Меню

Общий коллектор схема постоянный ток

Каскад с общим коллектором

Из выражения следует, что для схемы с ОБ коэффициент усиления тока всегда меньше единицы.

Как видно из схемы, каскад охвачен глубокой отрицательной обратной связью по току, поскольку выходной коллекторный ток полностью протекает через входную эмиттерную цепь. Благодаря этому повторитель тока по схеме с общей базой имеет очень низкое входное сопротивление, практически рав­ное rЭ.

Низкоомный вход повторителя тока по схеме с общей базой имеет ряд пре­имуществ:

— уменьшаются частотные искажения, связанные с наличием входной емкости каскада;

— более эффективно используется источник сигнала, который практически работает в режиме короткого замыкания;

— глубокая отрицательная обратная связь приводит к увеличению выходного сопротивления и снижению выходной емкости;

— нейтрализуется паразитная обратная связь через проходную емкость Скб;

— входной сигнал передается на выход без переворота по фазе.

Эмиттерным повторителем называется усилительный каскад, охваченный 100% последовательной ООС по напряжению. Транзистор в таком каскаде включен по схеме с общим коллектором.

Типовая схема эмиттерного повторителя приведена на рисунке 10.

В схеме с ОК назначение элементов R1, R2, Cp1 и Cp2 то же, что и в схеме с ОЭ. Резистор RЭ выполняет одновременно роль нагрузки в выходной цепи транзистора и элемента ООС по напряжению.

Наличие 100%-ной ООС по напряжению означает, что в эмиттерном повто­рителе выходной сигнал и сигнал обратной связи равны.

В отличие от усилителя по схеме с общим эмиттером, схема с общим коллектором не инвертирует входной сигнал. Действи­тельно, если ко входу эмиттерного повторителя приложить увели­чивающееся по уровню напряжение, то это приведет к увеличе­нию базового, а, соответственно, и эмиттерного тока транзистора. В результате этого будет увеличиваться падение напряжения на сопротивлении нагрузки каскада и, соответственно, его выходное напряжение. Таким образом, входной и выходной сигналы в схеме будут изменяться в фазе.

Математические соотношения для расчета основных параметров каскада выведем на основе анализа его эквивалентной схемы (рисунок 11).

Входное сопротивление каскада будет определяться зависимостью

Однако так как rэ = 20 . 50 Ом > Rвх. Поэтому на практике приходится либо использовать непосредст­венную связь с источником сигнала (без делителя), либо искусственно повышать сопротивление цепи смещения за счет введения отрицательной ОС.

Выходное сопротивление можно найти, используя выражение

В частном случае при достаточно большом значении коэффициента передачи базового тока и низкоомном источнике входного сигнала вторым слагаемым можно пренебречь и полагать

где rЭ = dUБЭ / dIБ – дифференциальное сопротивление эмиттерного перехода.

Так как сильно зависит от IЭ (например, при токе эмиттера примерно 1 мА, Rвых » 25 Ом), то с увеличением тока эмиттера сопротивление rэ существенно уменьшается и Rвых может достигать единиц или даже десятых долей Ома. Однако в используемых на практике каскадах повторителей напряжения, как правило, Rвых = 100 . 200 Ом.

Коэффициент усиления напряжения каскада найдем с учетом того, что rэ

Пренебрегая сопротивлением базового делителя, для входного тока можно записать

С учетом полученных соотношений

Используя допущения, что rк >> Rн > Rэ и Rг

Основным достоинством ПН является то, что амплитуда входного сигнала для режима А может достигать до 0,5Еп, не приводя к искажению выходного сигнала. Данное свойство и низкое выходное сопротивление и определили их применение в качестве согласующих каскадов.

Доцент кафедры ОТЗИ И. Щудро

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Усилительный каскад с общим коллектором

Наш следующий в изучении тип включения транзистора немного проще для вычисления коэффициентов усиления. Так называемая схема с общим коллектором показана на рисунке ниже.

В схеме с общим коллектором и вход, и выход используют коллектор В схеме с общим коллектором и вход, и выход используют коллектор (стрелками показаны направления движения потоков электронов)

Конфигурация этого каскада называется схемой с общим коллектором, потому что (игнорируя батарею источника питания) и источник сигнала, и нагрузка делят между собой вывод коллектора как общую точку (рисунок ниже).

