Меню

Номинальный импульсный разрядный ток

УЗИП — устройство защиты от импульсных перенапряжений

Назначение УЗИП

Устройство защиты от импульсных перенапряжений (УЗИП) — устройство предназначенное для защиты электрической сети и электрооборудования от перенапряжений которые могут быть вызваны прямым или косвенным грозовым воздействием, а так же переходными процессами в самой электросети.

Другими словами УЗИПы выполняют следующие функции:

Защита от удара молнии электрической сети и оборудования, т.е. защита от перенапряжений вызванных прямыми или косвенными грозовыми воздействиями

Защита от импульсных перенапряжений вызванных коммутационными переходными процессами в сети, связанных с включением или отключением электрооборудования с большой индуктивной нагрузкой, например силовых или сварочных трансформаторов, мощных электродвигателей и т.д.

Защита от удаленного короткого замыкания (т.е. от перенапряжения возникшего в результате произошедшего короткого замыкания)

УЗИПы имеют различные названия: ограничитель перенапряжений сети — ОПС (ОПН), ограничитель импульсных напряжений — ОИН, но все они имеют одинаковые функции и принцип работы.

Внешний вид УЗИП:

Внешний вид УЗИП

Принцип работы и устройство защиты УЗИП

Принцип работы УЗИПа основан на применении нелинейных элементов, в качестве которых, как правило, выступают варисторы.

Варистор — это полупроводниковый резистор сопротивление которого имеет нелинейную зависимость от приложенного напряжения.

Ниже представлен график зависимости сопротивления варистора от приложенного к нему напряжения:

Зависимость сопротивления УЗИП от напряжения сети

Из графика видно, что при повышении напряжения выше определенного значения сопротивление варистора резко снижается.

Как это работает на практике разберем на примере следующей схемы:

Схема работы узип

На схеме упрощенно представлена однофазная электрическая цепь, в которой через автоматический выключатель подключена нагрузка в виде лампочки, в цепь так же включен УЗИП, с одной стороны он подключен к фазному проводу после автоматического выключателя, с другой — к заземлению.

В нормальном режиме работы напряжение цепи составляет 220 Вольт, при таком напряжении варистор УЗИПа обладает высоким сопротивлением измеряющимся тысячами МегаОм, настолько высокое сопротивление варистора препятствует протеканию тока через УЗИП.

Что же происходит при возникновении в цепи импульса высокого напряжения, например, в результате удара молнии (грозового воздействия).

устройство защиты узип

На схеме видно что при возникновении импульса в цепи резко возрастает напряжение, что в свою очередь вызывает мгновенное, многократное уменьшение сопротивления УЗИПа (сопротивление варистора УЗИПа стремится к нулю), уменьшение сопротивление приводит к тому, что УЗИП начинает проводить электрически ток, закорачивая электрическую цепь на землю, т.е. создавая короткое замыкание которое приводит к срабатыванию автоматического выключателя и отключению цепи. Таким образом ограничитель импульсных перенапряжений защищает электрооборудование от протекания через него импульса высокого напряжения.

Классификация УЗИП

Согласно ГОСТ Р 51992-2011 разработанного на основе международного стандарта МЭК 61643-1-2005 есть следующие классы УЗИП:

УЗИП 1 класс — (так же обозначается как класс B) применяются для защиты от непосредственного грозового воздействия (удара молнии в систему), атмосферных и коммутационных перенапряжений. Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Обязательно должен устанавливаться для отдельно стоящих зданий на открытой местности, зданий подключаемых к воздушной линии, а так же зданий имеющих молниеотвод или находящихся рядом с высокими деревьями, т.е. зданиях с высоким риском оказаться под прямым или косвенным грозовым воздействием. Нормируются импульсным с формой волны 10/350 мкс. Номинальный разрядный ток составляет 30-60 кА.

УЗИП 2 класс — (так же обозначается как класс С) применяются для защиты сети от остатков атмосферных и коммутационных перенапряжений прошедших через УЗИП 1-го класса. Устанавливаются в местных распределительных щитках, например во вводном щитке квартиры или офиса. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток составляет 20-40 кА.

