Меню

Найти полное сопротивление цепи переменного тока с частотой 50 гц

Физика. 11 класс

Конспект урока

Физика, 11 класс

Урок 8. Переменный электрический ток

Перечень вопросов, рассматриваемых на уроке:

1) Свойства переменного тока;

2) Понятия активного сопротивления, индуктивного и ёмкостного сопротивления;

3) Особенности переменного электрического тока на участке цепи с резистором;

4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.

Глоссарий по теме

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.

Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.

𝒾 — мгновенное значение силы тока;

m— амплитудное значение силы тока.

– колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулами:

При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.

Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени — мгновенное значение (помечают строчными буквами — і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Um — амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.

Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.

Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.

При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:

Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.

В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение. В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.

Мощность цепи переменного тока

Величина cosφ – называется коэффициентом мощности

Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.

Разбор типовых тренировочных заданий

1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.

Дано: e=80 sin 25πt.

Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону

Согласно данным нашей задачи:

Время одного оборота, т.е. период связан с циклической частотой формулой:

Подставляем числовые данные:

2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Напишем закон Ома для переменного тока:

Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?

Полное сопротивление цепи равно:

Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:

Читайте также:  Мощность цепи постоянного тока реферат

то после вычислений получаем Im ≈0,09 Ом.

2. Установите соответствие между физической величиной и прибором для измерения.

Источник



Примеры решения задач. Рекомендации для студента

Рекомендации для студента

Цепь с активным сопротивлением и емкостью

В цепи (рисунок 5.4) с активным сопротивлением и емкостью напряжение на реактивном сопротивлении отстает от тока по фазе на 90 0 .

-напряжение на активном сопротивлении;

— напряжение на емкостном сопротивлении;

= = — действующее напряжение в цепи;

— ток в этой цепи определяется по закону Ома;

В цепи переменного тока с активным сопротивлением и емкостью при частоте 100Гц измерительные приборы показывают: амперметр – 6А, вольтметр – 180В, ваттметр – 360 Вт. Определить параметры схемы замещения (рисунок 5.6) с последовательным соединением элементов, реактивную и полную мощности цепи.

Дано: I= 6А;

Определить: R, Xc, Z, S, Q

Определим полное сопротивление:

Z=180/6=30 Ом;

Активное сопротивление: R=P/I

R=360/36=10 Ом;

S=180*6=1080ВА;

Q= 1018 вар.

В сеть переменного синусоидального тока напряжением U =220В необходимо включить электрическую лампу напряжением Uл =127В и мощностью Рл=100Вт. Определить емкость конденсатора С, который необходимо включить последовательно с лампой, чтобы напряжение на лампе не превышало номинального Uн=127В. На какое напряжение должен быть рассчитан конденсатор (рабочее напряжение), чтобы иметь четырехкратный запас прочности? Частота тока сети f=50 Гц.

Дано: U =220В;

Определить: С, Uс

Номинальный ток электрической лампы:

Напряжение, которое компенсируется конденсатором:

Емкость такого конденсатора:

Обеспечение четырехкратного запаса прочности:

Конденсатор рассчитан на рабочее напряжение 1000 В.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО ТРЕХфазного ТОКА

Примеры решения задач

Электроизмерительные приборы и электрические измерения

Задача № 1

Вольтметр с пределом измерения 7,5 В и максимальным числом делений 150 имеет наибольшую абсолютную погрешность Зб мВ. Определить класс точности прибора и относительную погрешность в точках 40, 80, 90, 100 и 120 делений.

Решение

С = Uмак / N = 0,05 В/дел ;

e = DU/Uизм × 100% = 1,8 %; 0,9 %; 0,8 %; 0,72 %; 0,6 %.

Задача № 2

Для расширения предела измерения амперметра с внутренним сопротивлением Rпр=0,5 Ом в 50 раз необходимо подключить шунт. Определить сопротивление шунта, ток полного отклонения прибора и максимальное значение тока на расширенном пределе, если падение напряжения на шунте Uш = 75 мВ.

Решение

Задача № 3

Магнитоэлектрический прибор с сопротивлением 10 Ом и током полного отклонения 7,5 мА может быть использован в качестве амперметра на 30 А. Определить сопротивление шунта.

Решение

Задача № 4

Милливольтметр с пределом измерения 75 мВ и внутренним сопротивлением Rп=25 Ом имеет 150 делений шкалы. Определить сопротивление шунта, чтобы прибором можно было измерять предельное значение тока 30 А. Определить цену деления прибора в обоих случаях.

