Меню

Мощность в цепи синусоидального тока диаграмма

Мощность в цепи синусоидального тока

В цепях синусоидального тока рассматривают понятия мгновенной, активной, реактивной и полной мощности.

Мгновенной мощностью называют произведение мгновенных значений напряжения и тока.

Активной мощностью называют среднее значение мгновенной мощности за период колебания. Для цепей синусоидального тока:

где — сдвиг по фазе между напряжением и током,

U,I – действующие значения напряжения и тока.

Активная мощность характеризует необратимые преобразования электрической энергии в другие виды энергии, например, в тепловую. Активная мощность измеряется в ваттах (Вт).

Реактивная мощность, это мощность, характеризующая взаимный энергообмен между реактивными элементами цепи и источником энергии, т.е. обратимые преобразования энергии, например, в энергию магнитного поля и представляет собой амплитуду мгновенной мощности реактивных элементов. Реактивная мощность измеряется вольт-амперах реактивных (вар) и определяется по формуле:

В зависимости от знака угла реактивная мощность будет либо положительной, т.е. носить индуктивный характер ( ), либо отрицательной и носить емкостной характер ( ).

Полной мощностью называется максимальное значение мощности, которое может отдать или получить участок электрической цепи, при заданных значениях напряжения и тока U, I. Понятие полной мощности часто употребляется для характеристики эксплуатационных возможностей электротехнических устройств (трансформаторов, генераторов, электрических машин и др.). Номинальное значение полной мощности является их паспортной величиной.

Определяется полная мощность по формуле:

Полная мощность измеряется в вольт-амперах (ВА).

Комплексная мощность

При анализе цепей синусоидального тока символическим методом используют понятие комплексной мощности. Комплексной мощностью называется произведение комплекса напряжения на комплексно сопряженный ток.

где — комплекс напряжения на участке цепи,

— сопряженное комплексное значение тока на участке цепи.

Пусть заданы комплексы напряжения и тока на участке цепи:

где U,I — действующие значения напряжения и тока,

— начальные фазы напряжения и тока соответственно,

— активные составляющие напряжения и тока,

— реактивные составляющие напряжения и тока.

Величина, сопряженная комплексу тока равна:

Тогда, комплексная мощность , представляющая собой произведение комплексных чисел запишется следующим образом:

где — активная мощность,

Таким образом, действительная часть комплексной мощности представляет собой активную мощность, мнимая часть – реактивную мощность, а модуль комплексной мощности S – полную мощность.

Пример 8

Определить по условиям примера 7 полную, активную и реактивную мощности, отдаваемые источником энергии в цепь. Известно, что:

Решение

Определим величину комплексно сопряженного тока

Найдем комплексную мощность

Активная мощность, отдаваемая источником энергии равна 1172(Вт).

Реактивная мощность, отдаваемая источником энергии положительна, равна 69(вар) и носит индуктивный характер.

Полная мощность, отдаваемая источником энергии равна 1174(ВА).

Источник



№28 Энергия и мощность в цепи синусоидального тока.

Пусть на некотором участке цепи, напряжение на зажимах которого равно u, током i за время dt переносится электрический заряд dq = idt. Затрачиваемая источником энергия равна при этом dw = udq = uidt, а развиваемая мощность p = dw/dt = ui. Эта величина называется мгновенной мощностью и определяет скорость и направление движения энергии на рассматриваемом участке. Если энергия поступает в цепь и накапливается в ней, функция w(t) возрастает, и мгновенная мощность положительна как производная возрастающей функции. Напряжение u и ток i в эти моменты времени имеют одинаковые знаки. Процесс накопления энергии в цепи наблюдается, например, при заряде конденсатора. В те моменты времени, когда u и i имеют разные знаки, мгновенная мощность отрицательна, функция w(t), определяющая энергию, поступающую в цепь, убывает, так как только убывающая функция имеет отрицательную производную. Убыль энергии в электрической цепи означает возврат ее источнику. Такая ситуация возникает при разряде конденсатора.

Энергия, поступающая в цепь, может не возвращаться к источнику, а необратимо преобразовываться в тепло или механическую работу. Количество этой энергии определяется законом Джоуля–Ленца и за время, равное периоду синусоидального тока, равно:

Эта величина, отнесенная ко времени Т, определяет среднее значение мгновенной мощности за период и называется активной мощностью:

Физически активная мощность представляет собой энергию, выделяющуюся в виде тепла или механической работы в единицу времени.