УЗИП 3 класс — (так же обозначается как класс D) применяются для защиты электронной аппаратуры от остатков атмосферных и коммутационных перенапряжений, а так же высокочастотных помех прошедших через УЗИП 2-го класса. Устанавливаются в разветвительные коробки, розетки, либо встраивается непосредственно в само оборудование. Примером использования УЗИПа 3-го класса служат сетевые фильтры применяемые для подключения персональных компьютеров. Нормируются импульсным током с формой волны 8/20 мкс. Номинальный разрядный ток составляет 5-10 кА.

Маркировка УЗИП — характеристики

характеристики узип

Характеристики УЗИП:

  • Номинальное и максимальное напряжение — максимальное рабочее напряжение сети на работу под которым рассчитан УЗИП.
  • Частота тока — рабочая частота тока сети на работу при которой рассчитан УЗИП.
  • Номинальный разрядный ток (в скобках указана форма волны тока) — импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА), который УЗИП способен пропустить многократно.
  • Максимальный разрядный ток (в скобках указана форма волны тока) — максимальный импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА) который УЗИП способен пропустить один раз не выйдя при этом из строя.
  • Уровень напряжения защиты — максимальное значение падения напряжения в килоВольтах (кВ) на УЗИПе при протекании через него импульса тока. Данный параметр характеризует способность УЗИПа ограничивать перенапряжение.

    Схема подключения УЗИП

    Общим условием при подключении УЗИП являетя наличие со стороны питающей сети предохранителя или автоматического выключателя соответствующего нагрузке сети, поэтому все представленные ниже схемы будут включать в себя автоматические выключатели (схему подключения УЗИП в электрощитке смотрите здесь):

    Схемы подключения УЗИП (ОПС, ОИН) в однофазную сеть 220В (двухпроводную и трехпроводную):

    узип схема подключения 220в

    Схемы подключения УЗИП (ОПС, ОИН) в трехфазную сеть 3800В

    подключение узип в трехфазной сети

    Принципиальные схемы подключения УЗИП выглядят следующим образом:

    принципиальные электрические схемы подключения узип

    При устройстве многоступенчатой защиты от перенапряжения, т.е. установки УЗИПов 1-го класса в ВРУ здания совместно с УЗИПами 2-го класса в распределительных щитах здания и с УЗИПами 3-го класса, например, в розетках, необходимо соблюдать расстояние между УЗИПами по кабелю не менее 10 метров:

    Устройство многоступенчатой защиты электросети здания от перенапряжений

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    Источник

    Защита оборудования от импульсных перенапряжений и коммутационных помех

    На написание данного текста меня сподвигло ощущение незнания многими принципов работы, использования (или даже незнание о существовании) параллельной защиты от импульсных перенапряжений в сети, в том числе и вызванных разрядами молний
    Импульсные помехи в сети довольно распространены, они могут возникать во время грозы, при включении/выключении мощных нагрузок (поскольку сеть это RLC цепь, то в ней при этом возникают колебания, вызывающие выбросы напряжения) и многие другие факторы. В слаботочных, в том числе цифровых цепях, это еще более актуально, поскольку коммутационные помехи достаточно хорошо проникают через источники питания (больше всего защищенными являются Обратноходовые преобразователи — в них энергия трансформатора передается на нагрузку, когда первичная обмотка отключена от сети).
    В Европе уже давно де-факто практически обязательна установка модулей защиты от импульсных перенапряжений (далее буду, для простоты, называть грозозащитой или УЗИП), хотя сети у них получше наших, а грозовых областей меньше.
    Особо актуальна стало применение УЗИП последние 20 лет, когда ученые стали разрабатывать все больше вариантов полевых MOSFET транзисторов, которые очень боятся превышения обратного напряжения. А такие транзисторы используются практически во всех импульсных источниках питания до 1 кВА, в качестве ключей на первичной (сетевой) стороне.
    Другой аспект применения УЗИП — обеспечение ограничения напряжения между нейтральным и земляным проводником. Перенапряжение на нейтральном проводнике в сети может возникать, например, при переключении Автомата ввода резерва с разделенной нейтралью. Во время переключения, нейтальный проводник окажется «в воздухе» и на нем может быть что угодно.