Решение

Задача № 5

Верхний предел измерений вольтметра 100 В, его внутреннее сопротивление 10 кОм, число делений шкалы 100. Определить цену деления шкалы вольтметра, если он включен с добавочным резистором 30 кОм.

n = U ’ / U => U ’ = nU;

Задача № 6

Верхний предел измерения амперметра 1 А, его сопротивление RA . Определить сопротивление шунта Rш, чтобы при токе 5 А прибор показывал ток 1 А.

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО однофазного ТОКА

Задача № 7

Определите действующее значение тока

i = 341sin (ωt + π/2) (А)

Задача № 8

Период переменного тока Т. В какой момент времени мгновенное значение тока достигает положительного максимума, если ток задан выражением i = imsin (ωt + π/4)?

Задача № 9

Действующее значение тока в цепи равно 1 А. Полное сопротивление цепи 10 Ом. Векторная диаграмма имеет вид:

Чему равна амплитуда напряжения, приложенного к цепи, и каков характер сопротивления?

Электрическая цепь обладает емкостным сопротивлением.

Задача № 10

В электрической цепи все элементы соединены последовательно. По векторной диаграмме напряжений восстановите принципиальную схему этой цепи.

Задача № 11

К резистору сопротивлением R=1,5 кОм приложено напряжение u=120sin(wt—p/6) В. Записать выражение для мгновенного значения тока, определить его амплитудное и действующее значения, мощность. Построить векторную диаграмму для момента времени t =0.

i = (u/R)sin(wt — p/6); im = um/ R = 0,08 A; i = 0,08sin(wt — p/6);

Задача №12

Действующее значение переменного напряжения U, измеренное на резисторе сопротивлением R=1,2 к0м, составляет 820 мВ. Начальная фаза ju = p/6 частота f = 150 Гц. Определить амплитудное и действующее значения тока в резисторе, записать выражение для его мгновенного значения. Зарисовать кривые изменения тока и напряжения и построить векторную диаграмму.

i = 0,96sin(942t + p/6).

Задача № 13

Через катушку индуктивности сопротивлением XL=1,2 Ом проходит переменный ток частотой f = 800 Гц и амплитудным значением Im =450 мА. Определить индуктивность катушки, действующее значение напряжения на ней, а также полную потребляемую мощность. Записать выражение для мгновенного значения напряжения на катушке.

Решение:

L = XL / 2pf = 0,24 мГн;

Задача № 14

Действующие значения переменного напряжения и тока с частотой f = 25 Гц в катушке индуктивности U = 36,5 В и I = 1,25 А соответственно. Определить индуктивность катушки, записать выражения — для мгновенных значений напряжения и тока, построить графики изменения этих значений во времени.

XL = U / I = 29,2 Ом;

L = XL / 2pf = 0,18 мГн;

Задача № 15

Мгновенные значения тока и напряжения в конденсаторе i = 0,72 sin(2198t+50°) А и u = 340sin(2198t — 40°) В. Определить емкость и сопротивление конденсатора, полную потребляемую мощность и период сигнала.

I = im / = 0,51 А; U = um / = 241 В;

XC = U / I = 472 Ом

C = 1 / w XC = 96 мкФ;

Т = 2p / w = 2,8×10 -3 с

Задача № 16

Два последовательно соединенных конденсатора емкостями С1=2 мкф и С2=1 мкФ подключены к источнику с частотой f = 100 Гц и действующим значением напряжения U = 105В. Определить действующие значения тока в цепи и напряжений на каждом из конденсаторов.

1 / 2pfC2 = 796,18 Ом;

I = U / XC = 0,044 A;

Задача № 17

В цепь переменного синусоидального тока частоты 50 Гц включены последовательно потребители: катушка индуктивности 0,4 Гн, резистор с сопротивлением 16 Ом и конденсатор емкостью 400 мкФ. Полное падение напряжения в цепи 500 В. Определить ток в цепи, напряжение на отдельных потребителях и активную мощность цепи.

XL = 2pfL = 125,6 Ом;

Z = (R 2 + (XL — XC) 2 ) 1/2 = 118,8 Ом;

P = UIcosj = 282,8 Вт.

Задача № 18

Полное сопротивление катушки 8 Ом, её индуктивность 300 мкГн. Действующее значение падения напряжения на ней составляет 4,8 В при частоте 2500 Гц. Определить угол сдвига фаз между током и напряжением и определить полную, активную и реактивную мощности, активное сопротивление катушки.

