Меню

Номинальный расчетный ток трансформатора

Расчет и выбор силового трансформатора по мощности и количеству

Расчет и выбор силового трансформатора по мощности и количеству

Расчетный срок службы трансформатора обеспечивается при соблюдений условий:

Расчет и выбор силового трансформатора по мощности и количеству

При проектировании, строительстве, пуске и эксплуатации эти условия никогда не выполняются (что и определяет ценологическаятеория).

  1. Определение номинальной мощности трансформатора
  2. Режимы работы трансформатора
  3. Перегрузки силовых трансформаторов
  4. Расчет номинальной мощности трансформатора

Определение номинальной мощности трансформатора

Для правильного выбора номинальной мощности трансформатора (автотрансформатора) необходимо располагать суточным графиком нагрузки, из которого известна как максимальная, так и среднесуточная активная нагрузки данной подстанции, а также продолжительность максимума нагрузки.

График позволяет судить, соответствуют ли эксплуатационные условия загрузки теоретическому сроку службы (обычно 20…25 лет), определяемому заводом изготовителем.

Для относительного срока службы изоляции и (или) для относительного износа изоляции пользуются выражением, определяющим экспоненциальные зависимости от температуры. Относительный износ L показывает, во сколько раз износ изоляции при данной температуре больше или меньше износа при номинальной температуре. Износ изоляции за время оценивают по числу отжитых часов или суток: Н=Li.

В общем случае, когда температура изоляции не остается постоянной во времени, износ изоляции определяется интегралом:

Расчет и выбор силового трансформатора по мощности и количеству

В частности, среднесуточный износ изоляции:

Расчет и выбор силового трансформатора по мощности и количеству

Влияние температуры изоляции определяет, сколько часов с данной температурой может работать изоляция при условии, что ееизнос будет равен нормированному износу за сутки:

Расчет и выбор силового трансформатора по мощности и количеству

При температуре меньше 80°С износ изоляции ничтожен и им можно пренебречь. Температура охлаждающей среды, как правило, не равна номинальной температуре и, кроме того, изменяется во времени. В связи с этим для упрощения расчетов используют эквивалентную температуру охлаждающей среды, под которой понимают такую неизменную за расчетный период температуру, при которой износ изоляции трансформатора будет таким же, как и при изменяющейся температуре охлаждающей среды в тот же период.

Допускается принимать эквивалентную температуру за несколько месяцев или год равной среднемесячным температурам или определять эквивалентные температуры по специальным графикам зависимости эквивалентных месячных температур от среднемесячных и среднегодовых, эквивалентных летних (апрель—август), осенне-зимних (сентябрь—март) и годовых температур от среднегодовых.

Если при выборе номинальной мощности трансформатора на однотрансформаторной подстанции исходить из условия

Расчет и выбор силового трансформатора по мощности и количеству

(где Рмах — максимальная активная нагрузка пятого года эксплуатации; Рр — проектная расчетная мощность подстанции), то при графике с кратковременным пиком нагрузки (0,5… 1,0 ч) трансформатор будет длительное время работать с недогрузкой. При этом неизбежно завышение номинальной мощности трансформатора и, следовательно, завышение установленной мощности подстанции.

В ряде случаев выгоднее выбирать номинальную мощность трансформатора близкой к максимальной нагрузке достаточной продолжительности с полным использованием его перегрузочной способности с учетом систематических перегрузок в нормальном режиме.

Режимы работы трансформатора

Наиболее экономичной работа трансформатора по ежегодным издержкам и потерям будет в случае, когда в часы максимума он работает с перегрузкой (эксплуатация же стремится работать в режимах, когда в часы максимума загрузки данного трансформатора он не превышает свою номинальную мощность). В реальных условиях значение допустимой нагрузки выбирается в соответствии с графиком нагрузки и коэффициентом начальной нагрузки и зависит также от температуры окружающей среды, при которой работает трансформатор.

Коэффициент нагрузки, или коэффициент заполнения суточного графика нагрузки, практически всегда меньше единицы:

Расчет и выбор силового трансформатора по мощности и количеству

В зависимости от характера суточного графика нагрузки (коэффициента начальной загрузки и длительности максимума), эквивалентной температуры окружающей среды, постоянной времени трансформатора и вида его охлаждения согласно ГОСТ допускаются систематические перегрузки трансформаторов.

Перегрузки силовых трансформаторов

Перегрузки определяются преобразованием заданного графика нагрузки в эквивалентный в тепловом отношении (рис. 3.5). Допустимая нагрузка трансформатора зависит от начальной нагрузки, максимума нагрузки и его продолжительности и характеризуется коэффициентом превышения нагрузки:

Расчет и выбор силового трансформатора по мощности и количеству

Расчет и выбор силового трансформатора по мощности и количеству

Допустимые систематические перегрузки трансформаторов определяются из графиков нагрузочной способности трансформаторов, задаваемых таблично или графически. Коэффициент перегрузки передается в зависимости от среднегодовой температуры воздуха /сп вида охлаждения и мощности трансформаторов, коэффициента начальной нагрузки кн н и продолжительности двухчасового эквивалентного максимума нагрузки tmах.

Для других значений tmax допустимый можно определить по кривым нагрузочной способности трансформатора.

Если максимум графика нагрузки в летнее время меньше номинальной мощности трансформатора, то в зимнее время допускается длительная 1%я перегрузка трансформатора на каждый процент недогрузки летом, но не более чем на 15 %. Суммарная систематическая перегрузка трансформатора не должна превышать 150 %. При отсутствии систематических перегрузок допускается длительная нагрузка трансформаторов током на 5 % выше номинального при условии, что напряжение каждой из обмоток не будет превышать номинальное.

На трансформаторах допускается повышение напряжения сверх номинального: длительно — на 5 % при нагрузке не выше номинальной и на 10% при нагрузке не выше 0,25 номинальной; кратковременно (до 6 ч в сутки) — на 10 % при нагрузке не выше номинальной.

Дополнительные перегрузки одной ветви за счет длительной недогрузки другой допускаются в соответствии с указаниями заводом — изготовителя. Так, трехфазные трансформаторы с расщепленной обмоткой 110 кВ мощностью 20, 40 и 63 М ВА допускают следующие относительные нагрузки: при нагрузке одной ветви обмотки 1,2; 1,07; 1,05 и 1,03 нагрузки другой ветви должны составлять соответственно 0; 0,7; 0,8 и 0,9.

Расчет номинальной мощности трансформатора

Номинальная мощность, MB • А, трансформатора на подстанции с числом трансформаторов п > 1 в общем виде определяется из выражения

Расчет и выбор силового трансформатора по мощности и количеству

Для сетевых подстанций, где примерно до 25 % потребителей из числа малоответственных в аварийном режиме может быть отключено, обычно принимается равным 0,75…0,85. При отсутствии потребителей III категории К 1-2 = 1 Для производств (потребителей) 1й и особой группы известны проектные решения, ориентирующиеся на 50%ю загрузку трансформаторов.

Рекомендуется широкое применение складского и передвижного резерва трансформаторов, причем при аварийных режимах допускается перегрузка трансформаторов на 40 % на время максимума общей суточной продолжительностью не более 6 ч в течение не более 5 сут.

При этом коэффициент заполнения суточного графика нагрузки трансформаторов кн в условиях его перегрузки должен быть не более 0,75, а коэффициент начальной нагрузки кпн — не более 0,93.

Так как К1-2 1 их отношение К = К 1-2 / К пер. всегда меньше единицы и характеризует собой ту резервную мощность, которая заложена в трансформаторе при выборе его номинальной мощности. Чем это отношение меньше, тем меньше будет закладываемый в трансформаторы резерв установленной мощности и тем более эффективным будет использование трансформаторной мощности с учетом перегрузки.

Завышение коэффициента к приводит к завышению суммарной установленной мощности трансформаторов на подстанции.

Уменьшение коэффициента возможно лишь до такого значения, которое с учетом перегрузочной способности трансформатора и возможности отключения неответственных потребителей позволит покрыть основную нагрузку одним оставшимся в работе трансформатором при аварийном выходе из строя второго трансформатора.

Читайте также:  Ток в первичной обмотке трансформатора тока схема

Таким образом, для двухтрансформаторной подстанции

Расчет и выбор силового трансформатора по мощности и количеству

В настоящее время существует практика выбора номинальной мощности трансформатора для двух трансформаторной подстанции с учетом значения к = 0,7, т.е.

Расчет и выбор силового трансформатора по мощности и количеству

Формально выражение (3.14) выглядит ошибочно: действительно, единица измерения активной мощности — Вт; полной (кажущейся) мощности — ВА. Есть различия и в физической интерпретации S и Р. Но следует подразумевать, что осуществляется компенсация реактивной мощности на шинах подстанции 5УР, ЗУР и что коэффициент мощности cos ф находится в диапазоне 0,92… 0,95.

Тогда ошибка, связанная с упрощением выражения (3.13) до (3.14), не превышает инженерную ошибку 10%, которая включает в себя и приблизительность значения 0,7, и ошибку в определении фиксированного Рмах

Таким образом, суммарная установленная мощность двухтрансформаторной подстанции

Расчет и выбор силового трансформатора по мощности и количеству

При этом значении к в аварийном режиме обеспечивается сохранение около 98 % Рмах без отключения неответственных потребителей. Однако, учитывая принципиально высокую надежность трансформаторов, можно считать вполне допустимым отключение в редких аварийных режимах какойто части неответственных потребителей.

При двух и более установленных на подстанции трансформаторах при аварии с одним из параллельно работающих трансформаторов оставшиеся в работе трансформаторы принимают на себя его нагрузку. Эти аварийные перегрузки не зависят от предшествовавшего режима работы трансформатора, являются кратковременными и используются для обеспечения прохождения максимума нагрузки.

Далее приведены значения кратковременных перегрузок масляных трансформаторов с системами охлаждения М, Д, ДЦ, Ц сверх номинального тока (независимо от длительности предшествующей нагрузки, температуры окружающей среды и места установки).

Аварийные перегрузки масляных трансформаторов со всеми видами охлаждения:

Расчет и выбор силового трансформатора по мощности и количеству

Для трехобмоточных трансформаторов и автотрансформаторов указанные перегрузки относятся к наиболее нагруженной обмотке.

Источник



Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Формула проверки первичного тока ТТ на термическую устойчивость

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

Формула проверки первичного тока ТТ на динамическую устойчивость

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

выбор первичного тока трансформатора тока по термической и электродинамической устойчивости

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Читайте также:  При коротком замыкании сила тока в цепи многократно превышает

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

формулы определения сопротивления по низкой стороне ТТ при различных схемах подключения

zр — сопротивление реле

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

предварительная таблица выбора ТТ по мощности

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Источник

Выбор измерительных трансформаторов тока — основные характеристики

В статье описаны основные параметры трансформаторов тока.

Коэффициент трансформации

Расчетный коэффициент трансформации – это отношение первичного расчетного тока к вторичному расчетному току, он указан на табличке с паспортными данными в виде неправильной дроби.

Чаще всего используются измерительные трансформаторы x / 5 A, большинство измерительных приборов имеют при 5 A больший класс точности. По техническим и, прежде всего, по экономическим соображениям при большой длине измерительной линии рекомендуется использовать трансформаторы x / 1 A. Потери в линии в 1-A-трансформаторах составляют всего 4 % от потерь 5-A-трансформаторов. Но в этом случае измерительные приборы имеют обычно меньший класс точности.

Номинальный ток

Расчетный или номинальный ток (использовавшееся прежде название) – это указанное на табличке с паспортными данными значение первичного и вторичного тока (первичный расчетный ток, вторичный расчетный ток), на которое рассчитан трансформатор. Нормированные расчетные токи (кроме классов 0,2 S и 0,5 S) равны 10 – 12,5 – 15 – 20 – 25 – 30 – 40 – 50 – 60 – 75 A, а также числам, полученным из этих значений умножением на число, кратное десяти.

Читайте также:  Сила тока в цепи 2 а напряжение 30 в чему равно сопротивление проводника

Нормированные вторичные токи равны 1 и 5 A, предпочтительно 5 A.

Нормированные расчетные токи для классов 0,2 S и 0,5 S равны 25 – 50 – 100 A, а также числам, полученным из этих значений умножением на число, кратное десяти, вторичный ток (только) 5 A.

Правильный выбор номинального тока первичной обмотки очень важен для точности измерения. Рекомендуется максимально близкое сверху к измеренному / определенному току (In) отношение.

Пример: In = 1 154 A; выбранное отношение = 1 250/5.

Номинальный ток можно определить на основании следующих предпосылок:

  • Номинальный ток измерительного трансформатора, умноженный на 1,1 (трансформатор с ближайшими характеристиками)
  • Предохранитель (номинальный ток предохранителя = номинальный ток трансформатора) измеряемой части установки (низковольтные главные распределительные щиты, распределительные шкафы)
  • Фактический номинальный ток, умноженный на 1,2 (этот метод нужно использовать, если фактический ток значительно ниже номинального тока трансформатора или предохранителя)

Нежелательно использовать трансформаторы с избыточными расчетными величинами,
т.к. в этом случае может сильно снизиться точность измерения при относительно низких токах
(относительно первичного расчетного тока).

Расчетная мощность трансформаторов тока

Расчетная мощность трансформатора тока – это результат нагрузки со стороны измерительного прибора и квадранта вторичного расчетного тока, она измеряется в ВA. Нормированные значения равны 2,5 – 5 – 10 – 15 – 30 ВА. Можно также выбирать значения, превышающие 30 ВА в соответствии со случаем применения. Расчетная мощность описывает способность трансформатора пропускать вторичный ток в пределах допускаемой погрешности через нагрузку.

При выборе подходящей мощности необходимо учесть следующие параметры: Потребление мощности измерительными приборами (при последовательном подключении . ), длина кабеля, поперечное сечение кабеля. Чем больше длина кабеля и меньше его поперечное сечение, тем больше потери в питающей линии, т.е. номинальная мощность трансформатора должна иметь соответствующую величину.

Мощность потребителей должна быть близка к расчетной мощности трансформатора. Очень низкая мощность потребителей (низкая нагрузка) повышает кратность тока нагрузки, поэтому измерительные приборы могут быть недостаточно защищены от короткого замыкания. Слишком большая мощность потребителей (высока нагрузка) отрицательно сказывается на точности.

Расчет трансформатора тока малой мощности

Часто в системе уже имеются трансформаторы тока, которые можно использовать при установке нового измерительного прибора. При этом нужно обратить внимание на номинальную мощность трансформатора: Достаточна ли она для дополнительных измерительных приборов?

Классы точности

В зависимости от точности трансформаторы тока делятся на классы. Стандартные классы точности: 0,1; 0,2; 0,5; 1; 3; 5; 0,1 S; 0,2 S; 0,5 S. Коду класса соответствует кривая погрешностей тока и угловая погрешность.

Классы точности трансформаторов тока зависят от значения измерения. Если трансформаторы тока работают с малым по отношению к номинальному току током, точность измерения существенно снижается. В приведенной ниже таблице указаны предельные значения погрешности с учетом значений номинального тока:

Класс точности трансформаторов тока

Для комбинированных измерительных устройств рекомендуется использовать трансформаторы тока того же класса точности. Трансформаторы тока с более низким классом точности приводят к снижению точности измерения всей системы – преобразователь тока + измерительное устройство, которая в этом случае определяется классом точности трансформатора тока. Тем не менее, использование трансформаторов тока с меньшей точностью измерения, чем в измерительном устройстве, возможно с технической точки зрения.

Кривая погрешностей трансформатора тока

Кривая погрешностей трансформаторов тока

Измерительные трансформаторы и защитные трансформаторы

В то время, как измерительные трансформаторы должны максимально быстро насыщаться после выхода за диапазон потребляемого тока (выражается кратностью тока нагрузки FS), чтобы предотвратить рост вторичного тока в случае сбоя (например, короткого замыкания) и защитить таким образом подключенные устройства, защитные трансформаторы должны максимально долго не насыщаться.

Защитные трансформаторы используются для защиты установки в сочетании с соответствующими коммутирующими устройствами. Стандартные классы точности для защитных трансформаторов – 5P и 10P. «P» означает «protection» – ″защита″. Номинальная кратность тока нагрузки указывается (в %) после обозначения класса защиты. Например, 10P5 означает, что при пятикратном номинальном токе негативное отклонение со стороны вторичного тока от значения, ожидаемого в соответствии с коэффициентом трансформации (линейно),
составляет не более 10 % от ожидаемого значения.

Для комбинированных измерительных приборов настоятельно рекомендуется использовать измерительные трансформаторы.

Стандартные размеры шин для трансформаторов

Стандартные размеры шин трансформаторов тока

Разъемные трансформаторы тока представлены в общем каталоге.

Источник

Расчет основных электрических величин и главной изоляции обмоток трансформатора

Расчет трансформатора начинается с определения основных электрических величин: мощности на одну фазу и стержень; номинальных токов на стороне ВН и НН; фазных токов и напряжений.

¨ Мощность одной фазы трансформатора, кВ*А,

= ,
где S – мощность трансформатора; m – число фаз.

¨ Мощность на одном стержне, кВ*А,

S` = ,
где C– число активных (несущих обмотки) стержней.
Обычно для 3-фазных трансформаторов число фаз равно числу стержней.

¨ Номинальный (линейный) ток, А,

на стороне НН I1 = ;
на стороне ВН I2 = ,
где S – мощность трансформатора, кВ*А; U1и U2 – соответствующие значения напряжений обмоток, кВ.
Для однофазного трансформатора номинальный ток, А, определяется по формуле
I = .
При определении токов мощность подставляется в киловатт-амперах (кВ*А), а напряжение в киловольтах (кВ).

¨ Фазные токи, А, трехфазных трансформаторов

при соединении в звезду или зигзаг:
Iф = Iл;
при соединении обмотки в треугольник
Iф = ,
где IЛ – номинальный линейный ток трансформатора.
Схема соединения и группа обмоток обычно задается.

¨ Фазные напряжения, В, трансформатора

при соединении обмотки в звезду или зигзаг:
= ,
при соединении обмотки в треугольник:
Uф = Uл,
где Uл – номинальное линейное напряжение соответствующих обмоток.

¨ Испытательное напряжение трансформатора

Необходимо для определения основных изоляционных промежутков, между обмотками и другими токоведущими деталями.
Это напряжение, при котором проводится испытание трансформатора, а именно электрическая прочность изоляции.
Испытательное напряжение для каждой обмотки трансформатора определяется по табл. 1 или 2 в зависимости от класса напряжения соответствующей обмотки.

Испытательные напряжения промышленной частоты (50 Гц) для масляных силовых трансформаторов (ГОСТ 1516.1-76)

Источник