Меню

Микродвигатель постоянного тока 3 вольта

Обзор бесколлекторных двигателей: все, что нужно знать

Возникновение бесколлекторных двигателей объясняется необходимостью создания электрической машины с множеством преимуществ. Бесколлекторный двигатель представляет собой устройство без коллектора, функцию которого берет на себя электроника.

БКЭПТ — бесколлекторные электродвигатели постоянного тока, могут быть мощностью, примером, 12, 30 вольт.

Выбор подходящего двигателя

Чтобы подобрать агрегат, необходимо сравнить принцип работы и особенности коллекторных и бесколлекторных двигателей.

Коллекторный двигатель и двигатель ФК 28-12 бесколлекторный

Слева направо: коллекторный двигатель и двигатель ФК 28-12 бесколлекторный

Коллекторные стоят меньше, но развивают невысокую скорость вращения крутящего момента. Они работают от постоянного тока, имеет небольшой вес и размер, доступный ремонт по замене деталей. Проявление негативного качества выявляется при получении огромного количества оборотов. Щетки контактируют с коллектором, вызывая трение, что может повредить механизм. Работоспособность агрегата снижается.

Щеточки не только требуют ремонта из-за быстрого износа, но и могут привести к перегреву механизма.

Главным преимуществом бесколлекторного двигателя постоянного тока является неимение контактов крутящего момента и переключения. Значит отсутствие источников потерь, как в двигателях с постоянными магнитами. Их функции выполняют транзисторы МОП. Ранее их стоимость была высокой, поэтому они не были доступны. Сегодня цена стала приемлемой, а показатели значительно улучшились. При отсутствии в системе радиатора, мощность ограничивается от 2,5 до 4 ватт, а ток работы от 10 до 30 Ампер. КПД бесколлекторных электродвигателей очень высокий.

Вторым преимуществом выступает настройки механики. Ось устанавливается на широкоподшипники. В структуре нет ломающих и стирающихся элементов.

Единственным минусом является дорогой электронный блок управления.

Шпиндель ЧПУ Porter Cable 690

Шпиндель ЧПУ Porter Cable 690

Рассмотрим, пример механики ЧПУ станка со шпинделем.

Замена коллекторного двигателя на бесколлекторный оградит от поломки шпинделя для ЧПУ. Под шпинделем имеется в видувал, обладающий правыми и левыми оборотами крутящего момента. Шпиндель для ЧПУ обладает большой мощностью. Скорость крутящего момента контролируется регулятором сервотестором, а обороты управляются автоматом контроллером. Стоимость ЧПУ со шпинделем около 4 тысяч рублей.

Принцип работы

Главная особенность механизма — отсутствие коллектора. А постоянные магниты установлены у шпинделя, является ротором. Вокруг него располагаются проволочные обмотки, которые имеют различные магнитные поля. Отличием бесколлекторных моторов 12 вольт является сенсор управления ротором, расположенный на нем же. Сигналы подаются в блок регулятора скорости.

Устройство БКЭПТ

Схему расположения магнитов внутри статора обычно применяют для двухфазных двигателей с небольшим количеством полюсов. Принцип крутящего момента вокруг статора применяют при необходимости получить двухфазный двигатель с небольшими оборотами.

8 магнитов, формирующих 4 полюса

На картинке изображено 8 магнитов, формирующих 4 полюса. Момент силы зависит от мощности магнитов.

Датчики и их отсутствие

Регуляторы хода подразделяются на две группы: с датчиком положения ротора и без.

Токовые силы подаются на обмотки двигателя при особом положении ротора.Его определяет электронная система с помощью датчика положения. Они бывают разнообразных типов. Популярный регулятор хода — дискретный датчик с эффектом Холла. В двигателе на три фазы на 30 вольт будет использовано 3 датчика. Блок электроники постоянно располагает данными о положении ротора и направляет напряжение вовремя в нужные обмотки.

Датчик Холла

Датчик ХоллаРаспространенное приспособление, изменяющие свои выводы при переключении обмоток.

Устройство с разомкнутым контуром измеряет ток, частоту вращения. ШИМ каналы присоединяются к нижней части системы управления.

Три ввода присоединяются к датчику Холла. В случае изменения датчика Холла, начинается процесс переработки прерывания. Для обеспечения быстрого реагирования обработки прерывания подключается датчик Холла к младшим выводам порта.