    Характеристики импульсов перенапряжения

    Импульсы перенапряжений в сети характеризуются формой волны и амплитудой тока. Форма импульса тока характеризуется временем его нарастания и спада — для европейских стандартов это импульсы 10/350 мкс и 8/20 мкс. В России, как это случается часто в последнее время, переняли стандарты Европы и появился ГОСТ Р 51992-2002. Числа в обозначении формы импульса означают следующее:
    — первая — время (в микросекундах) нарастания импульса тока с 10% до 90% от максимального значения тока;
    — вторая — время (в микросекундах) спада импульса тока до 50% от максимального значения тока;

    Защитные устройства делятся на классы в зависимости от мощности импульса, который они могут рассеять:
    1) Класс 0 (А) — внешняя грозозащита (в данном посте не рассматриваем);
    2) Класс I (B) — защита от перенапряжений, характеризующихся импульсными токами амплитудой от 25 до 100 кА формой волны 10/350 мкс (защита в вводно-распределительных щитах здания);
    3) Класс II ( C) — защита от перенапряжений, характеризующихся импульсными токами амплитудой от 10 до 40 кА формой волны 8/20 мкс (защита в этажных щитах, электрощитах помещений, вводах электропитающего оборудования);
    3) Класс III (D) — защита от перенапряжений, характеризующихся импульсными токами амплитудой до 10 кА формой волны 8/20 мкс (в большинстве случаев защита встроена в оборудование — если оно изготовлено в соответствии с ГОСТ);

    Приборы защиты от импульсных перенапряжений

    Основными двумя приборами УЗИП являются разрядники и варисторы различной конструкции.

    Разрядник

    Разрядник — электрический прибор открытого (воздушного) или закрытого (наполненного инертными газами) типа, содержащий в простейшем случае два электрода. При превышении напряжения на электродах разрядника определенного значения, он «пробивается», тем самым ограничивая напряжение на электродах на определенном уровне. При пробое разрядника по нему протекает значительный ток (от сотен Ампер до десятков килоАмпер) за короткое время (до сотен микросекунд). После снятия импульса перенапряжения, если не была превышена мощность, которую способен рассеять разрядник — он переходит в исходное закрытое состояние до следующего импульса.

    Основные характеристики разрядников:
    1) Класс защиты (см. выше);
    2) Номинальное рабочее напряжение — длительное, рекомендованное производителем рабочее напряжение разрядника;
    3) Максимальное рабочее переменное напряжение — предельное длительное напряжение разрядника, при котором он гарантированно не сработает;
    4) Максимальный импульсный разрядный ток (10/350) мкс — максимальное значение амплитуды тока с формой волны (10/350) мкс, при котором разрядник не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
    5) Номинальный импульсный разрядный ток (8/20) мкс — номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором разрядник обеспечит ограничение напряжения на заданном уровне;
    6) Напряжение ограничения — максимальное напряжение на электродах разрядника при его пробое из-за возникновения импульса перенапряжения;
    7) Время срабатывания — время открывания разрядника (практически для всех разрядников — менее 100 нс);
    8) (редко указываемый производителями параметр) статическое напряжение пробоя разрядника — статическое напряжение (медленно изменяемое во времени), при котором произойдет открытие разрядника. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 20-30% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;

    Выбор разрядника достаточно творческий процесс с многочисленными «плевками в потолок» — ведь мы заранее не знаем значение тока, который возникнет в сети.
    При выборе разрядника можно руководствоваться следующими правилами:
    1) При установке защиты в вводных щитах от воздушной линии электропередач или в областях, где частые грозы, устанавливать разрядники с максимальным разрядным током (10/350) мкс не менее 35 кА;
    2) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, разрядник откроется и выйдет из строя от перегрева);
    3) Выбирать разрядники с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 и 2). Обычно напряжение ограничения разрядников класса I от 2,5 до 5 кВ;
    4) Между проводниками N и PE устанавливать разрядники, специально для этого предназначенные (производители указывают что они для подключения к N-PE проводникам). Кроме того, эти разрядники характеризуются более низкими рабочими напряжениями, обычно порядка 250 В переменного тока (между нейтралью и землей в нормальном режиме вообще напряжение отсутствует) и большим разрядным током — от 50 кА до 100 кА и выше.
    5) Подключать разрядники к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины. Например, при возникновении в проводнике длиной 2 мера сечением 4 мм2 тока 40 кА, на нем упадет (в идеальном случае без учена индуктивности — а она тут играет большую роль) около 350 В. Если таким проводником подключен разрядник, то в точке подключения к сети напряжение ограничения будет равным сумме напряжения ограничения разрядника и падения напряжения на проводнике при импульсном токе (наши 350 В). Таким образом, значительно ухудшаются защитные свойства.
    6) По возможности устанавливать разрядники перед вводным автоматическим выключателем и обязательно перед УЗО (при этом необходимо последовательно с разрядником установить предохранитель с характеристикой gL на ток 80-125 А, для обеспечения отключения разрядника от сети при выходе его из строя). Поскольку установить УЗИП перед вводным автоматом никто не позволит — желательно чтобы автомат был на ток не менее 80А с характеристикой срабатывания D. Это снизит вероятность ложного срабатывания автомата при срабатывании разрядника. Установка УЗИП перед УЗО обусловлена низкой стойкостью УЗО к импульсным токам, кроме того, при срабатывании разрядника N-PE, УЗО будет ложно срабатывать. Также, желательно УЗИП устанавливать перед счетчиками электроэнергии (что опять же, энергетики не позволят сделать)

    Варистор

    Варистор — полупроводниковый прибор с «крутой» симметричной вольт-амперной характеристикой.


    В исходном состоянии варистор имеет высокое внутреннее сопротивление (от сотен кОм до десятков и сотен МОм). При достижении напряжения на контактах варистора определенного уровня, он резко снижает свое сопротивление и начинает проводить значительный ток, при этом напряжение на контактах варистора изменяется незначительно. Как и разрядник, варистор способен поглотить энергию импульса перенапряжения длительностью до сотен микросекунд. Но при длительном повышенном напряжении, варистор выходит из строя с выделением большого количества тепла (взрывается).
    Все варисторы в исполнении на DIN-рейку оснащены тепловой защитой, предназначенной для отключения варистора от сети при его недопустимом перегреве (при этом по локальной механической индикации можно определить, что варистор вышел из строя).
    На фото варисторы с встроенным тепловым реле после превышения рабочего напряжения разных значений. При значительном перенапряжении такая встроенная тепловая защита практически не эффективна — варисторы взрываются так, что уши закладывает. Однако, встроенная тепловая защита в варисторных модулях на DIN-рейку достаточно эффективна при любых длительных перенапряжениях, и успевает отключить варистор от сети

    Небольшое видео натуралистических испытаний 🙂 (подача на варистор диаметром 20 мм повышенного напряжения — превышение на 50 В)

    Основные характеристики варисторов:
    1) Класс защиты (см. выше). Обычно варисторы имеют класс защиты II ( C), III (D);
    2) Номинальное рабочее напряжение — длительное, рекомендованное производителем рабочее напряжение варистора;
    3) Максимальное рабочее переменное напряжение — предельное длительное напряжение варистора, при котором он гарантированно не откроется;
    4) Максимальный импульсный разрядный ток (8/20) мкс — максимальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
    5) Номинальный импульсный разрядный ток (8/20) мкс — номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор обеспечит ограничение напряжения на заданном уровне;
    6) Напряжение ограничения — максимальное напряжение на варисторе при его открытии из-за возникновения импульса перенапряжения;
    7) Время срабатывания — время открывания варистора (практически для всех варисторов — менее 25 нс);
    8) (редко указываемый производителями параметр) классификационное напряжение варистора — статическое напряжение (медленно изменяемое во времени), при котором ток утечки варистора достигает значения 1 мА. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 15-20% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;
    9) (очень редко указываемый производителями параметр) допустимая погрешность параметров варистора — практически для всех варисторов ±10%. Эту погрешность следует учитывать при выборе максимального рабочего напряжения варистора.

    Выбор варисторов также как и разрядников сопряжен с трудностями, связанными с неизвестностью условий их работы.
    При выборе варисторной защиты можно руководствоваться следующими правилами:
    1) Варисторы устанавливаются как вторая-третья ступень защиты от импульсных перенапряжений;
    2) При использовании варисторной защиты II класса совместно с защитой I класса, необходимо учитывать разную скорость срабатывания варисторов и разрядников. Поскольку разрядники медленнее варисторов, если УЗИП не согласовать, варисторы будут принимать на себя бОльшую часть импульса перенапряжения и быстро выйдут из строя. Для согласования I и II классов грозозащиты применяются специальные согласующие дроссели (производители УЗИ имеют их ассортимент для таких случаев), либо длина кабеля между УЗИП I и II классов должна быть не менее 10 метров. Недостатком такого решение является необходимость вреза дросселей в сеть или ее удлинение, что увеличивает ее индуктивную составляющую. Единственным исключением является немецкий производитель PhoenixContact, который разработал специальные разрядники I класса с так называемым «электронным поджигом», которые «согласованы» с варисторными модулями этого же производителя. Эти комбинации УЗИП можно устанавливать без дополнительного согласования;
    3) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, варистор откроется и выйдет из строя от перегрева). Но тут нельзя перебарщивать, поскольку напряжение ограничения варистора напрямую зависит от классификационного (а следовательно, от максимального рабочего напряжения). Примером неудачного выбора максимального рабочего напряжения являются варисторные модули ИЭК с максимальным длительным напряжением 440 В. Если их устанавливать в сеть с номинальным напряжением 220 В, то работа его будет крайне неэффективна. Кроме того, следует учитывать, что варисторы имеют тенденцию к «старению» (т.е. со временем, при многих срабатываниях варистора, его классификационное напряжение начинает снижаться). Оптимальным для России будет применение варисторов длительным рабочим напряжением от 320 до 350 В;
    4) Выбирать нужно с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 — 3). Обычно напряжение ограничения варисторов класса II для сетевого напряжения от 900 В до 2,5 кВ;
    5) Не соединять параллельно варисторы для увеличения суммарной рассеиваемой мощности. Многие производители защит УЗИП (особенно класса III (D)) грешат параллельным соединением варисторов. Но, поскольку 100% одинаковых варисторов не существует (даже из одной партии они разные), всегда один из варисторов окажется самым слабым звеном и выйдет из строя при импульсе перенапряжения. При последующих же импульсах выйдут из строя цепочной остальные варисторы, поскольку они уже не будет обеспечивать требуемую мощность рассеяния (это тоже самое что соединять параллельно диоды для увеличения общего тока — так делать нельзя)
    6) Подключать варисторы к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины (рассуждения те же, что и для разрядников).
    7) По возможности устанавливать варисторы перед вводным автоматическим выключателем и обязательно перед УЗО. Поскольку установить УЗИП перед вводным автоматом никто не позволит — желательно чтобы автомат был на ток не менее 50А с характеристикой срабатывания D (для варисторов II класса). Это снизит вероятность ложного срабатывания автомата при срабатывании варистора.

    Краткий обзор производителей УЗИП

    Ведущими производителями, специализирующимися на УЗИП низковольтных сетей являются: Phoenix Contact; Dehn; OBO Bettermann; CITEL; Hakel. Также у многих производителей низковольтной аппаратуры, в продукции имеются модули УЗИП (ABB, Schneider Electric и др.). Кроме того, китай успешно копирует УЗИП мировых производителей (поскольку Варистор достаточно простой прибор, китайские производители изготавливают довольно качественную продукцию — например модули TYCOTIU).
    Кроме того, на рынке довольно много готовых щитков защиты от импульсных перенапряжения, включающих в себя модули одного или двух классов защиты, а также предохранители для обеспечения безопасности, в случае выхода из строя защитных элементов. В этом случае, щиток закрепляется на стене и подключается к имеющейся электропроводке в соответствии с рекомендациями производителя.
    Стоимость УЗИП разнится в зависимости от производителя в разы. В свое время (несколько лет назад), мною был проведен анализ рынка и выбран ряд производителей II класса защиты (некоторые в список не попали, в связи с отсутствием исполнений модулей на требуемое длительное рабочее напряжения 320 В или 350 В).
    Как замечание по качеству, могу выделить только модули HAKEL (например PIIIMT 280 DS) — они имеют слабые контактные соединения вставок и изготовлены из горючего пластика, что запрещено ГОСТ Р 51992-2002. На данный момент HAKEL обновили ряд продукции — о ней ничего сказать не могу, т.к. не буду использовать HAKEL больше никогда

    Применение УЗИП класса III (D) и защиту цифровых цепей устройств оставим на потом.
    В заключение могу сказать, если после прочтения всего у вас появилось больше вопросов, чем после прочтения заголовка — это хорошо, поскольку тема заинтересовала, а она настолько необъятная, что можно не одну книгу написать.

    Источник

    

    номинальный разрядный ток

    номинальный разрядный ток
    In
    Пиковое значение тока, протекающего через УЗИП, с формой волны 8/20. Применяют в классификации УЗИП при испытаниях класса II, а также при предварительной обработке УЗИП для испытаний классов I и II.
    [ГОСТ Р 51992-2011 (МЭК 61643-1:2005)]

    Тематики

    • УЗИП (устройства защиты от импульсных перенапряжений)
    • nominal discharge current

    Справочник технического переводчика. – Интент . 2009-2013 .

    Смотреть что такое «номинальный разрядный ток» в других словарях:

    номинальный разрядный ток In — 3.8 номинальный разрядный ток In (nominal discharge current In): Пиковое значение тока, протекающего через УЗИП, с формой волны 8/20. Применяют в классификации УЗИП при испытаниях класса II, а также при предварительной обработке УЗИП для… … Словарь-справочник терминов нормативно-технической документации

    номинальный разрядный ток разрядника — Максимальное значение грозового разрядного тока, имеющего форму волны 8/20 мкс, которое используется для классификации разрядника. Номинальный разрядный ток используется также для возбуждения сопровождающего тока во время рабочих испытаний [ГОСТ… … Справочник технического переводчика

    номинальный разрядный ток ОПН — Iн Максимальное (амплитудное) значение грозового импульса тока 8/20 мкс, используемое для классификации ОПН. [ГОСТ Р 52725 2007] EN nominal discharge current of an arrester, In peak value of lightning current impulse (see 3.17) which is used to… … Справочник технического переводчика

    номинальный разрядный ток ОПН Iн — 3.20 номинальный разрядный ток ОПН Iн: Максимальное (амплитудное) значение грозового импульса тока 8/20 мкс, используемое для классификации ОПН. Источник … Словарь-справочник терминов нормативно-технической документации

    номинальный — 3.7 номинальный: Слово, используемое проектировщиком или производителем в таких словосочетаниях, как номинальная мощность, номинальное давление, номинальная температура и номинальная скорость. Примечание Следует избегать использования этого слова … Словарь-справочник терминов нормативно-технической документации

    ток — ((continuous) current carrying capacity ampacity (US)): Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р 51992-2011: Устройства защиты от импульсных перенапряжений низковольтные. Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Технические требования и методы испытаний — Терминология ГОСТ Р 51992 2011: Устройства защиты от импульсных перенапряжений низковольтные. Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Технические требования и методы испытаний… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р 52725-2007: Ограничители перенапряжений нелинейные для электроустановок переменного тока напряжением от 3 до 750 кВ. Общие технические условия — Терминология ГОСТ Р 52725 2007: Ограничители перенапряжений нелинейные для электроустановок переменного тока напряжением от 3 до 750 кВ. Общие технические условия оригинал документа: 3.34 взрывобезопасность: Отсутствие взрывного разрушения при… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ 21415-75: Конденсаторы. Термины и определения — Терминология ГОСТ 21415 75: Конденсаторы. Термины и определения оригинал документа: 13. Анод конденсатора D. Kondensatoranode E. Anode of a capacitor F. Anode d un condensateur Положительный электрод полярного конденсатора Определения термина из… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р 53165-2008: Батареи аккумуляторные свинцовые стартерные для автотракторной техники. Общие технические условия — Терминология ГОСТ Р 53165 2008: Батареи аккумуляторные свинцовые стартерные для автотракторной техники. Общие технические условия оригинал документа: 3.3 емкость батареи: Количество электричества, А × ч, которое полностью заряженная батарея может … Словарь-справочник терминов нормативно-технической документации

    Источник

    Основные параметры УЗИП

    УЗИП — устройство защиты от импульсных перенапряжений. Предотвращает повреждение электросети в результате внешних и внутренних воздействий, вызванных следующими факторами:

    • Перенапряжение, вызванное попаданием молнии.
    • Скачки напряжения, в результате подключения или отключения силового оборудования, мощных двигателей и т. п.
    • Короткое замыкание.

    Основные Классы УЗИП, назначение

    В зависимости от назначения и способа применения, УЗИП делятся на три класса.

    I класс УЗИП

    Используется для защиты зданий и сооружений от возгорания при грозовом воздействии.

    Устанавливаются во водно-распределительном устройстве или в распредщите. Обязателен для монтажа в отдельно стоящих зданиях и сооружениях, объектах, подключенных к воздушным ЛЭП, имеющих молниеотвод, находящихся в непосредственной близости от высоких деревьев. То есть объектах расположение которых обуславливает высокую степень риска оказаться под воздействием грозового разряда.

    Принцип работы внешней молниезащиты

    Грозозащитный разрядник состоит из трех ключевых узлов:

    • Молниеприемника, включающего пассивный громоотвод и активный молниеприемник, ионизирующий воздух для увеличения зоны защиты
    • Тоководов, перенаправляющих избыточный ток на заземлители.
    • Заземлителя – металлического проводника, отводящего разряд в землю.

    II класс УЗИП

    Применяются для защиты резких изменений параметров электрической сети, в том числе как дополнительная молниезащита

    III класс УЗИП

    Зашита от скачков напряжения, между фазой и землей, фильтрация высокочастотных помех

    Устанавливается вблизи от высокочастотного оборудования. Нейтрализует импульсы, оставшиеся после срабатывания УЗИП первого и второго класса. Широко используется в IT-сфере, медицине и для установки в частных домах.

    Принцип работы внутренней молниезащиты

    Электромагнитный импульс, возникший после удара молнии, передаётся по электро-, информационной сети, трубопроводам и нейтрализуется благодаря УЗИП и заземлению.

    Таким образом, система защиты сооружений и электрических сетей – это комплекс устройств, которые последовательно гасят критическое напряжение, возникшее в сети в результате удара молнии или резкого скачка, вызванного подключением или отключением силового оборудования, коротким замыканием.

    Основные классы УЗИП

    Характеристики УЗИП

    Для правильного выбора оборудования следует ориентироваться на его основные технические характеристики:

    Считается, что при попадании молнии в систему внешней молниезащиты половина тока молнии уходит в землю, а вторая половина попадает на главную заземляющую шину (ГЗШ). Далее эти 50% тока распределяются равномерно по всем присоединенным к ГЗШ коммуникациям. Отсюда делается вывод, что минимальная мощность УЗИП определяется именно той частью тока молнии, которая попадёт в систему питания. Учитывая, что 99% ударов молний в России имеют амплитуду 100-200 кА, в расчетах можно исходить из этой цифры. Если в объект входит только трёхфазное электропитание, тогда, при наличии УЗИП, по каждому проводу питания пойдёт около 1/4 от тех 50 кА, которые попадут на ГЗШ, т.е. около 12,5 кА. Это как раз та самая минимальная величина I imp (10/350), допустимая для УЗИП класса I. С учетом неравномерности распределения токов, рекомендуется брать УЗИП с I imp не менее 20 кА (10/350).

    Виды подключения УЗИП

    Перед монтажом следует провести работы по установке контура заземления объекта или проверить работоспособность существующего. Лучшее решение – пригласить контрольно-измерительную лабораторию, чтобы проверить соответствие параметров сопротивления всех элементов сети:

    • петли фаза-ноль;
    • контура заземления;
    • изоляции и т. д.

    При устройстве заземляющего контура следует учесть особенности грунта и используемых материалов, архитектуру здания, мощность и другие характеристики установленного оборудования. В зависимости от его параметров выдвигаются требования к организации контура заземления:

    • Здания с аппаратурой связи – сопротивление не должно превышать 4 Ом.
    • Воздушные линии связи – не более 2 Ом.
    • Трансформаторные подстанции, максимальное значение – 4 Ом.
    • Заземление молниеотводов – до 10 Ом.
    • Жилые и административные здания и сетями на 220 или 380 В – не более 30 Ом.

    Существует три вида подключения УЗИП:

    Виды подключения

    • Т-образное (рис. 1) – устройство подключается параллельно к электроцепи. Рабочий ток не идет через УЗИП, что позволяет использовать устройство при любых параметрах системы электроснабжения. Сечение проводников подбирайте согласно рекомендациям производителя устройства.
    • V-образное (рис. 2) – рабочий ток проходит через устройство. Такой вариант демонстрирует лучшие показатели защиты от грозового воздействия.
    • Последовательное (рис. 3) – устройство защиты располагается в разрыве питающего провода. Важно, чтобы номинальный ток нагрузки прибора был больше предельного рабочего тока цепи.

    Как выбрать УЗИП

    Помимо технических характеристик УЗИП, при выборе устройства нужно учитывать следующие показатели:

    • Тип ввода: воздушный или кабельный.
    • Способ установки: наружный или внутренний.
    • Способ подключения УЗИП с учетом режима с общей точкой и режима установки.
    • Количество фаз: одно- или трехфазные.
    • Количество вводов: одно- или двухвводные.
    • Тип системы заземления и т.д.

