические травмы.

Ожоги выражаются в коагуляции белковых соединений, при повышении температуры в теле до 700˚С. Они бывают контактными от низковольтных травм, дуговыми до 1 кВ и смешанными при высоком напряжении. Электрические ожоги, в отличие от огненных, сложнее лечить, они крайне болезненные и часто повреждают внутренние органы.

Метки тока это круглые припухлости до 15 мм, не болят и имеют диагностическое значение. Металлизация кожи похожа на метки с тем только отличием, что кожа пропитывается металлическими соединениями при их испарении, а цвет зависит от материала. В редких случаях поток ультрафиолета дуги тока вызывает воспаление слизистой глаза, что называется электроофтальмией.

Удары тока могут повреждать кожу, нервы и сухожилия из-за резкого сокращения мышц. По степени травмы электроудары классифицируются так

  1. ударное мышечное сокращение, не вызвавшее потерю сознания;
  2. краткосрочная потеря сознания, с сохранением самостоятельного дыхания и работоспособности сердца;
  3. потеря сознания, с остановкой дыхания или сердца;
  4. удары, ставшие причиной клинической смерти.

К летальному исходу приводят серьезные ожоги, нарушение дыхания, остановка или фибрилляция мышцы сердца, и наступление клинической смерти. В последнем случае пострадавшему требуется реанимация за 5-7 минут, иначе наступает смерть мозга. При повреждении сердца в 95% случаев пострадавшего спасает массаж или дефибрилляция.

Знак опасность поражения электрическим током

Чтобы предупредить об участках, на которых существует риск получения электроудара, используется символ, зарегистрированный под кодом W-08. Фотолюминесцентный знак может выглядеть как пленочная наклейка или табличка на пластике, белого цвета. Для печати применяются особые краски, устойчивые к условиям среды и выгоранию.

Специальная табличка, соответствующая ГОСТ 12.4.026 России, рекомендуется к установке на опоры ЛЭП, дверцы силовых щитков, электрооборудование и устройства от 1 кВ, электрические шкафы и панели. Также символ устанавливается на ограждения, защищающие такие объекты от случайного проникновения.

Класс опасности поражения электрическим током

Чтобы провести анализ опасности электрооборудования необходимо знать силу тока. По классу опасности устанавливаются пороговые значения. Приведем пороговые значения для переменного тока, поскольку для постоянного он в несколько раз выше и его применение менее распространено. Значение в 0,6-1,5 мА – это ощутимый ток, который человек чувствует. От 10 до 15 мА – не отпускающий ток, сковывающий человека. От 100 мА – это фибрилляционный ток, почти всегда приводящий к остановке сердца.

Для длительного пребывания людей допускается напряжение до 0,3 мА. Однако следует учитывать, что сопротивление человека со временем снижается.

Источник



Удар током и электротравма: причины возникновения, симптомы и признаки, меры первой помощи и комплексное лечение

Удар током и электротравма: причины возникновения, симптомы и признаки, меры первой помощи и комплексное лечение
Удар током относится к наиболее опасным бытовым и производственным несчастным случаям и всегда сопряжен с большой смертностью. Действие электрического тока на организм человека приводит к сильному нагреву тканей и развитию ожога, а так же к нарушению работы внутренних органов. Первая помощь при ударе током заключается в прекращении действия электрического тока на организм пострадавшего, проведение закрытого массажа сердца и искусственного дыхания, если от удара током у пострадавшего остановилось сердце, обработка и наложение повязки на обожженные места.

Электротравма обычно возникает в результате воздействия на ткани организма человека бытового электрического тока большой силы или разряда атмосферного электричества (молнии). Источниками поражения электрическим током являются: неисправное электрооборудование на предприятиях и бытовые электроприборы, оборвавшиеся провода высоковольтных линий, несоблюдение правил техники безопасности при работе с электрооборудованием. Степень воздействия электрического тока на организм человека определяется напряжением и силой тока, способом прохождения тока по телу, общим состоянием здоровья пострадавшего и тем насколько своевременно была оказана первая помощь.

