Меню

Ламинарный турбулентный ток крови

Ламинарный турбулентный ток крови

а) Характеристики потока. При низких скоростях обычно наблюдается ламинарное течение крови. Это означает, что в близко расположенных точках поперечного сечения сосуда или клапанного отверстия скорости движения крови мало отличаются друг от друга. В этих случаях поток крови «хорошо организован»: в середине потока кровь течет с большей скоростью, а на периферии возле стенок сосуда или сердца скорость потока меньше. В сосудах возникает «параболический» профиль скоростей движения жидкости.

Начиная с определенного отношения поперечного сечения потока, скорости движения, а также плотности и вязкости крови характеристики потока меняются на «турбулентные»: профиль скоростей движения жидкости становится более плоским, сопротивление потоку растет и «частицы» жидкости попадают в вихревые движения. Вместо хорошо организованного ламинарного распределения скоростей получается вихреобразование и перемешивание частиц жидкости с различной скоростью и направлением движения. Кинетическая энергия необратимо теряется из-за вязкого трения и, в конечном итоге, превращения в теплоту. Движение частиц можно представить как сумму «хаотичного», турбулентного компонента скорости и относительно постоянного компонента скорости вдоль основного направления потока.

В сумме усредненные по времени, быстро меняющиеся векторы турбулентного компонента взаимно уничтожаются, тогда как постоянный компонент обусловливает движение в сосуде вдоль основного направления потока.

Применение теоремы сохранения энергии: расчет градиентов по скоростям движения крови в эхокардиографии (ЭхоКГ)Поток через место сужения (стеноз).
Применение уравнения Бернулли представлено в тексте. Следует обратить внимание на возникновение турбулентностей (Т) непосредственно за местом стеноза.
До стеноза и вплоть до клиновидного ядра потока после стеноза течение жидкости ламинарно, пока не «уничтожается» множеством завихрений.

б) Число Рейнольдса. Переход от ламинарного течения к турбулентному можно представить себе как следствие преобладания инерционных сил потока над вязким сопротивлением, например, из-за возрастающей скорости движения жидкости. Точка такого перехода зависит от многих отдельных факторов, однако приблизительно ее можно представить в виде безразмерного числа Рейнольдса:

где r — радиус потока, v — средняя скорость движения жидкости, ρ — плотность и η — вязкость жидкости. Поток становится турбулентным, если это число превышает пограничное значение, приблизительно равное 2300.

в) Появление турбулентных потоков. В покое на нормальных сердечных клапанах турбулентные потоки не возникают, однако они появляются в области стенозированных клапанных отверстий или в области регургитации, а также других потоков с высокой скоростью движения, например, при дефекте межжелудочковой перегородки. При переходе от ламинарного потока к турбулентному в одном сосуде исходный параболический профиль скоростей уплощается, а сопротивление увеличивается (в противоположность уравнению Хагена-Пуазейля при турбулентном движении сопротивление возрастает не линейно, а пропорционально квадрату потока).

г) Локализация. Переход в турбулентное движение в области измененного просвета клапанных отверстий (стеноза, недостаточности) или дефектов межжелудочковой или межпредсердной перегородки происходит вскоре после места сужения потока. Непосредственно после прохождения через место сужения поток еще сохраняет ламинарное ядро, имеющее максимальную исходную скорость. Это ядро разрушается со всех сторон увеличивающимися турбулентными завихрениями. Приблизительно через 5 диаметров того отверстия, где был сужен поток, движение полностью становится турбулентным, и его максимальная осевая скорость теперь обратно пропорциональна расстоянию от места сужения.