Пусть ток и напряжение на входе произвольного пассивного двухполюсника описываются выражениями:

Подставляя их в формулу ранее и интегрируя, получаем:

Используя соотношения между сторонами в треугольниках напряжений и токов, сопротивлений и проводимостей, можно написать цепочку формул для вычисления активной мощности:

Рассмотрим теперь энергетические процессы, происходящие в отдельно взятых элементах.

В активном сопротивлении напряжение и ток совпадают по фазе (φ = 0); в любой момент времени их знаки одинаковы, мгновенная мощность положительна, т.е. в него постоянно поступает энергия электрического тока, преобразуясь в тепловую или механическую. Активная мощность равна:

В реактивных элементах угол сдвига фаз по величине равен 90°. В индуктивности, при отстающем токе, он положителен, в емкости, при опережающем токе, – отрицателен. Подставляя φ = +- 90° в выражение напряжения на входе цепи, получим u = Um sin (ωt+-90°) = +-Um cos(ωt). При таком напряжении мгновенная мощность колеблется с двойной частотой, изменяясь по синусоидальному закону:

Читайте также:  Как протекает ток в стабилитроне

т.е. дважды за полпериода меняет знак. Подстановка этого выражения приводит к результату: P = 0. Равенство нулю активной мощности означает, что в реактивных элементах не происходит необратимого преобразования электромагнитной энергии в тепловую и механическую.

Можно показать, что в индуктивности в течение первой четверти периода, при возрастании тока от нуля до Im, в магнитном поле индуктивности накапливается энергия WM=(LI2m)/2. В течение следующей четверти периода, когда ток уменьшается до нуля, эта энергия из магнитного поля возвращается во внешнюю цепь.

В емкости – аналогично: в течение одной четверти периода, когда напряжение на обкладках конденсатора возрастает от нуля до Um, конденсатор заряжается, в его электрическом поле накапливается энергия: Wэ=(СU2m)/2. В следующую четверть периода конденсатор разряжается, его напряжение уменьшается до нуля, и накопленная в электрическом поле энергия возвращается в цепь. Энергию, которой электрическое поле конденсатора и магнитное поле катушки обмениваются с цепью, будем называть энергией обмена.

Для энергии магнитного поля WM и электрического поля WЭ можно записать следующие формулы:

Величины QL=I2XL и QC=I2XC имеющие размерность мощности, называются соответственно реактивной мощностью индуктивности и реактивной мощностью емкости. К работе, совершаемой переменным током, они отношения не имеют, а являются величинами, пропорциональными энергии магнитного и электрического полей: QL=ωWM, QC=ωWЭ.

В цепи, содержащей одновременно и индуктивность и емкость, колебания энергии происходят таким образом, что в те моменты времени, когда магнитное поле индуктивности накапливает энергию, электрическое поле емкости энергию отдает, и наоборот. Т.е., когда энергия магнитного поля положительна, энергия электрического поля отрицательна. Суммарная энергия электрического и магнитного полей за четверть периода равна:

где Q – реактивная мощность цепи, она пропорциональна суммарной энергии электрического и магнитного полей и может быть определена через реактивные сопротивления:

При резонансе, когда XL=XC , равны реактивные мощности QL и QC и энергии WM и WЭ , накапливаемые в магнитном и электрическом полях. В этом случае обмен энергией между индуктивностью и емкостью происходит без участия источника.

Для вычисления реактивной мощности можно написать цепочку формул:

При анализе электрических цепей часто используется треугольник мощностей, который можно получить, умножив стороны треугольника сопротивлений на квадрат тока (рис. 28.1). Для него справедливы следующие соотношения:

Буквой S, стоящей рядом с гипотенузой треугольника, обозначается полная мощность. Ее можно вычислить по одной из следующих формул:

Рис. 28.1 — Треугольник мощностей

Полная мощность определяется той электрической энергией, которая вырабатывается генератором и отдается в цепь. Она характеризует габариты электрических машин и аппаратов. Величина напряжения определяет уровень изоляции – ее толщину и расстояние между токоведущими частотами, а ток – поперечное сечение проводника, условия охлаждения машины.

При cosφ = 1 полная мощность равна наибольшему значению активной мощности, которую можно получить при заданных напряжении и токе.

Единицы измерения мощности, имея одну и ту же размерность, называются по-разному. Единица активной мощности – ватт (Вт), реактивной – вольт-ампер реактивный (вар), полной – вольт-ампер (ВА).

Комплексная мощность определяется произведением комплекса напряжения и сопряженного комплекса тока:

Источник

Мощность в цепи синусоидального тока

Мощность в цепи синусоидального тока

Активная мощность цепи синусоидального тока

Когда синусоидальное напряжение прикладывается к резистивной нагрузке, в ней возникает синусоидальный ток. При этом ток и напряжение совпадают по фазе, то есть оба они достигают положительных и отрицательных амплитудных значений одновременно (рис. 1).

Мощность, которая выделяется в чисто резистивной нагрузке определяется как произведение напряжения на ток. Кривую мгновенных значений мощности можно построить, перемножая мгновенные значения напряжения и тока, взятые попарно в различные моменты времени

p = u × i

Среднее значение мощности (она пульсирует с двойной частотой) выражается через действующие значения напряжения и тока на резисторе:

P = U × I

или через омическое сопротивление R в Омах

P = I 2 × R и P = U 2 / R .

Она называется активной мощностью.

Когда конденсатор подключен к переменному синусоидальному напряжению, в нем возникает синусоидальный ток, опережающий напряжение на 90о (рис. 2).

Мгновенная мощность, потребляемая конденсатором (как и любой другой цепью) определяется как произведение напряжения и тока:

p = u × i

График изменения этой мощности можно построить, перемножая попарно ординаты графиков u ( t ) и i ( t ), взятые в один и тот же момент времени. Полученная таким образом кривая (рис. 2) представляет собой синусоиду двойной частоты с амплитудой.

QC = UCm × ICm /2 = UC × IC.

Когда p >0, конденсатор заряжается, потребляя энергию и запасая ее в электрическом поле. Когда p QC является максимальной мощностью, потребляемой или отдаваемой конденсатором, и называется емкостной реактивной мощностью.

Средняя (активная) мощность, потребляемая конденсатором, равна нулю.

Читайте также:  А ток ту ю тэйк май

Когда катушка индуктивности подключена к переменному синусоидальному напряжению, в ней возникает синусоидальный ток, отстающий по фазе от напряжения на 90о (рис. 3).

Изменение во времени мгновенной мощности, потребляемой в катушке, может быть представлено на графике (рис. 5.5.1) путем перемножения мгновенных значений тока i и напряжения u . Положительная полуволна кривой мощности равнозначна подведению энергии к катушке. Во время отрицательной полуволны катушка отдает запасенную ранее энергию магнитного поля. В идеальной катушке потерь активной мощности нет. В действительности же возвращаемая энергия всегда меньше потребляемой из-за потерь энергии в активном сопротивлении катушки.

В идеальной катушке (при R =0) график мощности p ( t ) представляет собой синусоиду двойной частоты (см. рис. 3) с амплитудой

QL = ULm ILm /2 = UL IL.

Это значение является максимальной мощностью, потребляемой или отдаваемой идеальной катушкой индуктивности. Она называется индуктивной реактивной мощностью.

Средняя (активная) мощность, потребляемая такой катушкой, равна нулю.

Лабораторная работа 7

Мощность в цепи синусоидального тока

Цель работы: Экспериментально определить величину активной, емкостной и индуктивной реактивной мощности прямым и косвенным измерением.

Снимите с помощью виртуального осциллографа синусоидальные кривые напряжения и тока в резистивной цепи, сделайте бумажные копии осциллограмм и постройте кривую мощности, перемножая мгновенные значения напряжения и тока.

Порядок выполнения эксперимента

· Соберите цепь согласно схеме (рис.4), подключите источник синусоидального напряжения и установите следующее напряжение с помощью осциллографа: U = 5 В, f = 0,5 кГц.

· Включите виртуальный приборы V 0, A 1 и осциллограф.

· «Подключите» два входа осциллографа к приборам V 0 и A 1, а остальные отключите.

· Установите параметры развёртки осциллографа так, чтобы на экране было изображение примерно одного-двух периодов напряжения и тока.

· Включите блок «Приборы II », выбирая из меню прибор «Активная мощность», подключите его к V 0 и A 1 и запишите значение активной мощности:

P = …. Вт

· Перенесите осциллограммы напряжения и тока на бумагу (рис. 5).

· Определите мгновенные значения напряжения и тока для моментов времени, указанных в табл. 1, и затем постройте кривую мощности на графике (рис. 6)

Источник

Мощность в цепи синусоидального тока диаграмма

Передача энергии w по электрической цепи (например, по линии электропередачи), рассеяние энергии, то есть переход электромагнитной энергии в тепловую, а также и другие виды преобразования энергии характеризуются интенсивностью, с которой протекает процесс, то есть тем, сколько энергии передается по линии в единицу времени, сколько энергии рассеивается в единицу времени. Интенсивность передачи или преобразования энергии называется мощностью р. Сказанному соответствует математическое определение:

Выражение для мгновенного значения мощности в электрических цепях имеет вид:

Приняв начальную фазу напряжения за нуль, а сдвиг фаз между напряжением и током за , получим:

Итак, мгновенная мощность имеет постоянную составляющую и гармоническую составляющую, угловая частота которой в 2 раза больше угловой частоты напряжения и тока.

Когда мгновенная мощность отрицательна, а это имеет место (см. рис. 1), когда u и i разных знаков, т.е. когда направления напряжения и тока в двухполюснике противоположны, энергия возвращается из двухполюсника источнику питания.

Такой возврат энергии источнику происходит за счет того, что энергия периодически запасается в магнитных и электрических полях соответственно индуктивных и емкостных элементов, входящих в состав двухполюсника. Энергия, отдаваемая источником двухполюснику в течение времени t равна .

Среднее за период значение мгновенной мощности называется активной мощностью .

Принимая во внимание, что , из (3) получим:

Активная мощность, потребляемая пассивным двухполюсником, не может быть отрицательной (иначе двухполюсник будет генерировать энергию), поэтому , т.е. на входе пассивного двухполюсника . Случай Р=0, теоретически возможен для двухполюсника, не имеющего активных сопротивлений, а содержащего только идеальные индуктивные и емкостные элементы.

1. Резистор (идеальное активное сопротивление).

Здесь напряжение и ток (см. рис. 2) совпадают по фазе , поэтому мощность всегда положительна, т.е. резистор потребляет активную мощность

2. Катушка индуктивности (идеальная индуктивность)

При идеальной индуктивности ток отстает от напряжения по фазе на . Поэтому в соответствии с (3) можно записать
.

Участок 1-2: энергия , запасаемая в магнитном поле катушки, нарастает.

Участок 2-3: энергия магнитного поля убывает, возвращаясь в источник.

3. Конденсатор (идеальная емкость)

Аналогичный характер имеют процессы и для идеальной емкости. Здесь . Поэтому из (3) вытекает, что . Таким образом, в катушке индуктивности и конденсаторе активная мощность не потребляется (Р=0), так как в них не происходит необратимого преобразования энергии в другие виды энергии. Здесь происходит только циркуляция энергии: электрическая энергия запасается в магнитном поле катушки или электрическом поле конденсатора на протяжении четверти периода, а на протяжении следующей четверти периода энергия вновь возвращается в сеть. В силу этого катушку индуктивности и конденсатор называют реактивными элементами, а их сопротивления ХL и ХС , в отличие от активного сопротивления R резистора, – реактивными.

Читайте также:  Сила сварочного тока для сварки металла толщиной 3 мм электродом диаметром 3 мм будет составлять

Интенсивность обмена энергии принято характеризовать наибольшим значением скорости поступления энергии в магнитное поле катушки или электрическое поле конденсатора, которое называется реактивной мощностью.

В общем случае выражение для реактивной мощности имеет вид:

Она положительна при отстающем токе (индуктивная нагрузка- ) и отрицательна при опережающем токе (емкостная нагрузка- ). Единицу мощности в применении к измерению реактивной мощности называют вольт-ампер реактивный (ВАр).

В частности для катушки индуктивности имеем:

Из последнего видно, что реактивная мощность для идеальной катушки индуктивности пропорциональна частоте и максимальному запасу энергии в катушке. Аналогично можно получить для идеального конденсатора:

Полная мощность

Помимо понятий активной и реактивной мощностей в электротехнике широко используется понятие полной мощности:

Активная, реактивная и полная мощности связаны следующим соотношением:

Отношение активной мощности к полной называют коэффициентом мощности. Из приведенных выше соотношений видно, что коэффициент мощности равен косинусу угла сдвига между током и напряжением. Итак,

Комплексная мощность

Активную, реактивную и полную мощности можно определить, пользуясь комплексными изображениями напряжения и тока. Пусть , а . Тогда комплекс полной мощности:

где — комплекс, сопряженный с комплексом .

Комплексной мощности можно поставить в соответствие треугольник мощностей (см. рис. 4). Рис. 4 соответствует (активно-индуктивная нагрузка), для которого имеем:

Применение статических конденсаторов для повышения cos

Как уже указывалось, реактивная мощность циркулирует между источником и потребителем. Реактивный ток, не совершая полезной работы, приводит к дополнительным потерям в силовом оборудовании и, следовательно, к завышению его установленной мощности. В этой связи понятно стремление к увеличению в силовых электрических цепях.

Следует указать, что подавляющее большинство потребителей (электродвигатели, электрические печи, другие различные устройства и приборы) как нагрузка носит активно-индуктивный характер.

Если параллельно такой нагрузке (см. рис. 5), включить конденсатор С, то общий ток , как видно из векторной диаграммы (рис. 6), приближается по фазе к напряжению, т.е. увеличивается, а общая величина тока (а следовательно, потери) уменьшается при постоянстве активной мощности . На этом основано применение конденсаторов для повышения .

Какую емкость С нужно взять, чтобы повысить коэффициент мощности от значения до значения ?

Разложим на активную и реактивную составляющие. Ток через конденсатор компенсирует часть реактивной составляющей тока нагрузки :

; (10)
; (11)
. (12)

Из (11) и (12) с учетом (10) имеем

но , откуда необходимая для повышения емкость:

Баланс мощностей

Баланс мощностей является следствием закона сохранения энергии и может служить критерием правильности расчета электрической цепи.

а) Постоянный ток

Для любой цепи постоянного тока выполняется соотношение:

Это уравнение представляет собой математическую форму записи баланса мощностей: суммарная мощность, генерируемая источниками электрической энергии, равна суммарной мощности, потребляемой в цепи.

Следует указать, что в левой части (14) слагаемые имеют знак “+”, поскольку активная мощность рассеивается на резисторах. В правой части (14) сумма слагаемых больше нуля, но отдельные члены здесь могут иметь знак “-”, что говорит о том, что соответствующие источники работают в режиме потребителей энергии (например, заряд аккумулятора).

б) Переменный ток.

Из закона сохранения энергии следует, что сумма всех отдаваемых активных мощностей равна сумме всех потребляемых активных мощностей, т.е.

В ТОЭ доказывается (вследствие достаточной громоздкости вывода это доказательство опустим), что баланс соблюдается и для реактивных мощностей:

, (16)

где знак “+” относится к индуктивным элементам , “-” – к емкостным .

Умножив (16) на “j” и сложив полученный результат с (15), придем к аналитическому выражению баланса мощностей в цепях синусоидального тока (без учета взаимной индуктивности):

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Что такое активная мощность?
  2. Что такое реактивная мощность, с какими элементами она связана?
  3. Что такое полная мощность?
  4. Почему необходимо стремиться к повышению коэффициента мощности ?
  5. Критерием чего служит баланс мощностей?
  6. К источнику с напряжением подключена активно-индуктивная нагрузка, ток в которой . Определить активную, реактивную и полную мощности.

Ответ: Р=250 Вт; Q=433 ВАр; S=500 ВА.

В ветви, содержащей последовательно соединенные резистор R и катушку индуктивности L, ток I=2 A. Напряжение на зажимах ветви U=100 B, а потребляемая мощность Р=120 Вт. Определить сопротивления R и XL элементов ветви.

Ответ: R=30 Ом; XL=40 Ом.

Мощность, потребляемая цепью, состоящей из параллельно соединенных конденсатора и резистора, Р=90 Вт. Ток в неразветвленной части цепи I1=5 A, а в ветви с резистором I2=4 A. Определить сопротивления R и XC элементов цепи.

Источник