Сигналы датчика холла в момент вращения

Сигналы датчика холла в момент вращения

Использование датчика положения с микроконтроллером

Микроконтроллеры AVR фирмы Atmel

Микроконтроллеры AVR фирмы Atmel

Контроллер силы каскада лежит в основе AVR ядра, который обеспечивает грамотное управление бесколлекторным двигателем постоянного тока. AVR представляет собой чип для выполнения определенных задач.

Принцип работы регулятора хода может быть с датчиком и без. Программа платы AVR осуществляет:

  • пуск двигателя максимально быстро без использования внешних дополнительных приборов,
  • управление скоростью одним внешним потенциометром.

Электронный блок управления СМА LG 6871ER1007C

Электронный блок управления СМА LG 6871ER1007C

Отдельный вид автоматического управления сма, используется в стиральных машинах.

Отсутствие датчика

Бездатчиковый регулятор

Для определения положения ротора необходимо проводить измерение напряжения на незадействованную обмотку. Данный способ применим при вращении двигателя, иначе он не будет действовать.

Бездатчиковые регуляторы хода изготавливаются легче, это объясняет их широкое распространение.

Контроллеры обладают следующими свойствами:

  • значение максимального постоянного тока,
  • значение максимального рабочего напряжения,
  • число максимальных оборотов,
  • сопротивление силовых ключей,
  • импульсная частота.

При подключении контроллера важно делать провода, как можно короче. Из-за возникновения бросков тока на старте. Если провод длинный, то могут возникнуть погрешности определения положения ротора. Поэтому контроллеры продаются с проводом 12 — 16 см.

Контроллеры обладают множеством программных настроек:

  • контроль выключения двигателя,
  • плавное или жёсткое выключение,
  • торможение и плавное выключение,
  • опережение мощности и КПД,
  • мягкий, жесткий, быстрый старт,
  • ограничения тока,
  • режим газа,
  • смена направления.

Контроллер LB11880

Контроллер LB11880, изображенный на рисунке, содержит драйвер бесколлекторного двигателя мощной нагрузки, то есть можно запустить двигатель напрямую к микросхеме без дополнительных драйверов.

Понятие ШИМ частоты

Когда происходит включение ключей, полная нагрузка подаётся на двигатель. Агрегат достигает максимальных оборотов. Для того чтобы управлять двигателем, нужно обеспечить регулятор питания. Именно это осуществляет широтно-импульсная модуляция (ШИМ).

Устанавливается необходимая частота открытия и закрытия ключей. Напряжение меняется с нулевого на рабочее. Чтобы управлять оборотами, необходимо наложить сигнал ШИМ на сигналы ключей.

Схема регулятора оборотов двигателя постоянного тока на напряжение 12 вольт

Схема регулятора оборотов двигателя постоянного тока на напряжение 12 вольт

Сигнал ШИМ может быть сформирован аппаратом на несколько выводов. Или создать ШИМ для отдельного ключа программой. Схема становится проще. ШИМ сигнал имеет 4— 80 килогерц.

Увеличение частоты приводит к большему количеству процессов перехода, что даёт выделение тепла. Высота частоты ШИМ повышает количество переходных процессов, от этого происходят потери на ключах. Маленькая частота не даёт нужную плавность управления.

Чтобы уменьшить потери на ключах при переходных процессах, ШИМ сигналы подаются на верхние или на нижние ключи по отдельности. Прямые потери рассчитываются по формуле P=R*I2, где P — мощность потерь, R — сопротивление ключа, I — сила тока.

Меньшее сопротивление минимизируют потери, увеличивает КПД.

Система arduino

Часто для управления бесколлекторными двигателями используется аппаратная вычислительная платформа arduino. В основе находится плата и среда разработки на языке Wiring.

В Плату arduino входит микроконтроллер Atmel AVR и элементная обвязка программирования и взаимодействия со схемами. На плате имеется стабилизатор напряжения. Плата Serial Arduino представляет собой несложную инвертирующую схему для конвертирования сигналов с одного уровня на другой. Программы устанавливаются через USB. В некоторых моделях, например, Arduino Mini, необходима дополнительная плата для программирования.

Язык программирования Arduino используется стандартный Processing. Некоторые модели arduino позволяют управлять несколькими серверами одновременно. Программы обрабатывает процессор, а компилирует AVR.

