Меню

Линии магнитного поля прямого проводника с током ток направлен от нас

Магнитное поле. Магнитное поле прямого тока. Магнитные линии. 8 класс. Физика.

Магнитное поле. Магнитное поле прямого тока. Магнитные линии. 8 класс. Физика.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе

Вопросы

Задай свой вопрос по этому материалу!

Поделись с друзьями

Комментарии преподавателя

Магнитное поле

Магнитное действие электрического тока наблюдается всегда, когда существует электрический ток. Проявляется магнитное действие, например, в том, что между проводниками с током возникают силы взаимодействия, которые называются магнитными силами. Чтобы изучить магнитное действие тока, воспользуемся магнитной стрелкой. (Она, как известно, является главной частью компаса.) Напомним, что у магнитной стрелки имеется два полюса — северный и южный. Линию, соединяющую полюсы магнитной стрелки, называют её осью.

Магнитную стрелку ставят на остриё, чтобы она могла свободно поворачиваться.

Рассмотрим теперь опыт, показывающий взаимодействие проводника с током и магнитной стрелки. Такое взаимодействие впервые обнаружил в 1820 г. датский учёный Ханс Кристиан Эрстед. Его опыт имел большое значение для развития учения об электромагнитных явлениях.

Эрстед Ханс Кристиан

Эрстед Ханс Кристиан (1777—1851)
Датский физик. Обнаружил действие электрического тока на магнитную стрелку, что при вело к возникновению новой области физики — электромагнетизма.

Опыт Эрстеда

Расположим проводник, включённый в цепь источника тока, над магнитной стрелкой параллельно её оси (рис.). При замыкании цепи магнитная стрелка отклоняется от своего первоначального положения (на рисунке показано пунктиром). При размыкании цепи магнитная стрелка возвращается в своё начальное положение. Это означает, что проводник с током и магнитная стрелка взаимодействуют друг с другом.

Взаимодействие проводника с током и магнитной стрелки

Рис. Взаимодействие проводника с током и магнитной стрелки

Выполненный опыт наводит на мысль о существовании вокруг проводника с электрическим током магнитного поля. Оно и действует на магнитную стрелку, отклоняя её.

Магнитное поле существует вокруг любого проводника с током, т. е. вокруг движущихся электрических зарядов. Электрический ток и магнитное поле неотделимы друг от друга.

Таким образом, вокруг неподвижных электрических зарядов существует только электрическое поле, вокруг движущихся зарядов, т. е. электрического тока, существует и электрическое, и магнитное поле. Магнитное поле появляется вокруг проводника, когда в последнем возникает ток, поэтому ток следует рассматривать как источник магнитного поля. В этом смысле надо понимать выражения «магнитное поле тока» или «магнитное поле, созданное током».

Магнитное поле прямого тока. Магнитные линии

Существование магнитного поля вокруг проводника с электрическим током можно обнаружить различными способами. Один из таких способов заключается в использовании мелких железных опилок.

В магнитном поле опилки — маленькие кусочки железа — намагничиваются и становятся магнитными стрелочками. Ось каждой стрелочки в магнитном поле устанавливается вдоль направления действия сил магнитного поля.

На рисунке изображена картина магнитного поля прямого проводника с током. Для получения такой картины прямой проводник пропускают сквозь лист картона. На картон насыпают тонкий слой железных опилок, включают ток и опилки слегка встряхивают. Под действием магнитного поля тока железные опилки рас полагаются вокруг проводника не беспорядочно, а по концентрическим окружностям.

Картина магнитного поля проводника с током

Рис. Картина магнитного поля проводника с током

Линии, вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок, называют магнитными линиями магнитного поля.

Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитной линии магнитного поля.

Цепочки, которые образуют в магнитном поле железные опилки, показывают форму магнитных линий магнитного поля.

Магнитные линии магнитного поля тока представляют собой замкнутые кривые, охватывающие проводник.

С помощью магнитных линий удобно изображать магнитные поля графически. Так как магнитное поле существует во всех точках пространства, окружающего проводник с током, то через любую точку можно провести магнитную линию.