Особенности удара током и электротравмы

Электрический ток при прохождении через тело человека вызывает нагрев тканей, и может привести к электрическим ожогам кожи и повреждениям подлежащих тканей и органов.
Электрические ожоги возникают в местах входа и выхода электрического тока и носят название «меток тока».
Электрические ожоги могут показаться незначительными на вид, но на самом деле они зачастую глубокие со значительными повреждениями мышц, костей и внутренних органов.
Электрический ток может нарушить работу сердца, вплоть до его остановки.
У пострадавшего от удара тока может произойти остановка дыхания.
Признаки и симптомы удара током электротравмы

Нахождение оголенного источника электрического тока вблизи пострадавшего;
Бессознательное состояние у пострадавшего;
Очевидные ожоги на поверхности кожи;
Нарушение дыхания с возможной остановкой дыхания;
Пульс слабый, аритмичный или отсутствует;
Входное и выходное отверстие электрического заряда обычно расположено на кистях рук или ступнях.

Читайте также:  Как изменится емкостное сопротивление воздушного конденсатора если частота тока увеличится в 2 раза

Вследствие особенностей электротравмы даже при кратковременном воздействии электрического тока у пострадавшего может наступить остановка дыхания и сердца. Поэтому достаточно эффективная первая помощь при ударах электрическим током на месте происшествия часто является решающим фактором в спасении пострадавшего.

При возникновении ниже перечисленных симптомов у пострадавшего от удара током срочно вызовите скорую помощь:

Остановка сердца (отсутствие пульса)
Нарушение сердечного ритма (неровный пульс)
Расстройство или остановка дыхания (неровное дыхание)
Боль в мышцах или сокращения мышц
Судорожные припадки
Ощущение покалывания или онемения в конечностях
Потеря сознания
удар токомДо прибытия бригады скорой помощи при ударе электрическим током примите следующие меры:
Оцените обстановку. Не прикасайтесь к пострадавшему сразу же. Возможно, он все еще находится под действием электрического тока. Дотронувшись до пострадавшего, вы также можете попасть под удар.Если есть возможность, отключите источник электроэнергии ( выверните пробки, выключите рубильник). Если это невозможно, отодвиньте источник тока от себя и от пострадавшего сухим, непроводящим ток предметом (веткой, деревянной палкой и т. д.).
Если необходимо оттащить пострадавшего от провода электросети, надо при этом помнить, что тело человека, через которое прошел ток, проводит ток так же, как и электропровод. Поэтому голыми руками не следует дотрагиваться до открытых частей тела пострадавшего, можно касаться только сухих частей его одежды, а лучше надеть резиновые перчатки или обернуть руки сухой шелковой материей.
После прекращения действия электрического тока необходимо обратить внимание на присутствие признаков жизни (дыхания и пульса на крупных сосудах).
При отсутствии признаков дыхания и пульса необходимы срочные реанимационные мероприятия: проведение закрытого массажа сердца и искусственной вентиляции легких (искусственного дыхания). Осмотрите открытые участки тела пострадавшего. Всегда ищите два ожога (места входа и выхода электрического тока). Наложите на обожженные участки стерильную или чистую салфетку. Не используйте с этой целью одеяло или полотенце – волокна с них могут прилипнуть к обожженной поверхности. Для улучшения работы сердца следует увеличить приток крови к нему. Для этого уложите пострадавшего так, чтобы его грудь находилась несколько ниже ног.
Всех пострадавших от удара током следует как можно быстрее госпитализировать.

Источник

Анализ опасности поражения человека электрическим током

Условия поражения человека электрическим током возникают при включении его в электрическую цепь электроустановки или при попадании в зону действия электрической дуги.

Опасность поражения человека электрическим током характе­ризуют следующие факторы:

  • схема включения человека в цепь электрического тока;
  • напряжение сети, питающей электроустановку;
  • сопротивление проводов сети относительно земли;
  • режим работы сети (нормальный или аварийный);
  • тип сети и режим нейтрали;
  • значение емкости проводов относительно земли.

Следует иметь в виду, что опасность поражения человека элек­трическим током не является однозначной. Анализ опасности по­ражения электрическим током в электроустановках сводится к определению значения токов в цепи тела человека / Л, которое зависит от напряжения прикосновения или шага.

Правилами устройства электроустановок (ПУЭ) определено понятие «электроустановка». Электроустановкой принято называть совокупность машин, аппаратов, линий и вспомогательного обо­рудования (вместе с сооружениями и помещениями), предназна­ченных для производства, преобразования, трансформации, рас­пределения электрической энергии и преобразования ее в другие виды энергии.

Все электроустановки по условиям электробезопасности под­разделяются:

  • на электроустановки напряжением до 1 кВ с заземленной ней­тралью;
  • электроустановки напряжением 1кВ с изолированной нейтра­лью;
  • электроустановки напряжением выше 1 кВ в сетях с эффек­тивно заземленной нейтралью (с большими токами замыкания на землю);
  • электроустановки напряжением выше 1 кВ в сетях с изолиро­ванной нейтралью (с малыми токами замыкания на землю).

В современной нормативно-технической документации все элек­троустановки напряжением до 1кВ рассматриваются как системы различных типов. Под системой следует понимать совокупность источника электроэнергии, питающей линии и потребителя элек­троэнергии.

Термином «питающие электрические сети» обозначается со­ставная часть системы, включающая в себя источник электроэнер­гии и питающие линии.

Питающие сети различаются по типам систем токоведущих проводников и систем заземления.

Существуют следующие типы систем токоведущих проводни­ков переменного тока:

  • однофазные двухпроводные;
  • однофазные трехпроводные;
  • двухфазные трехпроводные;
  • двухфазные пятипроводные;
  • трехфазные трехпроводные;
  • трехфазные четырехпроводные;
  • трехфазные пятипроводные.

Система TN — система, в которой нейтраль источника элект­роэнергии глухо заземлена, а открытые проводящие части элект­роустановки присоединены к глухозаземленной нейтрали (занулены) при помощи нулевых защитных проводников.

Нейтраль — общая точка обмоток генераторов или трансфор­маторов, питающих сеть; напряжения на выходных зажимах ис­точника электроэнергии, измеренные относительно нейтрали, равны.

Глухозаземленная нейтраль источника электроэнергии — нейт­раль генератора или трансформатора в сетях трехфазного тока напряжением до 1 кВ, присоединенная к заземляющему устройству непосредственно или через малое сопротивление.

Изолированная нейтраль — нейтраль генератора или трансфор­матора в сетях трехфазного тока напряжением до 1 кВ, не присо­единенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты и подобные им устройства, имеющие большое сопротивление.

Проводящие части — части, которые могут проводить электри­ческий ток.

Токоведущие части — проводники или проводящие части, пред­назначенные для работы под напряжением в нормальном режи­ме, включая нулевой рабочий проводник.

Открытые проводящие части — доступные прикосновению про­водящие части электроустановки, не находящиеся под напряже­нием, но которые могут оказаться под напряжением при повреж­дении основной изоляции.

Нулевой проводник — это проводник, соединенный с глухозаземленной нейтралью, предназначенный либо для питания по­требителей электроэнергии, либо для присоединения к откры­тым проводящим частям.

Нулевой рабочий проводник (N-проводник) — нулевой проводник в электроустановках напряжением до 1 кВ, предназначенный для питания электроприемников.

Нулевой защитный проводник (РЕ-проводник) — нулевой про­водник в электроустановках напряжением до 1 кВ, предназначен­ный для присоединения к открытым проводящим частям в целях обеспечения электробезопасности.

Системы заземления электрических сетей могут быть следующих типов: TN—C, T N – S , T N – C – S , IT, ТТ.

Система TN—C — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на
всем ее протяжении (рис. 7.1); при этом совмещенный нулевой и рабочий провод обозначается PEN.

Система TN—S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении (рис. 7.2).

Система TN—C—S — система TN, в которой функции нулево­го защитного и нулевого рабочего проводников совмещены в од­ном проводнике в какой-то ее части, начиная от источника элек­троэнергии (рис. 7.3).

Система IT — система, в которой нейтраль источника электроэнергии изолирована от земли или заземлена через приборы или устройства, имеющее большое сопротивление, а открытые проводящие части электроустановки заземлены (рис. 7.4). В этом случае защитный заземляющий проводник обозначается так же, как и нулевой защитный проводник, т.е. РЕ-проводник.

Система ТТ — система, в которой нейтраль источника элект­роэнергии глухо заземлена, а открытые проводящие части элект­роустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источ­ника.

Поскольку далее приведен анализ электробезопасности различ­ных типов электрических сетей, предназначенных для питания потребителей электроэнергии, то для удобства изложения мате­риала в дальнейшем будем пользоваться терминами типа «сеть TN—С», «сеть 1Т» и другими, которые означают совокупность ис­точника электроэнергии с определенным режимом заземления нейтрали и питающей линии с определенной системой токоведу­щих проводников. Например, сеть TN—С означает совокупность источника электроэнергии с глухозаземленной нейтралью и трех­ фазной четырехпроводной питающей линии.