Ламинарный и турбулентный поток в эхокардиографии (ЭхоКГ)Двумерное моментное изображение потока через суженное отверстие («струя»), зарегистрированное при помощи лазерной допплеровской анемометрии (метод измерения скорости с помощью лазера):
а. Струя возникает в отверстии диаметром 5,8 мм. Ее максимальная скорость составляет 4 м/с. Распределение скоростей жидкости в камере после отверстия изображено цветом (см. шкалу). По оси х отложено расстояние от отверстия вдоль направления движения жидкости, по оси у — перпендикулярное направление (в миллиметрах).
б. Снижение максимальной локальной скорости в зависимости от аксиального расстояния от отверстия. На обоих рисунках видно, что максимальная скорость в центральном ядре струи сохраняется вплоть до расстояния приблизительно 20 мм от отверстия. Затем турбулентные завихрения разрушают ядро, и максимальная скорость гиперболически снижается, в. Симуляция изображения в режиме цветового допплеровского сканирования, соответствующего рисунку а. Из-за искажения сигнала (предел Найквиста был принят равным 1 м/с) изображение центрального ядра невозможно.

Читайте также:  Формула напряжения тока через длину

д) Мозаичность. В режиме цветовой допплерографии турбулентный поток представлен интенсивной, светлой, разноцветной струей («мозаичность»), В связи с характеристиками турбулентного потока при высоких скоростях, например, в случае аортального стеноза, максимально острый угол между основным направлением движения крови и ультразвуковым лучом при непрерывноволновом допплеровском исследовании менее критичен, чем в случае ламинарного потока, так как высокие скорости направлены в пространстве во все стороны и поэтому могут быть зарегистрированы. Следует учитывать, что принцип непрерывности и уравнение Бернулли справедливы независимо от ламинарности или турбулентности потока.

е) Другие подходы для количественной оценки потока и его сужений. Vena contracta. Из-за вышеописанных трудностей количественной оценки потоков по величине струи в цветовой допплерографии были предприняты другие попытки количественного анализа потока крови. Одна из них использует диаметр или сечение струи в самом узком месте, т.е. непосредственно после места сужения потока. Там поток конвергирует в самом узком месте, называемом vena contracta. Это самое узкое место соответствует эффективному сечению стеноза или регургитации и всегда меньше, чем анатомический размер отверстия. Его величина задается геометрией поперечного сечения потока и в физиологических условиях почти не зависит от скорости потока или градиента давления по обе стороны сужения.

Конечно, применение этой теоретически очень привлекательной концепции лимитировано разрешающей способностью и техническими факторами режима цветного допплеровского исследования. Однако он успешно валидирован прежде всего для расчета регургитации и (в меньшей степени) для случая митрального стеноза.

Применение теоремы сохранения массы к случаям сужения поперечного сечения потока в эхокардиографии (ЭхоКГ)Двумерная схема взаимосвязи между эффективной площадью раскрытия клапана (Aeff) и геометрической, или анатомической, площадью раскрытия (Аgeo) (вертикальные стрелки) при внезапном сужении поперечного сечения потока. Проходящие в горизонтальном направлении стрелки символизируют линии потока.
Непосредственно после места сужения линии потока конвергируют, образуя самое узкое место потока Аeff. Коэффициент контракции С отражает соотношение между геометрической и эффективной площадью раскрытия.

Редактор: Искандер Милевски. Дата публикации: 17.12.2019

Источник



Давление и движение крови в венах. Ламинарный и турбулентный ток крови

Стенки вен гораздо более растяжимы, чем стенки артерий, поэтому в венах может скапливаться большое количество крови. Внутренняя поверхность большинства вен снабжена клапанами. Клапаны способствуют току крови к сердцу и препятствуют ее обратному движению. Давление в венах низкое, однако, кровь по ним движется и достигает правого предсердия, этому движению способствует ряд механизмов:

• движущая кровь сила. Небольшая часть давления, необходимая для движения крови, передается венам от артерии через капилляры;

• кровь движется из области высокого давления в область более низкого давления. Во время вдоха, когда грудная клетка расширяется, давление в венах понижается и становится гораздо ниже давления в венулах, что облегает венозный возврат крови к сердцу.

• сокращение скелетных мышц, которые сдавливают проходящие в них сосуды. При сжатии вен давление в них повышается и, благодаря наличию в венах клапанов, препятствующих оттоку крови к капиллярам, кровоток становится однонаправленным в сторону сердца.

• давление диафрагмы на органы брюшной полости. Во время вдоха диафрагма опускается, внутрибрюшное давление увеличивается. Оттесненные диафрагмой органы давят на стенки вен, выжимая кровь в сторону воротной вены и далее в полую вену.