Расположение магнитных стрелок вокруг проводника с током

Рис. Расположение магнитных стрелок вокруг проводника с током

На рисунке а показано расположение магнитных стрелок вокруг проводника с током. (Проводник расположен перпендикулярно плоскости чертежа, ток в нём направлен от нас, что условно обозначено кружком с крестиком.) Оси этих стрелок устанавливаются вдоль магнитных линий магнитного поля прямого тока. При изменении направления тока в проводнике все магнитные стрелки поворачиваются на 180° (рис. б; в этом случае ток в проводнике направлен к нам, что условно обозначено кружком с точкой). Из этого опыта можно заключить, что направление магнитных линий магнитного поля тока связано с направлением тока в проводнике.

Домашняя работа.

Задание 1. Ответь на вопросы.

  1. Какие явления наблюдаются в цепи, в которой существует электрический ток?
  2. Какие магнитные явления вам известны?
  3. В чём состоит опыт Эрстеда?
  4. Какая связь существует между электрическим током и магнитным полем?
  5. Почему для изучения магнитного поля можно использовать железные опилки?
  6. Как располагаются железные опилки в магнитном поле прямого тока?
  7. Что называют магнитной линией магнитного поля?
  8. Для чего вводят понятие магнитной линии поля?
  9. Как на опыте показать, что направление магнитных линий связано с направлением тока

Задание 2. Проведите опыт.

ОПЫТЫ
С ЖЕЛЕЗНЫМИ ОПИЛКАМИ

Возьмите магнит любой формы, накройте его куском тонкого картона,
посыпьте сверху железными опилками и разровняйте их.
Так интересно наблюдать магнитные поля!
Ведь каждая «опилочка», словно магнитная стрелка, располагается вдоль магнитных линий.
Таким образом становятся «видимыми» магнитные линии магнитного поля вашего магнита.
При передвижении картона над магнитом (или наоборот магнита под картоном)
опилки начинают шевелиться, меняя узоры магнитного поля.

К занятию прикреплен файл «Это интересно!». Вы можете скачать файл в любое удобное для вас время.

Источник



Тест по физике Направление тока и направление линий его магнитного поля 9 класс

Тест по физике Направление тока и направление линий его магнитного поля для учащихся 9 класса с ответами. Тест включает в себя 10 заданий с выбором ответа.

Читайте также:  Полное сопротивление проводника при переменном токе

1. На рисунке указано положение участка проводника, соединенного с источником тока, и положение магнитной линии. Определите ее направление

Тест по физике Направление тока и направление линий его магнитного поля 1 задание

1) По часовой стрелке
2) Против часовой стрелки
3) Для ответа надо знать значение силы тока
4) Среди ответов нет правильного

2. На рисунке указано положение участ­ка проводника, соединенного с источ­ником тока, и положение силовой ли­нии магнитного поля. Определите ее направление в точке А.

Тест по физике Направление тока и направление линий его магнитного поля 2 задание

1) Вверх
2) Вниз
3) Для ответа надо знать значение силы тока
4) Среди ответов нет правильного

3. На каком рисунке правильно изображена картина линий магнитного поля длинного проводника с постоянным то­ком, направленным перпендикулярно плоскости чертежа на нас?

Тест по физике Направление тока и направление линий его магнитного поля 3 задание

4. На каком рисунке правильно изображена картина линий магнитного поля длинного проводника с постоянным то­ком, направленным перпендикулярно плоскости чертежа от нас?

Тест по физике Направление тока и направление линий его магнитного поля 4 задание

5. На рисунке указано положение участ­ка проводника и направление силовой линии магнитного поля. Определите на­правление тока.

Тест по физике Направление тока и направление линий его магнитного поля 5 задание

1) Вверх
2) Вниз
3) Для ответа надо знать значение силы тока
4) Среди ответов нет правильного

6. На рисунке указано положение участка про­водника и направление силовой линии маг­нитного поля. Определите направление тока.

Тест по физике Направление тока и направление линий его магнитного поля 6 задание

1) Влево
2) Вправо
3) Для ответа надо знать значение силы тока
4) Среди ответов нет правильного

7. По проводнику течет ток от нас. Определи­те направление силовой линии магнитного поля этого тока.

Тест по физике Направление тока и направление линий его магнитного поля 7 задание

1) По часовой стрелке
2) Против часовой стрелки
3) Не хватает данных для ответа
4) Среди ответов нет правильного

8. По проводнику течет ток на нас. Определи­те направление силовой линии магнитного поля этого тока.