Существуют различные «схемы включения» человека в элект­рическую цепь тока (наиболее характерные «схемы включения» показаны на рис. 7.5. на примере трехфазной сети с изолирован­ной нейтралью):

  • прямое двухфазное (двухполюсное) прикосновение — одно­временное прикосновение к проводникам двух фаз (двум полю­сам) действующей электроустановки (поз. 1 на рис. 7.5);
  • прямое однофазное (однополюсное) прикосновение — при­косновение к проводнику одной фазы (одному полюсу) действу­ющей электроустановки (поз. 2 на рис. 7.5);
  • косвенное прикосновение — прикосновение к открытым про­водящим частям электроустановок, оказавшимся под напряже­нием в результате повреждения изоляции (прикосновение к кор­пусу электроустановки с поврежденной изоляцией) (поз. 3 нарис. 7.5);
  • включение под напряжение шага — включение между двумя точками земли (грунта), находящимся под разными потенциа­лами.
Читайте также:  Сила тока в домофоне

Напряжение прикосновения Uh, В, — это разность потенциалов между двумя точками цепи тока, которых одновременно касается человек, или падение напряжения на сопротивлении тела челове­ ка Rh:

где lh— ток, протекающий через тело человека путями: рука-ноги или рука—рука, мА; Rh — активное сопротивление тела че­ловека, Ом (для расчетов обычно принимают Rh = 1 кОм).

Если человек стоит на земле и касается заземленного корпуса электроустановки, на который замкнулся фазный провод (в даль­нейшем будем употреблять стандартизированный термин «призамыкании на корпус»), как это показано на рис. 7.6, то напряже­ние прикосновения может быть записано в виде

где ф3 — потенциал заземленного корпуса, т.е. потенциал рук че­ловека, В; фо,. — потенциал основания в том месте, где стоит человек, т.е. потенциал ног, В.

Потенциал заземленного корпуса определяют по формуле

где l3, — ток замыкания на землю; R3, — сопротивление заземления.
Проведя простые преобразования, выражение (7.1) можно за­писать в виде

где а — коэффициент напряжения прикосновения.

Напряжением шага называется разность потенциалов между двумя точками электрической цепи, которых одновременно каса­ется ногами человек, или падение напряжения на сопротивлении тела человека:

где Uш— напряжение шага, В; lh— ток, протекающий через тело человека по пути нога—нога, мА.

Если человек стоит на земле вблизи заземленного корпуса элек­троустановки, на который замкнулся фазный провод, как это показано на рис. 7.7, то уравнение для определения напряжения шага можно записать в виде

где фх — потенциал точки на поверхности земли на расстоянии от заземлителя, В; фх+а — потенциал точки на поверхности земли на расстоянии (х + а) от заземлителя, В (а — длина шага, обычно принимается равной 1 м).

По аналогии с напряжением прикосновения выражение для напряжения шага можно записать в виде

Источник

Опасность поражения электрическим током

Опасность поражения электрическим током

Опасность поражения электрическим током – один из главных рисков на производстве. Ведь ни для кого не секрет, что большинство технологических процессов на многих предприятиях различных видов хозяйствования связано с распределением и использованием электрического тока.

Согласно пункту 1.3.1. Правил безопасной эксплуатации электроустановок потребителей (НПАОТ 40.1-1.21-98), руководитель предприятия должен осуществить комплекс мероприятий, направленных на безопасную эксплуатацию электроустановок. Однако практика показывает, что риск получения работниками электротравм существует всегда.

Возникновение электротравмы чаще всего обусловлено следующими обстоятельствами:

– случайным прикосновением к токоведущим частям, находящимся под напряжением. Это происходит в результате ошибочных действий при выполнении работ вблизи или непосредственно на частях, находящихся под напряжением; неисправности защитных средств, посредством которых пострадавший прикасается к токоведущим частям; отсутствия четкой и правильной маркировки электрооборудования; самовольного снятия ограждений, переносных защитных заземлений, блокировок и шунтирование их;

– появлением напряжения на металлических конструктивных частях электрооборудования (корпусах, кожухах), которые не должны находиться под напряжением. Напряжение на этих частях образуется в результате повреждения изоляции токоведущих частей электрооборудования, падения провода, находящегося под напряжением, на конструктивные части электрооборудования, замыкания фаз сети на землю;

– появление напряжения на отключенных токоведущих частях, на которых проводится работа, в результате ошибочного включения установки под напряжение или вследствие обратной трансформации;

– возникновение напряжения шага на участке земли, где находится человек. Напряжение шага может возникнуть в результате замыкания фазы на землю, выноса потенциала различными протяженными электропроводящими предметами.