Почти во всех отделах сосудистой системы кровь движется слоями параллельно оси сосуда без перемешивания. Такой кровоток носит ламинарный характер. Слой, прилегающий к стенке сосуда, практически неподвижен, по этому слою скользит второй слой, затем третий и т.д. Форменные элементы крови движутся в середине сосуда.

Читайте также:  Как подобрать трансформатор тока для амперметра

Линейная скорость движения крови – скорость перемещения частиц крови вдаль сосуда при ламинарном потоке (в см/с). Линейная скорость возрастает в фазе систолы и понижается во время диастолы. В капиллярах линейная скорость кровотока приобретает постоянный характер.

В тех отделах сосудистой системы, где скорость тока крови большая, ламинарный ток превращается в турбулентный (вихревой). В нем слои движутся нерегулярно и смешиваются друг с другом. Турбулентное движение крови наблюдается в желудочках, аорте, в местах разветвлений и сужений сосудов, в участках крутых изгибов сосудов.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с) .

Источник

Ламинарный и турбулентный ток крови

Гемодинамика и её основные показатели.

Гемодинамика – это физические принципы, лежащие в основе движения крови по сосудам и зависящие от давления крови, сосудистого сопротивления и их взаимосвязи с кровотоком.

Основное уравнение гемодинамики —

Кровоток (Q) =

Кровоток (Q) или объемная скорость движения крови – это объем крови, протекающий через данный сосуд или группу параллельных сосудов в единицу времени. Измеряется объемная скорость в мл/мин или л/мин.

Производными основного уравнения гемодинамики являются:

Давление (P) = Кровоток (Q) х Сопротивление (R);

Сопротивление (R) = .

Скорость кругооборота крови – отражает время, за которое частица крови проходит большой и малый круг кровообращения. Это время составляет 23 с.

Почти во всех отделах сосудистой системы кровь движется слоями параллельно оси сосуда без перемешивания. Такой кровоток носит ламинарный характер.Слой, прилегающий к стенке сосуда, практически неподвижен, по этому слою скользит второй слой, затем третий и т.д. Форменные элементы крови движутся в середине сосуда.

Линейная скорость движения крови – скорость перемещения частиц крови вдаль сосуда при ламинарном потоке (в см/с). Линейная скорость возрастает в фазе систолы и понижается во время диастолы. В капиллярах линейная скорость кровотока приобретает постоянный характер.

В тех отделах сосудистой системы, где скорость тока крови большая, ламинарный ток превращается в турбулентный (вихревой). В нем слои движутся нерегулярно и смешиваются друг с другом. Турбулентное движение крови наблюдается в желудочках, аорте, в местах разветвлений и сужений сосудов, в участках крутых изгибов сосудов.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Ламинарный и турбулентный ток крови

В местах разветвления сосудов, сужения артерий, крутых изгибов движение имеет турбулентный характер (завихрения). Частицы крови перемещаются перпендикулярно оси сосуда, что значительно увеличивает внутреннее трение жидкости.

Основными показателями гемодинамики являются:

1. Объемная скорость кровотока.

2. Линейная скорость (скорость кругооборота крови).

3. Давление крови в разных участках сосудистого русла.

Объемная скорость кровотока — это количество крови, протекающее через поперечное сечение сосуда в единицу времени (1 мин). В норме отток крови от сердца равен ее притоку к нему, это означает, что объемная скорость кровотока является величиной постоянной. Примером объемной скорости кровотока является МОК.

Линейная скорость кровотока — это скорость движения крови вдоль сосуда. Между объемной и линейной скоростью кровотока существует взаимосвязь, описываемая следующим выражением:

где V — линейная скорость кровотока, Q — объемная скорость кровотока, r — радиус сосуда, πr 2 — отражает площадь поперечного сечения сосуда.

Из выражения видно, что линейная скорость кровотока пропорциональна объемному кровотоку через сосуд(ы) и обратно пропорциональна площади поперечного сечения этого сосуда(ов). Таким образом, линейная скорость кровотока различна в отдельных участках сосудистого русла и зависит от общей суммы площади просветов конкретного отдела сосудов.

Читайте также:  Как определить мощность лампы накаливания переменного тока

Самое маленькое суммарное поперечное сечение сосудистой системы в аорте. Оно равно 8 см 2 , поэтому скорость движения крови там самая большая и составляет 50–70 см/с. Общее суммарное сечение капилляров составляет 8000 см 2 , поэтому скорость движения крови всего 0,05 см/с (самая низкая).

В артериях скорость кровотока 20–40 см/с, артериолах — 0,5–10 см/с, в полой вене — 20 см/с.

Линейная скорость кровотока

В связи с выбросом крови в сосуды отдельными порциями, кровоток в артериях имеет пульсирующий характер.

Непрерывность тока по всей системе сосудов связана с упругими свойствами аорты и артерий. Основная кинетическая энергия, обеспечивающая движение крови, сообщается ей сердцем во время систолы. Часть этой энергии идет на проталкивание крови, другая — превращается в потенциальную энергию растягиваемой стенки аорты и артерий во время систолы. Во время диастолы эта энергия переходит в кинетическую энергию движения крови.

Движение крови по сосудам высокого давления (артерии)

Все сосуды выстланы изнутри слоем эндотелия, образующего гладкую поверхность. Это препятствует свертыванию крови в норме. Кроме этого, исключая капилляры, сосуды содержат: эластические, коллагеновые и гладкомышечные волокна.

Эластические волокна — легко растяжимы, создают эластическое напряжение, противодействующее кровяному давлению.

Коллагеновые волокна — оказывают сопротивление растяжению стенки сосуда. Они образуют складки на поверхности сосуда и противодействуют давлению, которое стремиться сильно растянут сосуд, что предохраняет сосуд от разрыва.

Гладкомышечные волокна — создают тонус сосудов и изменяют его просвет по необходимости. Некоторые гладкомышечные клетки способны ритмично спонтанно сокращаться (независимо от ЦНС), что поддерживает постоянный тонус стенок сосудов. В поддержании тонуса имеют значение вазоконстрикторы — симпатические волокна и гуморальные факторы (адреналин и др.). Суммарное напряжение стенок сосудов называют тонусом покоя.

Кровяное давление в артериальном русле

Уровень кровяного давления измеряется в миллиметрах ртутного столба (мм рт. ст) и определяется совокупностью следующих факторов:

нагнетающей силой сердца;

объемом циркулирующей крови и ее вязкость.

Нагнетающая сила сердца. Основным фактором поддержания уровня АД является работа сердца. Кровяное давление в артериях постоянно колеблется. Его подъем при систоле определяет максимальное (систолическое) давление (САД). У человека среднего возраста в плечевой артерии (и в аорте) оно равняется 110–139 мм рт. ст. Спад давления при диастоле соответствует минимальному (диастолическому) давлению (ДАД), которое равняется 60–89 мм рт. ст. (рисунок 2.4). Зависит оно от периферического сопротивления и ЧСС. Амплитуда колебаний, т.е. разность между систолическим и диастолическим давлением составляет пульсовое давление (ПД), которое составляет 40–50 мм рт. ст. Оно пропорционально объему выбрасываемой крови сердцем. Эти величины являются важнейшими показателями функционального состояния всей ССС.

Усредненное по времени сердечного цикла АД, представляющее собой движущую силу кровотока называется средним давлением (СрАД). Для периферических сосудов оно равно:

для центральных артерий:

Среднее давление снижается по ходу сосудистого русла. По мере удаления от аорты систолическое давление постепенно нарастает. В бедренной артерии оно повышается на 20 мм рт. ст., в тыльной артерии стопы на 40 мм рт. ст. больше, чем в восходящей аорте. Диастолическое давление, наоборот, снижается. Соответственно, увеличивается пульсовое давление, что обусловлено периферическим сопротивлением сосудов.

В концевых разветвлениях артерий и в артериолах давление резко снижается (до 30–35 мм рт. ст. в конце артериол). Значительно снижаются и исчезают пульсовые колебания, что обусловлено высоким гидродинамическим сопротивлением этих сосудов. В полых венах давление близко или равно 0.

Источник