Проблемы с контроллером могут возникать из-за провалов напряжения и чрезмерной нагрузке.

Крепеж двигателя

Моторама 45/50/58

Моторама— механизм крепления двигателя. Применяется в установках двигателей. Моторама представляет собой взаимосвязанные стержни и элементы каркаса. Моторамы бывают плоскими, пространственными по элементам. Моторама одиночного двигателя 30 вольт или нескольких устройств. Силовая схема моторамы состоит из совокупности стержней. Моторама устанавливается в сочетании ферменных и каркасных элементов.

Читайте также:  Пусковой ток для оборудования

Бесколлекторный электродвигатель постоянного тока незаменимый агрегат, применяемый как в быту, так и в промышленности. Например, ЧПУ станок, медицинское оборудование, автомобильные механизмы.

БКЭПТ выделяются надежностью, высокоточным принципом работы, автоматическим интеллектуальным управлением и регулированием.

Источник



Микродвигатели. Виды и устройство. Подключения и особенности

Электродвигатели с небольшой мощностью применяют в аппаратах и механизмах бытового назначения. В доме можно найти несколько микродвигателей: в магнитофонах, пылесосах, холодильниках, измерительной технике. Микродвигатели применяются в системах регулирования автоматического типа, авиации.

В технике бытового применения двигатели используют в пылесосах, бормашинах, швейных машинах, вентиляторах. Например, в конструкции видеокамеры имеется 6 микродвигателей. Сегодня необходимость в микродвигателях велика, появились специальные фирмы, производящие и разрабатывающие их.

Виды микродвигателей

Микродвигатели (МД) постоянного тока применяются для преобразования электрического тока в механическое вращение, называются исполнительными микродвигателями.

Виды микродвигателей разделяются на моторы с обычным, дисковым, полым и беспазовым якорем.

Микродвигатели с обычным якорем

В конструкции магнитный поток образуется возбуждающей обмоткой, находящейся на полюсах, либо постоянными магнитами. В первом варианте систему магнитов создают шихтованной, корпус и полюсы производят одним пакетом из листов, штампованных из профиля. Это требуется, так как микродвигатели эксплуатируются в переходных режимах.

Mikrodvigatel s obychnym iakorem

При втором варианте на корпусе статора размещают мощный постоянный магнит формы цилиндра, либо несколько магнитов, сделанных в виде сердечников полюсов, скоб. В исполнительных моторах систему магнитов создают ненасыщенной, чтобы якорь не влиял на поток и на скорость вращения. Катушку якоря наматывают в пазах якоря и соединяют с ламелями коллектора по такому же принципу, как в обычном исполнении моторов постоянного тока.

Схема с полым якорем

Магнитный поток образуется от обмотки возбуждения или от постоянных магнитов. Якорь сделан в виде стакана, находящегося между полюсами и стоящим на месте сердечником из ферромагнитного материала. Его насаживают на втулку подшипникового щита. Внутри якоря вместо сердечника можно установить неподвижные постоянные магниты формы цилиндра. Катушку якоря наматывают на каркас, пропитывают эпоксидкой, концы катушки припаивают к пластинам. После застывания эпоксидки коллектор и якорь образуют монолит.

Mikrodvigatel s polym iakorem

Инерционный момент полого якоря небольшой, повышается скорость двигателя. Из-за того, что нет насыщения зубцов, повышается индукция микродвигателя в воздушном пространстве микродвигателя, а, следовательно, и его момент вращения и магнитный поток в сравнении с микродвигателями с обычным якорем. Это также увеличивает быстродействие мотора.

Отрицательным явлением микродвигателей с полым якорем стала необходимость серьезного повышения МДС возбуждающей обмотки, потому что воздушный зазор намного больше, чем в моторах обычного вида. Это ведет к повышению веса, габаритов машины и снижения мощности в катушке возбуждения, но КПД этих микродвигателей из-за того, что нет потерь в стали, равен такому же значению, как в конструкции якоря обычного вида.

Микродвигатели с печатной обмоткой

Они имеют конструкцию диска и цилиндра. Дисковый имеет плоскую катушку якоря. Возбуждение создается магнитами с наконечниками из полюсов.

Этот тип микродвигателей оснащен плоской печатной катушкой якоря, которая нанесена на тонкий диск из текстолита или керамики. Возбуждение происходит постоянными магнитами с наконечниками в виде полюсов, сделанных как сегменты колец. Магнитный поток идет в направлении по двум воздушным зазорам и дискового якоря с печатной катушкой, замыкается на 2-х кольцах. Кольца сделаны из магнитномягкой стали, выполняют роль боковой поддержки. Магниты электрические или постоянные располагаются с одной или с двух сторон диска.

Mikrodvigatel s pechatnoi obmotkoi

Печать катушки наносят на диск якоря химическим методом. Проводники расположены с двух сторон радиально, соединяются гальванически по сквозным отверстиям. Воздух является изоляцией проводников. Нанесение печати, соединения производится на станках, процесс механизирован.

Все секции обмотки имеют в составе два проводника. Они находятся на разных сторонах диска. Количество активных проводников мало, ограничивается габаритами диска, для повышения напряжения используют обычную намотку волнового вида. Для снижения расстояния лобовых соединений, микродвигатели изготавливают с несколькими полюсами.

Иногда используют наконечники – полюсы. Они выходят за наружные соединения, становятся их частью. Для увеличения срока работы в конструкциях печатной катушки ставят коллектор. К нему подключают концы секций. В микродвигателях для быстродействия тормоза, от сигнала управления, диск изготавливают из алюминия, вместо изоляционного материала. Во время вращения диска образуются вихревые токи. Они образуют тормозной момент, зависящий от оборотов двигателя. Замедление сильно снижает число оборотов микродвигателя.

Достоинства с применением печатных катушек якоря:
  • Слабый инерционный момент якоря, позволяет обеспечить быстродействие.
  • Лучшая коммутация вследствие небольшой индуктивности, увеличивается срок эксплуатации щеток, увеличивается способность к перегрузкам микродвигателя.
  • Хорошее охлаждение катушки печати, дает возможность увеличить плотность тока в проводах катушки якоря, снизить вес и габариты микродвигателей.
  • Малое влияние якоря, нет ферромагнитных частей, поток по воздуху замыкается.
Отрицательные стороны в сравнении с обычными:
  • Значительная движущая сила возбуждения, зазор увеличен.
  • Большие потери из-за увеличенной плотности тока катушки якоря, при возбуждении магнитными силами, из-за износа проводов печатной катушки.

Цилиндрический якорь также находит свое использование в микродвигателях. Их конструкция похожа на моторы с полым якорем, отличие в методе намотки катушки якоря. На двух сторонах полого якоря способом электромеханического воздействия создают печатную катушку, концы подключают к коллектору. Микродвигатели с печатным якорем в виде цилиндра и с полым якорем имеют похожие свойства.

Микродвигатели асинхронного типа с одной фазой широко распространены. Они изготовлены с учетом требований многих приводов аппаратов и приборов, отличаются малой ценой и шумностью, надежны, не требуют техобслуживания, подвижные контакты отсутствуют.

Подключение

Микродвигатель асинхронного типа имеет различные типы конструкций по числу обмоток: с 1-й, 2-мя, 3-мя обмотками. С одной катушкой в моторе отсутствует момент запуска, надо применять специальный пусковой мотор. В моторе с двумя катушками одна из них главная, соединяется к сети питания.

Для образования запуска нужен ток, который сдвинут по фазе от главной катушки. С этой целью к вспомогательной катушке последовательно подсоединяют сопротивление. Оно может быть разного вида.

Mikrodvigateli podkliuchenie

В схему питания дополнительной катушки подключают конденсатор. Получают угол между фазами 90 градусов. Конденсатор называют рабочим, так как он всегда подключен. При пуске нужно создать увеличенный момент, параллельно емкости Св во время пуска включают емкость пуска Са. Когда двигатель наберет обороты, пусковая емкость отключится от реле.

Для реверсивного направления вала в цепь дополнительной катушки подключают катушку индуктивности, ток пойдет впереди по фазе тока дополнительной катушки. Больше применяют метод сдвига фаз между главной и дополнительной катушками, дополнительную катушку закорачивают.

Основная катушка связана магнитной силой с дополнительной. При включении основной обмотки в другой катушке образуется движущая сила и ток, сдвинутый от основной обмотки. Вал мотора вращается в сторону от основной катушки к дополнительной.

Двигатель асинхронного типа на трех фазах и с 3-мя обмотками применяют в однофазной сети.

Читайте также:  Чему равен кпд источника тока когда выделяемая во внешней цепи мощность максимальна

Mikrodvigateli podkliuchenie 2

Для образования нужного момента пуска по последовательной схеме с конденсатором включают сопротивление, размер его зависит от размера катушек мотора.

Обмотки

В 1-фазных моторах обмотки имеют разные параметры, в отличие от моторов с тремя обмотками с одинаковыми свойствами.

Для катушек, расположенных симметрично, число пазов на один полюс определяют по формуле:

q = N / 2pm , где N — число пазов; m — число обмоток; р — число полюсов. В катушках несимметричного расположения число пазов значительно меняется, обе катушки различны по числу витков.

Конструкция

На рисунке двигатель с 2-мя сосредоточенными обмотками, по полюсам. Каждая катушка состоит из двух катушек по полюсам. Их надевают на сердечник и устанавливают в ярмо формы квадрата. Обмотки крепятся выступами.

Mikrodvigateli risunok

График индукции поля потока в зазоре схож с синусоидой. Кривая похожа на прямоугольник, если нет выступов. Элемент, сдвигающий фазы, для такого мотора – конденсатор или резистор. Целесообразно подключить вспомогательную катушку, тогда двигатель преобразовывается в асинхронный тип с расщепленными полюсами.

Микродвигатели с расщепленными полюсами применяют из-за малой цены, хорошей надежности, простоты. На статоре есть две обмотки. Основная обмотка подключена сразу в сеть питания. Дополнительная обмотка соединена накоротко, имеет 1-3 витка на один полюс.

Она объединяет часть полюса, это дало название двигателю. Дополнительная обмотка сделана из медной жилы, она делается по соответствующей форме. Выводы катушки сваривают. Ротор мотора изготовлен короткозамкнутым, на концах закреплены охлаждающие ребра, они отводят тепло от катушек статора.

Варианты конструкции моторов изображены на схеме. Основная катушка расположена симметрично от ротора. Двигатель рассеивает магнитный поток в наружной магнитной цепи, КПД менее 15%, моторы изготавливают небольшой мощности до 10 Вт.

Мотор с симметричными обмотками в изготовлении требует сложного технологического процесса. Он состоит из составного статора, полюса, ротора, шунта магнитного. Полюсы мотора объединены ярмом, катушки находятся внутри системы, магнитные потоки меньше, чем у электродвигателя вышеописанной конструкции.

Mikrodvigateli risunok 2

Для изменения числа оборотов двигателя применяют полюсы перекрестные. Переключение пар производится просто, чтобы их изменить необходимо катушки соединить встречной схемой. В моторах с полюсами расщепленного типа применяется регулирование числа оборотов, которое заключается в переключении с последовательной схемы на параллельную.

Источник

Бесколлекторные малогабаритные двигатели

Продукция нашей компании включает широкий ассортимент электродвигателей малой мощности от европейских производителей Faulhaber, Nanotec, GeorgiiKobold и других. Высокое качество изделий не требует никаких подтверждений, ведь немецкое производство соответствует всем нормам технологического процесса, используется только надежное сырьё, сертифицированное по требованиям безопасности, надежности и долговечности.

Прецизионные бесколлекторные (вентильные, BLDC) микродвигатели постоянного тока

Faulhaber с полым ротором

Диаметр корпуса – 3…44 мм, мощность – 0,0063…212 Вт, номинальный крутящий момент – 0,023…202 мНм, скорость вращения на холостом ходу – 5 300 … 46 500 об/мин

Ссылки на подробное описание бесколлекторных микродвигателей постоянного тока:

Ссылки на сопутствующие компоненты малогабаритного привода:

Ознакомиться с описанием всей продукции компании Faulhaber можно по данной ссылке.

Малогабаритные многополюсные бесколлекторные (вентильные, BLDC) двигатели постоянного тока Dunkermotoren

Диаметр корпуса / Размер стороны фланца – 32,4…95 мм, мощность – 6,0…1 100 Вт, номинальный крутящий момент – 0,026…2,9 Нм, номинальная скорость вращения– до 4 050 об/мин

Ссылки на подробное описание малогабаритных бесколлекторных двигателей постоянного тока:

Бесколлекторные двигатели со встроенной электроникой:

Ссылки на сопутствующие компоненты малогабаритного привода:

Ознакомиться с описанием всей продукции компании Dunkermotoren можно по данной ссылке.

Малогабаритные бесколлекторные (вентильные, BLDC) двигатели постоянного тока постоянного тока Nanotec

Диаметр корпуса – 22…87 мм, мощность – 3,8…750 Вт, номинальный крутящий момент – 0,008…2,1 Нм, номинальная скорость вращения – до 14 000 об/мин

Ссылки на подробное описание бесколлекторных микродвигателей постоянного тока:

Ссылки на сопутствующие компоненты малогабаритного привода:

Ознакомиться с описанием всей продукции компании Nanotec можно по данной ссылке.

Малогабаритные бесколлекторные (вентильные, BLDC) двигатели постоянного тока со встроенным контроллером Georgii Kobold

Диаметр корпуса / Размер стороны фланца – 65…94 мм, мощность – 70…430 Вт, номинальный крутящий момент в продолжительном режиме работы – 0,22…1,8 Нм, номинальная скорость вращения– до 3 750 об/мин, степень защиты IP 64/IP 65, предусмотрено изготовление с планетарным редуктором (i=3:1. 169:1), датчиками на эффекте Холла, резольвером, датчиком абсолютного или относительного отсчёта

Ссылки на подробное описание малогабаритных бесколлекторных двигателей постоянного тока со встроенной электроникой:

Ознакомиться с описанием всей продукции компании Georgii Kobold можно по данной ссылке.

Бесколлекторные (вентильные, BLDC) двигатели постоянного тока Eibl DHT

Диаметр корпуса / Размер стороны фланца – 63…225 мм, номинальное напряжение обмотки — 12 . 96 В, мощность – 0,06…94 кВт, номинальный крутящий момент в продолжительном режиме работы – 0,56…301 Нм, номинальная скорость вращения– до 3 000 об/мин, предусмотрено изготовление с датчиками на эффекте Холла, резольвером, датчиком абсолютного или относительного отсчёта

Ссылки на подробное описание бесколлекторных двигателей постоянного тока:

Ознакомиться с описанием всей продукции компании Eibl DHT можно по данной ссылке.

Двигатели малой мощности имеют следующие преимущества:

  • высокие технические характеристики, энергетические показатели;
  • длительный период эксплуатации, безотказность в работе;
  • защита механизма от воздействий внешних факторов.

Основной сферой применения малогабаритных двигателей постоянного тока являются:

  • различные устройства радиосвязи;
  • электроприводы разных назначений;
  • системы автоматического управления;
  • производственные станки, линии;
  • бытовые и специализированные приборы.

Они являются незаменимыми в тех сферах, где использовать крупные двигатели невозможно. Например, небольшие электродвигатели часто используются в микроэлектронике, медицине, оптике, науке в целом. Кроме этого, они активно применяются на энергетических объектах, системах автоматизации и технологических линиях. Малогабаритные двигатели могут подключаться не только к приводу, но и к аккумулятору и электросети.

Преимущества сотрудничества

Имея многолетний опыт сотрудничества с поставщиками нашей продукции, мы можем обеспечить доступные цены на весь ассортимент бесколлекторных малогабаритных двигателей малой мощности. Мы работаем не только по оптовым заказам, но и выполним единичные по требованиям заказчика.

Узнать подробнее о ценах и технических характеристиках того или иного товара можно связавшись с нами по телефону, указанному на сайте.

Каталог

Несколько слов о компании

Наши специалисты находятся в непосредственном контакте с производителем, поэтому всегда готовы помочь, оперативно дать исчерпывающие ответы на Ваши вопросы, посоветовать оптимальное решение.

Источник

Что такое бесколлекторный двигатель постоянного тока и его принцип работы

Бытовая и медицинская техника, авиамоделирование, трубозапорные приводы газо- и нефтепроводов – это далеко не полный перечень областей применения бесколлекторных двигателей (БД) постоянного тока. Давайте рассмотрим устройство и принцип действия этих электромеханических приводов, чтобы лучше понять их достоинства и недостатки.

Общие сведения, устройство, сфера применения

Одна из причин проявления интереса к БД — это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.

Устройство бесколлекторного двигателя

Рис. 2. Устройство бесколлекторного двигателя

Как видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.

Читайте также:  Неподвижная часть индукционного генератора электрического тока называется

Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).

Конструкция с внешним якорем (outrunner)

Рис. 3. Конструкция с внешним якорем (outrunner)

Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).

Бесколлекторный двигатель в компьютерном дисководе

Бесколлекторный двигатель в компьютерном дисководе

Принцип работы

В отличие от других приводов, например, асинхронной машины переменного тока, для работы БД необходим специальный контроллер, который включает обмотки таким образом, чтобы векторы магнитных полей якоря и статора были ортогональны друг к другу. То есть, по сути, устройство-драйвер регулирует вращающий момент, действующий на якорь БД. Наглядно этот процесс продемонстрирован на рисунке 4.

Фазы работы бесколлекторного привода

Фазы работы бесколлекторного привода

Как видим, для каждого перемещения якоря необходимо выполнять определенную коммутацию в обмотке статора двигателя бесколлекторного типа. Такой принцип работы не позволяет плавно управлять вращением, но дает возможность быстро набрать обороты.

Отличия коллекторного и бесколлекторного двигателя

Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.

А – коллекторный двигатель, В – бесколлекторный

Рис. 5. А – коллекторный двигатель, В – бесколлекторный

Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.

Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.

Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.

Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.

Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.

Как запустить бесколлекторный двигатель?

Чтобы заставить работать приводы данного типа, потребуется специальный контроллер (см. рис. 6). Без него запуск невозможен.

Контроллеры бесколлекторных двигателей для моделизма

Рис. 6. Контроллеры бесколлекторных двигателей для моделизма

Собирать самому такое устройство нет смысла, дешевле и надежней будет приобрести готовый. Подобрать его можно по следующим характеристикам, свойственным драйверам шим каналов:

  • Максимально допустимая сила тока, эта характеристика приводится для штатного режима работы устройства. Довольно часто производители указывают такой параметр в названии модели (например, Phoenix-18). В некоторых случаях приводится значение для пикового режима, который контролер может поддерживать несколько секунд.
  • Максимальная величина штатного напряжения для продолжительной работы.
  • Сопротивление внутренних цепей контроллера.
  • Допустимое число оборотов, указывается в rpm. Сверх этого значения контроллер не позволит увеличить вращение (ограничение реализовано на программном уровне). Следует обратить внимание, что частота вращения всегда приводится для двухполюсных приводов. Если пар полюсов больше, следует разделить значение на их количество. Например, указано число 60000 rpm, следовательно, для 6-и магнитного двигателя частота вращения составит 60000/3=20000 prm.
  • Частота генерируемых импульсов, у большинства контролеров этот параметр лежит в пределах от 7 до 8 кГц, более дорогие модели позволяют перепрограммировать параметр, увеличив его до 16 или 32 кГц.

Обратим внимание, что первые три характеристики определяют мощность БД.

Управление бесколлекторным двигателем

Как уже указывалось выше, управление коммутацией обмоток привода осуществляется электроникой. Чтобы определить, когда производить переключения, драйвер отслеживает положение якоря при помощи датчиков Холла. Если привод не снабжен такими детекторами, то в расчет берется обратная ЭДС, которая возникает в неподключенных катушках статора. Контроллер, который, по сути, является аппаратно-программным комплексом, отслеживает эти изменения и задает порядок коммутации.

Трёхфазный бесколлекторный электродвигатель постоянного тока

Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).

Диаграммы напряжений БД

Рисунок 7. Диаграммы напряжений БД

Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:

  1. На катушки «А» подается положительный импульс, в то время как на «В» — отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
  2. Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
  3. На «С» — положительный, «А» — отрицательный.
  4. Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
  5. Положительный импульс повторно подается на «В», и отрицательный на «С».
  6. Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.

В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.

Многофункциональный контроллер управления бесколлекторным двигателем

Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем

Преимущества и недостатки

Электрический бесколлекторный двигатель имеет много достоинств, а именно:

  • Срок службы значительно дольше, чем у обычных коллекторных аналогов.
  • Высокий КПД.
  • Быстрый набор максимальной скорости вращения.
  • Он более мощный, чем КД.
  • Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
  • Не требуется дополнительное охлаждение.
  • Простая эксплуатация.

Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.

Источник