Возникновение электротравмы может быть также связано с действием атмосферного электричества при грозовых разрядах, с действием электрической дуги, с освобождением человека, находящегося под напряжением, от действия электрического тока.

Для обнаружения на расстоянии электрического тока у человека нет специальных органов чувств. Невозможно без приборов почувствовать, находится ли данная часть установки под напряжением до тех пор, пока электрическая энергия не превратится в энергию другого вида (например, в световую – искрение) или пока человек сам не попадет под напряжение.

Электрический ток не имеет запаха, цвета и бесшумен. Неспособность организма человека обнаруживать его до начала действия приводит к тому, что работающие часто не осознают реально имеющейся опасности и не принимают своевременно необходимых защитных мер. Опасность поражения электрическим током усугубляется еще и тем, что пострадавший не может оказать себе помощь. При неумелом оказании помощи может пострадать и тот, кто пытается помочь.

Действие электрического тока на человека носит сложный и разнообразный характер. Проходя через его организм, электрический ток производит термическое, электролитическое, биологическое и механическое (динамическое) действия.

Непосредственной причиной смерти является не электрический ток (или дуга), а местное повреждение организма, вызванное током (дугой). Характерные виды местных электротравм – электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия и механические повреждения.

Электрические ожоги наиболее распространенные электротравмы: они возникают у большинства пострадавших (60-65%), причем около третьей части их сопровождаются другими электротравмами.

Электрический удар – это возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся сокращениями мышц. Исход воздействия тока на организм при этом может быть различен – от легкого, едва ощутимого судорожного сокращения мышц пальцев руки до прекращения работы сердца или легких, т.е. до смертельного поражения.

Электрические удары условно можно разделить на четыре степени:

1 – судорожное сокращение мышц без потери сознания;

2 – судорожное сокращение мышц с потерей сознания, но с сохранившимся дыханием и работой сердца;

3 – потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе);

4 – клиническая смерть, т.е. отсутствие дыхания и кровообращения.

Опасность воздействия электрического тока на человека зависит от сопротивления тела человека и величины приложенного к нему напряжения, силы тока, проходящего через тело, длительности его воздействия, пути прохождения, рода и частоты тока, индивидуальных свойств пострадавшего и факторов окружающей среды.

Тело человека является проводником электрического тока. Разные ткани тела оказывают току разное сопротивление: кожа, кости, жировая ткань – большое, а мышечная ткань, кровь и особенно спинной и головной мозг – малое. Наибольшим сопротивлением по сравнению с другими тканями обладает кожа, и главным образом ее верхний слой, называемый эпидермисом.

Сопротивление тела человека – величина переменная, зависящая от множества факторов, в том числе и от состояния кожи, параметров электрической цепи, физиологических факторов и состояния окружающей среды (влажность, температура и т.п.). Состояние кожи влияет на электрическое сопротивление тела человека.

Так, повреждения рогового слоя, в том числе порезы, царапины и другие микротравмы, могут снизить сопротивление до величины, близкой к величине внутреннего сопротивления, при этом возрастает опасность поражения человека током. Такое же влияние оказывает и увлажнение кожи водой или потом, а также загрязнение ее токопроводящей пылью и грязью.

В связи с различным электрическим сопротивлением кожи на разных участках тела на сопротивление в целом влияют место приложения контактов и их площадь.

Сопротивление тела человека падает при увеличении значения тока и длительности его прохождения за счет усиления местного нагрева кожи, приводящего к расширению сосудов, а следовательно, к усилению снабжения этого участка кровью и увеличению потовыделения.

Повышение напряжения, приложенного к телу человека, уменьшает в десятки раз сопротивление кожи, а следовательно, и полное сопротивление тела, которое приближается к своему наименьшему значению 300-500 Ом. Это объясняется пробоем рогового слоя кожи, ростом тока, проходящего через кожу, и другими факторами.