Общий коллектор: входной сигнал подается на базу и коллектор, выходной сигнал берется со схемы эмиттер-коллектор Общий коллектор: входной сигнал подается на базу и коллектор, выходной сигнал берется со схемы эмиттер-коллектор

Должно быть очевидно, что через резистор нагрузки, помещенный в цепь эмиттера, в схеме усилителя с общим коллектором протекают как ток базы, так и ток коллектора. Поскольку через вывод эмиттера транзистора протекает самое большое значение тока (сумма токов базы и коллектора, которые всегда объединяются вместе для формирования тока эмиттера), было бы разумным предположить, что этот усилитель буде иметь очень большой коэффициент усиления по току. Это предположение действительно правильное: коэффициент усиления по току усилителя с общим коллектором довольно большой, больше, чем в любом другом типе схемы транзисторного усилителя. Однако это не совсем то, что его отличает от других типов схем транзисторных усилителей.

Читайте также:  Газовый генератор постоянного тока

Давайте сразу же перейдем к SPICE анализу этой схемы усилителя, и вы сможете сразу увидеть, что уникального в этом типе включения транзистора. Схема и список соединений приведены ниже.

Схема усилительного каскада с общим коллектором для SPICE Схема усилительного каскада с общим коллектором для SPICE Общий коллектор: напряжение на выходе меньше напряжения на входе на 0,7 В (на падение напряжения VБЭ) Общий коллектор: напряжение на выходе меньше напряжения на входе на 0,7 В (на падение напряжения VБЭ)

В отличие от усилительного каскада с общим эмиттером из предыдущего раздела, схема с общим коллектором создает выходное напряжение в прямой, а не в обратной пропорции к возрастающему входному напряжению. Смотрите рисунок выше. По мере увеличения входного напряжения увеличивается и выходное напряжение. Более того, тщательный анализ показывает, что выходное напряжение почти идентично входному, отставая от него примерно на 0,7 вольта.

Это уникальная особенность усилительного каскада с общим коллектором: выходное напряжение, которое почти равно входному напряжению. При рассмотрении с точки зрения изменения выходного напряжения для заданного изменения величины входного напряжения, этот усилитель имеет коэффициент усиления по напряжению, равный почти единице (1), или 0 дБ. Это справедливо для транзисторов с любым значением β и для любых сопротивлений нагрузки.

Понять, почему выходное напряжение в схеме с общим коллектором всегда почти равно входному напряжению, очень просто. Обратившись к модели транзистора на базе диода и источника тока (рисунок ниже), мы увидим, что ток базы должен протекать через PN-переход база-эмиттер, который эквивалентен обычному выпрямляющему диоду. Если этот переход смещен в прямом направлении (транзистор проводит ток в активном режиме или режиме насыщения), падение напряжения на нем будет равно примерно 0,7 вольта (предполагаем, что транзистор кремниевый). Это падение 0,7 вольта во многом не зависит от реальной величины тока базы; таким образом, мы можем считать его постоянным.

Эмиттерный повторитель: напряжение на эмиттере повторяет напряжение на базе (меньше на величину падения напряжения база-эмиттер, 0,7 вольта) Эмиттерный повторитель: напряжение на эмиттере повторяет напряжение на базе (меньше на величину падения напряжения база-эмиттер, 0,7 вольта) (стрелками показаны направления движения потоков электронов)

Учитывая полярности напряжений на PN-переходе база-эмиттер и на резисторе нагрузки, мы видим, что одни должны складываться вместе, чтобы в соответствии с законом напряжений Кирхгофа равняться входному напряжению. Другими словами, напряжение на нагрузке всегда будет примерно на 0,7 вольта меньше входного напряжения при всех условиях, когда транзистор проводит ток. Отсечка происходит при входном напряжении ниже 0,7 вольта, а насыщение – при входном напряжении выше напряжения батареи (источника питания) плюс 0,7 вольта.

Поэтому схема усилителя с общим коллектором также известна как повторитель напряжения или эмиттерный повторитель, поскольку напряжения на эмиттерной нагрузке почти повторяют напряжения на входе.

Применение схемы с общим коллектором для усиления сигналов переменного напряжения также требует использования «смещения» входного сигнала: постоянное напряжение должно быть добавлено к входному сигналу переменного напряжения, чтобы удерживать транзистор в активном режим в течение всего периода синусоиды входного сигнала. Когда смещение будет добавлено, в результате получится неинвертирующий усилитель, показанный на рисунке ниже.