Тест по физике Направление тока и направление линий его магнитного поля 8 задание

1) По часовой стрелке
2) Против часовой стрелки
3) Не хватает данных для ответа
4) Среди ответов нет правильного

9. На рисунке (вид сверху) показана картина силовых линий магнитного поля прямого проводника с током. Магнитное поле слабее всего

Тест по физике Направление тока и направление линий его магнитного поля 9 задание

1) в точке а
2) в точке б
3) в точке в
4) в точке г

10. На рисунке (вид сверху) показана картина силовых линий магнитного поля прямого проводника с током. Магнитное поле силь­нее всего

Тест по физике Направление тока и направление линий его магнитного поля 10 задание

1) в точке а
2) в точке б
3) в точке в
4) в точке г

Ответы на тест по физике Направление тока и направление линий его магнитного поля
1-1
2-1
3-4
4-3
5-2
6-2
7-1
8-2
9-4
10-1

Источник

Магнитное поле. Линии

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: взаимодействие магнитов, магнитное поле проводника с током.

Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс. Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим. Об этом свидетельствуют следующие опытные факты.

• Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

• Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

• Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей. Изолированных магнитных полюсов (так называемых магнитных монополей — аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

• Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд ,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля.А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий —так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.

Читайте также:  Регулятор скорости двигателя постоянного тока с реверсом

1. Линии магнитного поля, или магнитные силовые линии — это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии.

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии.

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства.

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1 ).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс — красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

Опыт Эрстеда

Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.

Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году — в знаменитом опыте Эрстеда.

Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и — северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи.

Рис. 2. Опыт Эрстеда

Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3 ).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас.

Правило винта (или правило буравчика, или правило штопора — это уж кому что ближе ;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока.

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки — вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля, или магнитной индукцией. Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции. Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

Магнитное поле витка с током

Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.

Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).

Рис. 4. Поле витка с током

Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.

Правило часовой стрелки. Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки.

Правило винта. Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока.

Как видите, ток и поле меняются ролями — по сравнению с формулировками этих правил для случая прямого тока.

Магнитное поле катушки с током

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 — изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом.

Рис. 5. Катушка (соленоид)

Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6 ).

Читайте также:  Электрический ток еденица его измерения

Рис. 6. поле катушки с током

На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец — к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.

1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля — параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.

2. Вне катушки поле близко к нулю. Чем больше витков в катушке — тем слабее поле снаружи неё.

Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.

Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.

А теперь — главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6 ) с линиями поля магнита на рис. 1 . Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!

Гипотеза Ампера. Элементарные токи

Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита — полюса всегда присутствуют в магните парами.

Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.

Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него.

Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.

Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.

Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).

Рис. 7. Элементарные токи магнита

Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).

Гипотеза Ампера оказалась справедливой — это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке — почти через сто лет после гениальной догадки Ампера.

Источник

Линии магнитного поля прямого проводника с током ток направлен от нас

ПРАВИЛО БУРАВЧИКА для прямого проводника с током

— служит для определения направления магнитных линий ( линий магнитной индукции)
вокруг прямого проводника с током.

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Допустим, проводник с током расположен перпендикулярно плоскости листа:
1. направление эл. тока от нас ( в плоскость листа)

Согласно правилу буравчика, линии магнитного поля будут направлены по часовой стрелке.

или
2. направление эл. тока на нас ( из плоскости листа),

Тогда, согласно правилу буравчика, линии магнитного поля будут направлены против часовой стрелки.

ПРАВИЛО ПРАВОЙ РУКИ для соленоида, т.е. катушки с током

— служит для определения направления магнитных линий (линий магнитной индукции) внутри соленоида.

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

1.Как взаимодействуют между собой 2 катушки с током?

2. Как направлены токи в проводах, если силы взаимодействия направлены так, как на рисунке?

3. Два проводника расположены параллельно друг другу. Укажите раправление тока в проводнике СД.

Жду решений на следующем уроке на «5»!

Известно, что сверхпроводники ( вещества, обладающие при определенных температурах практически нулевым электрическим сопротивлением) могут создавать очень сильные магнитные поля. Были проделаны опыты по демонстрации подобных магнитных полей. После охлаждения керамического сверхпроводника жидким азотом на его поверхность помещали небольшой магнит. Отталкивающая сила магнитного поля сверхпроводника была столь высокой, что магнит поднимался, зависал в воздухе и парил над сверхпроводником до тех пор, пока сверхпроводник, нагреваясь, не терял свои необыкновенные свойства.

Источник