Z = (RL 2 + XL 2 ) 1/2 => RL = ( Z 2 — XL 2 ) 1/2 = 6,5 Ом;

P = Scos j = 2,32 Вт;

Q = Ssin j = 1,69 вар.

Задача № 19

К потребителю, состоящему из последовательно соединенных резистора и конденсатора, подведено переменное напряжение с действующим значением 500 В. Активная мощность потребителя 320 Вт, коэффициент мощности равен 0,75. Определить ток в цепи, полную и реактивную мощность, полное, активное и реактивное сопротивление потребителя.

S = P/ Scos j = 426 ВА;

Q = Ssin j = 282 вар;

R = Z cos j = 441 Ом;

XC = Z sin j = 388 Ом.

Задача № 20

Катушка с индуктивным сопротивлением 140 Ом и конденсатор с емкостным сопротивлением 80 Ом соединены последовательно и подключены к источнику переменного тока с действующим значением напряжения 25 В и частотой 1 кГц. Амплитудное значение тока в цепи равно 282 мА. Определить полное сопротивление потребителя, активное сопротивление катушки и активную мощность.

I = im / 2 1/2 = 0,2 A;

Z = U / I = 125 Ом;

P = UIcosj = 4,4 Вт.

Задача № 21

К источнику переменного тока с действующим значением напряжения 50 В подключены параллельно соединенные катушка индуктивности с индуктивным сопротивлением 8 Ом и резистор сопротивлением 40 Ом. Определить токи в ветвях и неразветвленной части цепи и коэффициент мощности.

tg j =IL / IR = 5; j = 79 0 ; cosj = 0,19.

Задача № 22

Электрическая цепь состоит из включенных параллельно резистора, конденсатора и катушки индуктивности. Токи во всех трех ветвях одинаковы и равны 15 А. Определить ток в неразветвленной части цепи.

Задача № 23

Читайте также:  Чему равна энергия магнитного поля в катушке индуктивности по которой течет ток

Соединенные параллельно катушка индуктивности и конденсатор подключены к источнику переменного тока с напряжением 100 В. Определить ток в неразветвленной части цепи при индуктивном сопротивлении 20 Ом и емкостном сопротивлении 10 Ом.

К источнику переменного тока подключен резистор сопротивлением R = 160 Oм, соединенный параллельно с катушкой, индуктивность которой L = 0,023 Гн и активное сопротивление RL = 60 Ом. Мощность, выделившаяся на резисторе, Р = 35 Вт, действующее значение тока в катушке IL =702,5 мА. Определить емкость конденсатора, который необходимо подключить в цепь для получения резонанса токов, резонансную частоту, действующие значения входного напряжения и тока в неразветвленной части цепи до резонанса и в момент резонанса, а также активную и реактивную составляющие тока, полную, активную и реактивную мощности до резонанса и в момент резонанса. Построить векторные диаграммы для этих двух режимов.

Решение:

f = ( 1/2pL ) ( ZL 2 — RL 2 ) 1/2 = 612 Гц, XL= 88,4 Ом

cos j = 0,83 sin j = 0,56 S = UI = 77,6 В×А P = UI cos j = 64,4 Вт Q = UI sin j = 43,3 вар

XL = XC => C = 1/(4p 2 f 2 L) = 2,9 мкФ

Задача № 25

Чему равен ток в неразветвленной части цепи?

Задача № 26

К электрической цепи прикладывается напряжение U = 160 В. Сопротивление резистора R = 20 Ом, сопротивление катушки индуктивности XL = 60 Ом. Определить напряжение на конденсаторе при резонансе.

При резонансе в цепи протекает электрический ток = 8 А. При резонансе напряжений падение напряжения на катушке равно падению напряжения на конденсаторе.

Задача № 27

Последовательно соединены R, L и C. L = 0,1 Гн; XC = 31,4 Ом; f = 50 Гц. Выполняются ли условия резонанса?

=> = 100 мкФ; = 28,4 Гц. Не выполняется.

Задача № 28

Последовательно соединены R, L и C. При каком условии векторная диаграмма имеет вид, изображенный на рисунке?

При резонансе напряжений. XL = XC

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО ТРЕХфазного ТОКА

Задача № 29

Полная мощность, потребляемая трехфазной нагрузкой 1000 В·А. Реактивная мощность 600 Вар. Найдите коэффициент мощности нагрузки.