    Наша компания специализируется на разработках в области защиты электро- и информационных сетей от импульсных перенапряжений, проектировании заземлений и молниезащиты. Профессиональные кадры и собственное производство позволяет нам выполнять заказы любой сложности, в том числе нестандартные. Действует доставка и самовывоз. Узнать больше о технических характеристиках УЗИП, получить помощь в выборе устройства или заказать проект, можно связавшись с сотрудником «Ezetek» по телефону или через онлайн-чат.

    Источник

    Большая Энциклопедия Нефти и Газа

    Номинальный разрядный ток

    Номинальный разрядный ток / разр — указанное в ГОСТ или ТУ значение тока, при разряде которым при нормальной температуре ( / окр 20 С) определяют емкость аккумулятора. Для большинства аккумуляторов номинальный разрядный ток в амперах численно равен 0 1 значения номинг чьной емкости, выраженной в ампер-часах. [2]

    Номинальным разрядным током элемента называется наибольший длительный ток, допускаемый при его эксплуатации. Емкостью элемента называется количество электричества, выраженное в ампер-часах ( А — ч), которое можно получить от элемента за весь период его работы. [4]

    Как указывалось выше, номинальным разрядным током 0 5-часового режима аккумулятора С ( СК) при температуре электролита 25 С является ток 25 № а. В конце 0 5-часового разряда и толчке током 50 № а, напряжение на аккумуляторе снижается до 1 56 в. При температуре минус 15 С и предварительном разряде током 9 № а напряжение на аккумуляторе снижается до 1 28 в, при разряде током 2 — № а напряжение при толчке током 50 № а будет менее 1 в на элемент. [6]

    Наибольший ток, который можно допустить в элементе, называется номинальным разрядным током , а количество электричества, которое можно получить от элемента за время его работы, называется его емкостью. [7]

    Выбирая для питания приемника или другого устройства элементы и батареи, необходимо знать их напряжение, емкость, номинальный разрядный ток ( или наименьшее сопротивление нагрузки), срок сохранности ( для марганцево-цинковых 4 — 18 мес. Рекомендуется выбирать элементы и батареи такой емкости, чтобы потребляемый от них ток составлял не более 50 — 60 % номинального разрядного тока. [9]

    Аккумуляторы С ( СК) — 3 и С ( СК) — 8 наиболее употребительны для комплектации аккумуляторных батарей для подстанций, а ток 25 № — номинальный разрядный ток аккумуляторов С ( СК) в 0 5-часовом режиме. [11]

    Под номинальным разрядным током понимается ток десятичасовой разрядки, равный 0 1 QN, при котором гарантируется номинальная емкость аккумуляторной батареи QN — Допускается разрядка батареи током, доходящим при работе на стартер до 3 и даже до 4 QN. Однако разрядка батареи большим током все же вредна: при быстрой разрядке резко и неравномерно меняется объем активной массы, в результате чего происходит коробление пластин и нарушение связи активной массы с. Поэтому следует умеренно пользоваться стартером и хорошо подготавливать холодный двигатель к пуску. Нужно избегать длительного включения стартера при затрудненном пуске двигателя. [13]

    Номинальный разрядный ток / разр — указанное в ГОСТ или ТУ значение тока, при разряде которым при нормальной температуре ( / окр 20 С) определяют емкость аккумулятора. Для большинства аккумуляторов номинальный разрядный ток в амперах численно равен 0 1 значения номинг чьной емкости, выраженной в ампер-часах. [14]

    Импульсное пробивное напряжение разрядника, также относящееся к числу его основных нормированных характеристик, характеризует наибольшую величину импульсного напряжения на разряднике в момент перед пробоем его искровых промежутков. В соответствии с изложенным номинальным разрядным током разрядника называется амплитудное значение импульсного тока, протекающего через разрядник после пробоя его искровых промежутков, а расчетным сопровождающим током — максимально возможная амплитуда тока, который по расчету должен протекать через рязрядник при приложении к нему полупериода напряжения промышленной частоты, равного наибольшему допустимому напряжению. [15]

    Источник

Читайте также:  Уравнительные токи параллельно работающих трансформаторов
Adblock
detector