Сопротивление тела человека зависит от пола и возраста людей: у женщин это сопротивление меньше, чем у мужчин, у детей – меньше, чем у взрослых, у молодых людей – меньше, чем у пожилых. Объясняется это толщиной и степенью огрубления верхнего слоя кожи. Кратковременное (на несколько минут) снижение сопротивления тела человека (на 20-50%) вызывают внешние неожиданно возникающие физические раздражения: болевые (удары, уколы), световые и звуковые.

Читайте также:  Что представляет собой прямой ток

Сила электрического тока, проходящего через тело человека, и есть основной фактор, обуславливающий исход поражения. Человек начинает ощущать воздействие проходящего через него переменного тока величиной 0,6-1,5мА. Этот ток называется пороговым ощутимым. При токе 10-15 мА человек не может оторвать рук от электропроводов, самостоятельно разорвать цепь поражающего его тока. Такой ток принято называть неотпускающим.

Ток 50 мА поражает органы дыхания и сердечно-сосудистую систему. При 100 мА наступает фибрилляция сердца. Оно останавливается, кровообращение прекращается.

Ток больше 5 А, как правило, фибрилляцию сердца не вызывает. При таких токах происходит немедленная остановка сердца и паралич дыхания. Если действие тока кратковременное (до 1-2 сек) и не вызывает повреждения сердца (в результате нагрева, ожога и т.п.), то после отключения тока сердце самостоятельно возобновляет нормальную деятельность, а для восстановления дыхания требуется немедленная помощь в виде искусственного дыхания.

По наблюдениям некоторых исследователей есть участки тела, особенно уязвимые к электрическому току. Это так называемые акупунктурные точки площадью 2-3 мм 2 . Их электрическое сопротивление всегда меньше электрического сопротивления зон, лежащих вне акупунктурных зон.

Наиболее уязвимыми местами человеческого тела, находящимися в зоне акумтации, являются тыльная часть кисти, рука на участке выше кисти, шея, висок, спина, передняя часть ноги, плечо.

Электрическая цепь, возникающая через чувствительные к току зоны даже при небольших токах, может в ряде случаев привести к смертельному исходу.

Чем продолжительнее действие тока, тем больше вероятность тяжелого или смертельного исхода. Такая зависимость объясняется тем, что с увеличением времени воздействия тока на живую ткань возрастает значение этого тока (за счет уменьшения сопротивления тела), накапливаются последствия воздействия тока на организм и повышается вероятность совпадения момента прохождения тока через сердце с особенно уязвимой для тока фазой Т сердечного цикла (кардиоцикл).

В этот период заканчивается сокращение желудочков, которые переходят в расслабленное состояние, и возникновение фибрилляции при прохождении тока наиболее вероятно.

Если на пути тока оказываются жизненно важные органы – сердце, легкие, головной мозг, опасность их поражения весьма велика. Если же ток проходит иными путями, то воздействие его на жизненно важные органы может быть рефлекторным, т.е. через центральную нервную систему, благодаря чему вероятность тяжелого исхода резко уменьшается.

Поскольку путь тока зависит от того, какими участками тела пострадавший прикасается к токоведущим частям, его влияние на исход поражения проявляется еще и потому, что сопротивление кожи на разных участках тела различно.

Наиболее характерные цепи тока через человека – это рука – ноги, рука – рука и рука – туловище (соответственно 56,7; 12,2 и 9,8% травм).

Наименее опасен путь тока по цепи нога – нога. Однако и в этом случае человек может упасть, и в результате возникнет новая цепь тока рука – ноги.

Постоянный ток примерно в 4-5 раз безопаснее переменного тока частотой 50 Гц. Однако это характерно для относительно небольших напряжений – до 250 –300 В. При более высоких напряжениях опасность постоянного тока возрастает.

Уже в интервале напряжений 400-600 В опасность постоянного тока практически равна опасности переменного тока с частотой 50 Гц, а при напряжении более 600 В постоянный ток даже опаснее переменного. Особенно резкие болевые ощущения при попадании под постоянное напряжение возникают в момент замыкания и размыкания электрической цепи.

Индивидуальные особенности человека оказывают значительное влияние на исход поражения при электротравмах. Характер воздействия тока зависит от массы человека и его физического состояния.

Установлено, что здоровые и физически крепкие люди легче переносят электрические удары, чем больные и слабые. Повышенной восприимчивостью к электрическому току обладают лица, страдающие рядом заболеваний, в первую очередь болезнями кожи, сердечно-сосудистой системы, органов внутренней секреции, нервными и др. Более уязвимы к воздействию электрического тока люди, имеющие повышенную потливость. Повышенная температура окружающей среды и высокая влажность не единственная причина высокой потливости. Интенсивное потоотделение часто наблюдается при вегетативных расстройствах нервной системы, а также как результат испуга, волнения.

В состоянии возбуждения нервной системы, депрессии, утомления, состояния опьянения и после него люди более чувствительны к протекающему току. Существенную роль играет и «фактор внимания». Это особое состояние настороженности и собранности человека, сознающего опасность выполняемой им работы. Если человек усилием воли направляет свое внимание на ожидаемое событие (в нашем случае на электротравму), то опасность ее в этом случае резко снижается, в то время как неожиданный удар приводит к более тяжелым последствиям.

К сожалению, существует ошибочное мнение о безвредности небольших доз алкоголя. Но малые дозы алкоголя серьезно действуют на организм человека. При превышении содержания алкоголя в крови 0,2 промилле (промилле – количество миллиграммов алкоголя в 100 мл крови) нарушаются способность к сосредоточению внимания, координация и связность мышления. При концентрации 0,5 промилле (1 бутылка пива) появляется снижение реакции зрачка и ограничение поля зрения, нарушается способность слежения за движущимися предметами и оценки параметров движения – направления, скорости и расстояния. Концентрация, превышающая 0,5 промилле, приводит к дальнейшему замедлению нервных реакций, еще большему снижению способности к принятию правильных решений. При концентрации алкоголя в крови 0,5-1 промилле время реакции на слуховые и зрительные сигналы увеличивается на 40%.

Говоря об алкоголе, прежде всего имеют в виду водку. Однако в 100-150 г вина или в 0,75 пива содержится столько же алкоголя, сколько и в 50 г водки. Но ведь чаще всего вино пьют стаканами, а пиво кружками. Вот почему все напитки, содержащие алкоголь, в равной степени вредны и их употребление следует исключить.

При несмертельной электротравме независимо от того, по какой петле проходил ток, электрокардиограмма несет на себе печать коронарной недостаточности, а морфологические исследования показывают наличие признака инфаркта миокарда. Эти данные подтверждены многочисленными клиническими наблюдениями многих авторов.

Таким образом, обоснован существенный практический вывод. Человек, перенесший электротравму, даже если он чувствует себя хорошо, не может быть оставлен без наблюдения, отпущен домой (как это нередко делается), а должен быть госпитализирован минимум на трое суток, поскольку его следует считать потенциальным тяжелобольным.

Через продолжительное время после электротравмы наблюдались случаи развития диабета, заболеваний щитовидной железы, половых органов, отмечены различные болезни аллергической природы (крапивница, экзема и др.), а также стойкие органические изменения сердечно-сосудистой системы и вегетативно-эндокринные расстройства.

Описаны случаи поздних осложнений в виде нервно-психических расстройств (шизофрения, психоневрозы, импотенция), развития катаракт спустя 3-6 месяцев после электротравм. У лиц, побывавших в электрической цепи, возникают в процессе лечения неожиданные кровотечения, не наблюдаемые при обычных травматических повреждениях.

Среди электромонтеров чаще, чем у лиц других профессий, отмечается раннее развитие артериосклероза, эндоартрита, вегетативных и других расстройств. Наблюдения показали, что последствия электротравмы в ряде случаев проявляются через много лет спустя с момента происшествия. Таким образом, действие электрического тока не всегда проходит бесследно и нередко ведет к понижению трудоспособности, а иногда и к хроническим заболеваниям.

Анализ статистических материалов показал, что если принять за 100% возможность возникновения тяжелых последствий, то частота этих последствий распределится в следующей закономерности: в первые десять дней – 30 %; через два месяца – 15 %; через год – 35 %; спустя более двух лет – 20 %.

Исходя из вышесказанного, можно сделать неоспоримый вывод, что руководитель любого предприятия, организации, учреждения, должен обеспечить на своем предприятии максимально эффективные мероприятия по недопущению получения работниками электротравм. Эти мероприятия должны включать в себя создание квалифицированной энергетической службы, проведение необходимых испытаний и измерений, обеспечение работников комплектом инструкций по охране труда, средствами защиты от поражения электрическим током, организацию и проведение медицинских осмотров.

Источник