Задача № 30

Три одинаковые катушки включены в трехфазную сеть с линейным напряжением 380 В. Активное сопротивление каждой катушки 16 Ом, индуктивное 12 Ом. Катушки соединены треугольником. Определите активную мощность, потребляемую катушками.

Из треугольника сопротивлений è

Задача № 31

К трехфазной сети с линейным напряжением 380 В и частотой 50 Гц подключена равномерная нагрузка, соединенная звездой, с активным сопротивлением в фазе 70 Ом и индуктивностью 180 мГн. Определить линейный ток.

Задача № 32

В трехфазную сеть с действующим значением напряжения в фазе 380 В и частотой 50 Гц включена равномерная индуктивная нагрузка, соединенная треугольником. Коэффициент мощности нагрузки 0,85, а потребляемая мощность 1,44 кВт. Определить индуктивность катушек.

, из треугольника сопротивлений =>

Задача № 33

В каждую фазу трехфазной четырехпроводной цепи с нейтральным проводом последовательно включены активные, индуктивные и емкостные сопротивления. Сопротивления во всех фазах одинаковы и равны: активные 8 Ом, индуктивные 12 Ом, емкостные 6 Ом. Линейное напряжение сети 220 В. Определить фазные токи.

Задача № 34

Индуктивный потребитель мощностью 4,8 кВт соединен треугольником и подключен к трехфазной сети с линейным напряжением 380 В и частотой 50 Гц. Коэффициент мощности потребителя равен 0,8. Определить линейный ток.

Задача № 35

К источнику трехфазной сети с линейным напряжением Uл =380 В и частотой f = 50 Гц подключена равномерная нагрузка, соединенная звездой, с полным сопротивлением в фазе 90Ом и индуктивностью L = 180 мГн. Определить активную, реактивную и полную мощности, коэффициент мощности, действующие значения линейного тока и напряжения. Построить векторную диаграмму токов и напряжений.

Решение.

Реактивное сопротивление в фазе

Активное сопротивление в фазе

R = (Z 2 — XL 2 ) 1/2 = 70 Ом.

Коэффициент мощности катушки

Мощности, потребляемые нагрузкой:

Векторная диаграмма токов и напряжений представлена на рисунке:

Задача № 36

К трехфазной четырехпроводнрй сети с дей­ствующим значением линейного напряжения Uл= 380 В и частотой f = 50 Гц подключен приемник энергии, соединенный звездой. В фазу А включена катушка с индуктивностью L = 0,18 Гн и активным сопротивлением RA = 80 Ом, в фазу В -резистор сопротивлением RB = 69 Ом, в фазу С — конденсатор емкостью С = 30 мкФ с последова­тельно соединенным резистором сопротивлением RC = 40 Ом. Определить действующие значения линей­ных и фазных токов, полную потребляемую нагруз­кой мощность.

Решение.

в фазе С: ZC = (RC 2 + XC 2 ) 1/2 = 110 Ом.

Коэффициенты мощности в фазах:

Полная мощность нагрузки: S = (P 2 + Q 2 ) 1/2 = 1280 В×А

Задача № 37

В трехфазную сеть с действующим значением линейного напряжения 220 В и частотой 50 Гц включен потребитель, соединенный тре­угольником и имеющий равномерную нагрузку, со­стоящую из катушки с индуктивностью L = 0,3 Гн и последовательно включенного с ней резистора с активным сопротивлением 20 Ом в каждой фазе. Определить действующие значения линейных и фаз­ных токов, фазное напряжение, потребляемую полную, активную и реактивную мощности.

Решение.

Полное сопротивление нагрузки в фазе

Z = (R 2 + XL 2 ) 1/2 = 96 Ом.

Коэффициент мощности: cosj = R /Z = 0,208;

Активная: P = 3Uф Iф cosj = 317 Вт.

Реактивная: Q = 3Uф Iф sinj = 1470 вар.

Трансформатор

Задача № 38

Трехфазный трансформатор, обмотки которого соединены способом «звезда‑звезда», имеет следующие характеристики: потери холостого хода 140 Вт, потери в режиме короткого замыкания 650 Вт. Трансформатор отдает в нагрузку активную мощность 6000 Вт. Коэффициент загрузки трансформатора 0,8. Определить КПД трансформатора.