Усилительный каскад с общим коллектором (эмиттерный повторитель) Усилительный каскад с общим коллектором (эмиттерный повторитель)

Результаты моделирования SPICE на рисунке ниже показывают, что выходной сигнал повторяет входной. Амплитуда выходного сигнала такая же, как и у входного. Тем не менее, уровень постоянной составляющей смещается вниз на падение напряжения VБЭ.

Схема каскада с общим коллектором (эмиттерный повторитель): выход V(3) повторяет вход V(1), но ниже на VБЭ = 0,7 вольта Схема каскада с общим коллектором (эмиттерный повторитель): выход V(3) повторяет вход V(1), но ниже на VБЭ = 0,7 вольта

Вот еще один вид схемы (рисунок ниже) с осциллографами, подключенным к нескольким интересным точкам.

Коэффициент усиления по напряжению каскада с общим коллектором равен 1 Коэффициент усиления по напряжению каскада с общим коллектором равен 1

Поскольку эта конфигурация усилителя не обеспечивает никакого усиления по напряжению (на самом деле, коэффициент усиления по напряжению у нее чуть меньше 1), ее единственным усиливающим фактором является ток. Коэффициент усиления по току схемы усилителя с общим эмиттером, рассмотренной в предыдущем разделе, равен β транзистора, поскольку входной ток проходит через базу, а выходной ток (ток нагрузки) – через коллектор, а β – это и есть отношение тока коллектора к току базы. Однако в схеме с общим коллектором нагрузка расположена последовательно с эмиттером, и, следовательно, ток через неё равен току эмиттера. В схеме протекает два тока: ток от эмиттера к коллектору и ток базы. Через нагрузку в этом типе схемы усилителя протекают оба этих тока: ток коллектора плюс ток базы. Это дает коэффициент усиления по току, равный β плюс 1.

Опять же, PNP транзисторы так же можно использовать в схеме с общим коллектором, как и NPN транзисторы. Расчеты усиления одинаковы, равно как и неинвертирование усиленного сигнала. Единственное различие заключается в полярностях напряжений и направлениях токов (рисунок ниже).

PNP версия усилительного каскада с общим коллектором PNP версия усилительного каскада с общим коллектором

Читайте также:  Являются ли источником электрического тока солнечные батареи

Популярное применение усилителя с общим коллектором – стабилизированные источники питания постоянного напряжения, где нестабилизированное (изменяющееся) постоянное напряжение источника фиксируется на заданном уровне для подачи стабилизированного (устойчивого) напряжения на нагрузку. Конечно, стабилитроны уже выполняют эту функцию по стабилизации напряжения (рисунок ниже).

Стабилизатор напряжения на стабилитроне Стабилизатор напряжения на стабилитроне

Однако при использовании этой схемы стабилизатора непосредственно для питания нагрузки величина тока, которая может быть подана на нагрузку, обычно очень сильно ограничена. По сути, эта схема стабилизирует напряжение на нагрузке, поддерживая ток на последовательном резисторе на уровне достаточно высоком, чтобы на нем упало всё избыточное напряжение источника, при этом и стабилитрон, если необходимо, потребляет ток, чтобы напряжение на нем было постоянным. Для сильноточных нагрузок простой стабилизатор напряжения на стабилитроне должен будет пропускать через стабилитрон большой ток, чтобы эффективно стабилизировать напряжение на нагрузке в случае сильных изменений сопротивления нагрузки или напряжения источника.

Одним из популярных способов увеличения допустимой величины тока, подаваемого на нагрузку, в подобных схемах является использование транзистора, включенного по схеме с общим коллектором, для усиления тока нагрузки так, чтобы цепь стабилитрона работала только с той величиной тока, которая необходима для подачи на базу транзистора (рисунок ниже).

Применение схемы с общим коллектором: стабилизатор напряжения Применение схемы с общим коллектором: стабилизатор напряжения (стрелками показаны направления движения потоков электронов)

Есть только одна оговорка: напряжение на нагрузке будет примерно на 0,7 вольта меньше напряжения стабилитрона из-за падения напряжения на PN переходе транзистора база-эмиттера. Так как эта разница в 0,7 вольта довольно постоянна в широком диапазоне токов нагрузки, в реальной схеме стабилитрон может быть выбран с номинальным напряжением на 0,7 вольта выше, чем необходимое выходное напряжение стабилизатора.

Иногда в конкретном приложении со схемой с общим коллектором бывает недостаточно высокого коэффициента усиления по току одиночного транзистора. Если это так, то несколько транзисторов могут быть объединены в популярную схему, известную как пара Дарлингтона, являющуюся просто расширением концепции схемы с общим коллектором (рисунок ниже).

NPN пара Дарлингтона NPN пара Дарлингтона

Пары Дарлингтона, по сути, ставят один транзистор в качестве нагрузки другого транзистора по схеме с общим коллектором, тем самым перемножая их собственные коэффициенты усиления по току. Ток базы верхнего левого транзистора усиливается на эмиттере этого транзистора, который напрямую соединен с базой нижнего правого транзистора, где ток снова усиливается. Общий коэффициент усиления по току выглядит следующим образом:

Коэффициент усиления по току пары Дарлингтона:

\[A_I = (\beta_1 + 1)(\beta_2 + 1)\]

  • β1 – бета первого транзистора;
  • β2 – бета второго транзистора;

Если вся сборка включена по схеме с общим коллектором, коэффициент усиления по напряжению по-прежнему равен почти 1, хотя напряжение на нагрузке будет на 1,4 вольта меньше входного напряжения (рисунок ниже).

В схеме усилителя с общим коллектором на паре Дарлингтона теряется удвоенное напряжение VБЭ, падение напряжение на PN переходах В схеме усилителя с общим коллектором на паре Дарлингтона теряется удвоенное напряжение VБЭ, падение напряжение на PN переходах

Пары Дарлингтона могут быть приобретены как отдельные устройства (два транзистора в одном корпусе) или могут быть собраны из пары отдельных транзисторов. Конечно, если требуется еще большее усиление по току, чем то, что может быть получено на паре, можно собрать и триплет, и квадруплет Дарлингтона.

Источник

Устройство коллекторных машин постоянного тока

ads

Характерным признаком коллекторных машин является наличие у них коллектора — механического преобразователя переменного тока в постоянный и наоборот. Необходимость в таком преобразователе объясняется тем, что в обмотке якоря коллекторной машины должен протекать переменный ток, так как только в этом случае в машине происходит непрерывный процесс электромеханического преобразования энергии.

Устройство коллекторных машин постоянного тока

К коллекторным машинам постоянного тока относятся двигатель постоянного тока ДПТ и генератор постоянного тока ГПТ которые имеют одинаковую конструкцию и могут заменять друг друга то есть ДПТ может работать как ГПТ и наоборот. Разберем устройство коллекторных машин на примере двигателя постоянного тока.

Коллекторная машина постоянного тока состоит из:

Якорь

  1. Якоря (подвижная часть) который состоит из вала,обмотки якоря, коллектора, двух подшипников и сердечника. Сердечник — это цилиндр из штампованных листов электротехнической стали толщиной 0,5 мм покрытых электроизоляционным лаком. Такая сборная конструкция служит для уменьшения вихревых токов. В сердечнике есть пазы в которые вложены пазовые стороны обмотки якоря.
  2. Статора (4) (неподвижной части) — станина, главные полюса с полюсными катушками(2,3).

Статор конструктивно может быть выполнен двух видов:

  • сборный — состоит из цельной тянутой трубы и прикреплённым к ней внутри полюсов. Сердечник полюса выполнен в виде стального бруска либо из шихтованных пластин 0,5 — 1 мм. Обмотка полюса намотана вокруг сердечника. Обмотки полюсов соединены между собой последовательно и образуют обмотку возбуждения которая при подключении к источнику постоянного тока создаёт магнитное поле в магнитной системе двигателя.
  • цельный шихтованный— применяется в машинах мощностью 600 Вт и более. Он состоит из из пакета пластин электротехнической стали сложной конфигурации толщиной 0,35 — 0,5 мм.
Читайте также:  Эдс источника тока комплексное

Устройство щеточно коллекторного перехода.

Наиболее сложным и ненадежным местом коллекторной машины является щеточно коллекторный переход который состоит из щеток (которые крепятся в щеткодержатели) и коллектора который состоит из набора коллекторных пластин трапецеидального сечения, разделенных миканитовыми прокладками. Пластины из меди и миканита удерживаются в сжатом состоянии за нижнюю часть, имеющую форму «ласточкина хвоста», посредством стальных конусных колец 1 (рис. 13.2). Выступающая вверх часть коллекторных пластин 6, называемая «петушок», служит для присоединения секций обмотки якоря к пластинам коллектора. Коллекторные пластины изолируют от конусных колец миканитовыми манжетами 3, а от втулки 5 — миканитовым изолирующим цилиндром 4. 1Поверхность медных пластин каллектора в процессе работы машины постепенно истирается щетками. Что бы при этом миканитовые прокладки не выступали над рабочей поверхностью медных пластин, что могло бы привести к нарушению электрического контакта коллектора со щетками, приходится периодически выполнять «продораживаные» коллектора. Эта операция состоит в том, что между рабочими поверхностями коллекторных пластин фрезеруют пазы (дорожки) на глубину до 1,5 мм (рис. 13.4). 2

Достоинства и недостатки коллекторных машин постоянного тока.

Электрические машины постоянного тока используют как в качестве генераторов, так и двигателей. Наибольшее применение имеют двигатели постоянного тока, диапазон мощности которых достаточно широк: от долей ватта (для привода устройств автоматики) до нескольких тысяч киловатт (для привода прокатных станов, шахтных подъемников и других крупных механизмов).

Двигатели постоянного тока широко используют для привода подъемных устройств в качестве крановых двигателей и привода транспортных средств, а также в качестве тяговых двигателей.

Основные достоинства двигателей постоянного тока по сравнению с бесколлекторными двигателями переменного тока — хорошие пусковые и регулировочные свойства, возможность получения частоты вращения более 3000 об/мин, а недостатки — относительно высокая стоимость, некоторая сложность в изготовлении, пониженная надежность. Эти недостатки машин постоянного тока обусловлены наличием в них щеточно-коплекторного узла, который к тому же является источником радиопомех и пожароопасности. Но, несмотря на отмеченные недостатки, двигатели постоянного тока в некоторых случаях пока незаменимы, так как обладают большой перегрузочной способностью, хорошими пусковыми и регулировочными свойствами.

Источник

Каскад по схеме с общим коллектором (ОК)

Коллектор транзистора в схеме усилительного каскада ОК по переменному току заземлен (т.е. соединен с корпусом) через источник питания UИП (рис.1). при этом входное напряжение подключено между базой и коллектором, а выходное – снимается непосредственно с эмиттера транзистора. Особенностью каскада является наличие 100 % отрицательной обратной связи, в результате действия которой коэффициент усиления по напряжению Ku чуть меньше 1, так как Uвых=UвхUбэ. Действительно,

Резистор Rз (рис. 10.28,а) осуществляет гальваническую связь затвора с общей шиной, т.е. обеспечивает в режиме покоя равенство потенциалов затвора и общей шины усилительного каскада. Поэтому потенциал затвора ниже потенциала истока на величину падения напряжения на резисторе Rи от протекания постоянной составляющей тока Iио. В связи с этим напряжение Uзио является отрицательным. Источник входного сигнала Ег через разделительный конденсатор Cр1 подключается ко входу усилительного каскада, а нагрузка через разделительный конденсатор Ср2 подключается к стоку транзистора.

в) схема с общим стоком

Цепочка Rи Си называется звеном автоматического смещения иобеспечивает стабильное отрицательное напряжение Uзио для режима покоя. Кроме того, конденсатор Си устраняет отрицательную обратную связь по переменному току, и его сопротивление на самой низкой частоте усиливаемого напряжения должно быть во много раз меньше сопротивления резистора Rи. Ёмкость конденсатора Си рассчитывается по формуле

, где fнч – самая низкая частота усиливаемого сигнала.

Требуемую величину Rи для заданного тока покоя I определяют с помощью сток-затворной вольт-амперной характеристики транзистора. Рабочая точка в режиме покоя обычно выбирается на середине линейного участка сток-затворной характеристики, что обеспечивает минимальные нелинейные искажения. Выбрав положение рабочей точки, находят сопротивление резистора Rи=Uзи0/ Ico

С помощью Rи осуществляется стабилизация режима покоя. Например, при изменении температуры уменьшился ток Iсо, это приводит к уменьшению падения напряжения на Rи и уменьшению модуля отрицательного напряжения на затворе, а это приводит к возрастанию Iсо.

Каскад с общим стоком на полевом транзисторе используется в схеме повторителя, имеет повышенное входное и пониженное выходное сопротивление. Для истокового повторителя целесообразно использовать транзисторы с повышенными значениями крутизны. С приближением KU к единице уменьшается влияние емкости затвор-исток на входную емкость каскада.

Выходное сопротивление . Коэффициент усиления

Источник