Задача № 39

Номинальное напряжение первичной обмотки трехфазного трансформатора, обмотки которого соединены способом «звезда‑звезда», равно10 кВ. Амплитудное значение магнитной индукции в сердечнике трансформатора 1,6 Тл, площадь поперечного сечения магнитопровода трансформатора 25см 2 , вторичная обмотка содержит 65 витков. Линейный коэффициент трансформации равен 15. Найдите частоту переменного тока в сети.

Задача № 40

Обмотки трехфазного трансформатора соединены способом «звезда‑звезда». Трансформатор имеет следующие характеристики: U = 690 В, Bm = 1,3 Тл, N2 = 70 витков. Частота переменного тока в сети 100 Гц. Определите площадь поперечного сечения магнитопровода.

Задача № 41

Трехфазный трансформатор характеризуется следующими параметрами: номинальный ток вторичной обмотки 87 А, потери холостого хода трансформатора 800 Вт, потери короткого замыкания 4000 Вт, КПД трансформатора 0,92. Рабочий ток во вторичной обмотке равен 71 А. Какая активная мощность передается нагрузке от трансформатора?

Задача № 42

Трехфазный трансформатор характеризуется следующими параметрами: полная мощность трансформатора 160 кВ×А, потери короткого замыкания 3000 Вт, КПД трансформатора 0,95. Трансформатор отдает нагрузке активную мощность 100 кВт. Коэффициент мощности нагрузки 0,85. Чему равны потери холостого хода?

Задача № 43

Чему равна полная мощность трехфазного трансформатора с номинальным током вторичной обмотки 91 А, если нагрузке с коэффициентом мощности 0,75 передается активная мощность 1000 кВт? Рабочий ток при этом равен 80 А.

Асинхронные двигатели

Задача № 44

Три катушки обмотки статора асинхронного двигателя питаются трехфазным током частотой 50 Гц. Частота вращения ротора 2850 об/мин. Найдите скольжение.

Задача № 45

Скольжение асинхронного двигателя 5 %; частота питающей сети 50 Гц; число пар полюсов вращающегося магнитного поля р = 1. Найдите частоту вращения ротора.

Задача № 46

Определить число полюсов у статора обмотки асинхронного трехфазного двигателя, имеющего номинальную частоту вращения 750 об/мин.

Задача № 47

Частота питающего тока 50 Гц. Найдите скорость вращения четырехполюсного вращающегося магнитного поля в об/мин.

Задача № 48

Чему равна сумма потерь асинхронного двигателя при КПД 90%, если он потребляет активную мощность 20 кВт?

Задача № 49

Определите КПД асинхронного двигателя, если потери энергии в нем 5 кВт, а потребляемая из сети мощность 25 кВт.

Источник

Полное сопротивление цепи переменного тока

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Читайте также:  Как поменять направление тока в цепи

Введем понятие полного сопротивления цепи переменному току — Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

cepi-peremennogo-toka

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

polnoe-soprotivlenie-posledovat-rl

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью. а) — схема цепи; б) — сдвиг фаз тока и напряжения; в) — треугольник напряжений; д) — треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

polnoe-soprotivlenie-formula-1

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z 2 ) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-2(1)

Извлекая квадратный корень из обеих частей этого равенства, получим,

polnoe-soprotivlenie-formula-3(2)

Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

polnoe-soprotivlenie-posledovat-rc

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью. а) — схема цепи; б) — треугольник сопротивлений .

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

polnoe-soprotivlenie-formula-4(3)

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

polnoe-soprotivlenie-posledovat-rlc

Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) — схема цепи; б) — треугольник сопротивлений .

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

polnoe-soprotivlenie-formula-5(4)

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-6(5)

polnoe-soprotivlenie-formula-7(6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

parallelnoe-soedinenie

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C .

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

polnoe-soprotivlenie-formula-8(7)

Приводя к общему знаменателю подкоренное выражение, получим:

polnoe-soprotivlenie-formula-9(8)

polnoe-soprotivlenie-formula-10(9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

polnoe-soprotivlenie-formula-11(10)

Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

kolebatelnyj-kontur

Рисунок 6. Эквивалентная схема колебательного контура.

Формула полного сопротивления для этого случая будет:

polnoe-soprotivlenie-formula-12(11)

Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

polnoe-soprotivlenie-formula-13(12)

В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

polnoe-soprotivlenie-formula-14(13)

При соблюдении этого условия полное сопротивление колебательного контура будет равно:

polnoe-soprotivlenie-formula-15(14)

где L—индуктивность катушки в Гн;

С—емкость конденсатора в Ф;

R—активное сопротивление катушки в Ом.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник